
1

Resource-bounded and Time-critical Reasoning
Greenwald and Zilberstein 2003

1

ICAPS 2003 Tutorial

Resource-bounded and Time-critical 
Reasoning

Lloyd Greenwald, Drexel University

Shlomo Zilberstein, University of Massachusetts

Resource-bounded and Time-critical Reasoning
Greenwald and Zilberstein 2003

2

Outline

Introduction to meta-level control of 
computation 
Algorithm design, performance modeling 
and prediction
Algorithm composition and transformations
Meta-reasoning and deliberation scheduling
Sample applications
Current research directions and wrap-up
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Introduction To Meta-level 
Control Of Computation 
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The Action Selection Problem

Agents have limited computational 
resources.
They must react to a situation within an 
acceptable amount of time.
Key question: How should agents select 
actions when there is not enough time or 
memory or information to compute the 
best one?
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Simon’s “Bounded Rationality”

“A theory of rationality that does not give an 
account of problem solving in the face of 
complexity is sadly incomplete.  It is worse than 
incomplete; it can be seriously misleading by 
providing “solutions” that are without operational 
significance”
“The global optimization problem is to find the 
least-cost or best-return decision, net of 
computational costs.”

-- Herbert Simon, 1958  
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Good’s “Type II Rationality”

“When the expected time and effort taken 
to think and do calculations is allowed for 
in the costs, then one is using the principle 
of rationality of type II.”

-- Irving Good, 1971
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The Principle Of Satisficing

Satisficing, a Scottish word that means 
satisfying, was proposed by Herbert Simon 
in 1957 to denote decision making that 
searches until an alternative is found that 
meets the agent’s aspiration level criterion.
Aspiration level is borrowed from 
psychology, where it denotes a dynamic, 
context-dependent criterion typically 
acquired by experience

Resource-bounded and Time-critical Reasoning
Greenwald and Zilberstein 2003

8

Satisficing In Nature

“It appears probable that, however adaptive the 
behavior of organisms in learning and choice 
situations, this adaptiveness falls far short of the 
ideal ‘maximizing’ postulated in economic theory.  
Evidently, organisms adapt well enough to 
‘satisfice’; they do not, in general, ‘optimize’.”

Is satisficing more than a vague principle?
How can it be formalized?
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Satisficing In CS And AI

Problem complexity makes it impossible to reach 
the provably best decision (e.g. chess, planning 
under uncertainty, multi-agent coordination, VLSI 
layout, etc.)

In some cases, computing the best answer is 
feasible, but it is not economical (e.g. mobile robot 
navigation, scheduling, 3D rendering, etc.)
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Theories Of Bounded Rationality

“Prospects appear poor for finding a single ‘right’ 
theory of bounded rationality due to the many 
different ways of weakening the ideal 
requirements, some formal impossibility and 
tradeoff theorems, and the rich variety of 
psychological types observable in people, each with 
different strengths and limitations in reasoning 
abilities.”

-- Jon Doyle, 1997
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Achieving Satisficing

Satisficing can be achieved by:
design - the designer of a system 
determines the aspiration level.
run-time deliberation - the agent 
determines the aspiration level.
adaptation - the agent learns the 
aspiration level.
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Satisficing vs. Computational 
Savings
Satisficing implies that there is a static or dynamic 

solution evaluation criterion.
Unlike: Limiting computational resources:

Depth-limited search, RTA*
Unlike: Minimizing computational effort while 

seeking the best answer:
Admissible heuristic search (A*, AO*, LAO*, IDA*, 
SMA*)
Proving dominance of an action (B*, Protos)
Pruning (alpha-beta search, bidirectional search)
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Formalizing The Notion Of 
Satisficing

Simon’s definition is vague and therefore 
hard to use as a design principle.
The aspiration level tells us nothing about 
the problem solving technique.
What is a “good enough” solution?
How can a computer measure that?
Should a satisfactory solution be reached 
directly or by iterative refinement?
How to evaluate a satisficing agent?
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Approaches To Satisficing

i. Satisficing = approximate reasoning

ii. Satisficing = approximate modeling

iii. Satisficing = optimal meta-reasoning

iv. Satisficing = bounded optimality

v. Satisficing = a combination of the above
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Controlling Inference 
(Meta-reasoning)

A step toward formalizing the notion of 
satisficing
Traditional algorithms not responsive 

Need to take resource and time pressures into 
account

Reactive algorithms too short-sighted
Need way to control level of computation
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Meta-reasoner

Need to introduce a higher level meta-reasoner that controls
lower level computation of actions – using decision theory, 
i.e. higher level is perfectly rational

“do the right thinking”

Decision 
Procedures

Decision 
Procedures

EnvironmentEnvironment

Meta-ReasonerMeta-Reasoner
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Applying Decision Theory At Meta-
level

Rational agent will choose action that 
maximizes expected utility (MEU), given

Uncertainty about outcomes
• Example: Robot navigation

– Future events
– Sensor limitations
– Incomplete knowledge of the effects of actions 
– Incomplete understanding of low-level computations

Some measure of preference in outcomes
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Decision Theory

Rational agent will choose action that 
maximizes expected utility (MEU), given

Uncertainty about outcomes
Some measure of preference in outcomes

Utility theory deals with representing and 
reasoning about preferences
Probability Theory + Utility Theory
= Decision theory
Weigh each outcome (state) by probability 
that it occurs ∑

s
a

sUasP )()|(max
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Utility Function U(s)

Captures agent’s preference between world 
states
Captured with a single real number for 
each state called Utility
Utility function maps states to Utility
Sometimes called a Value Function
Expected Utility: utility weighted by 
probability ∑

s

sUasP )()|(
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Applying Decision Theory At Meta-
level

Issue: need to understand interaction of 
physical and inferential actions

Physical action: directly effects outcome by 
changing world 
Inferential action: computation that indirectly 
affects outcome

May take sequence of inferential actions 
before finally taking a physical action
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Decision Procedure

Inferential actions used to select physical 
action 
May build up internal state in agent
Inferential actions use resources (e.g. 
time, space, battery power)
Resource use may affect utility of outcome

Meta-reasoning requires an understanding 
of decision procedures
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First Step: Modeling Decision 
Procedures

Discrete Chunks
Inference steps, methods
Combinatorial problems [Etzioni 89] [Russell 
and Wefald 91]

Continuous Profiles
Flexible computations [Horvitz 87]
Anytime algorithms [Dean and Boddy 88]
More flexibility in meta-reasoning

Combination
Profile with discrete time steps
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Second Step: Solving Meta-level 
Control Problems

Composing a sequence of decision 
procedures – composition 
Stopping of single decision procedure
Resource allocation over a set of 
alternative decision procedures – portfolio
Resource allocation across a sequence of 
required decision procedures with 
deadlines – schedule
Conditional scheduling of a sequence of 
decision procedures – policy
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Decision Procedures: Discrete 
Chunks I

Model I [Russell and Wefald 91]
Default physical action (current best): α∈A
Set of potential computations (inferential actions): {Si}
Utility of world due to action, U([α]), or due to 
computation, U([Si]), taking delay and other resource 
usage into account
Change in value due to computation:

V(Si) = U([Si]) - U([α])

Meta-control choice: 
take physical action α now, or
select next computation from {Si}
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Meta-level Control Approach

Choose action (inferential or default) with largest 
value
Assumes physical action will occur after one 
inferential step

Utility of inference directly tied to next action
In reality, a sequence of inferential steps might occur
Called meta-greedy, single-step assumptions
Pearl calls this one-step horizon

Also assumes inferential action can only affect a 
single specific physical action

Called subtree-independence
Myopic meta-control
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Decision Procedures: Discrete 
Chunks II

Model II [Etzioni 89], given:
Set of goals
Set of methods
Deadline

Meta-control choice:
Sequence of methods, where
Method mi,j is ith method applied to solve jth goal
Once jth goal is solved, agent moves on to next goal
σ = m1,1,m2,1,…,mk1,1,m1,2,m2,2,…,mk2,2,…,m1,n,m2,n,…,mkn,n

Proves that this meta-control problem is NP-
complete
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Decision Procedures: Anytime 
Algorithm 

Iterative improvement 
algorithm 
Output of computation 

Quality of computation 
varies continuously with 
compute time
Quality monotonically 
non-decreasing
Generally displays 
diminishing returns in 
limit

Can be stopped at “any 
time” (and resumed with 
minimal cost)
Term coined by [Dean and 
Boddy 1988]
Similar concept termed 
“Flexible Computations” 
[Horvitz 1987]
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Traditional Algorithm (aka Run-to-
Completion Algorithm) 

Algorithm: Well-
defined sequence of 
computational steps 
that transform one set 
of values (input) to 
another set of values 
(output)
Output of computation 

If algorithm runs long 
enough optimal 
result 
If algorithm doesn’t 
run long enough no 
result  0
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Why Anytime Algorithms?

Useful when computation time reduces 
overall utility of result
And level of computation needed changes 
with situation
This “any time” property creates on-line 
meta-level control opportunities

Cannot always choose optimal run-time at 
system design time
Can monitor progress and allocate resources 
dynamically 
Quality needs to be measurable at run-time
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Outline

Introduction to meta-level control of 
computation 
Algorithm design, performance modeling 
and prediction
Algorithm composition and transformations
Meta-reasoning and deliberation scheduling
Sample applications
Current research directions and wrap-up
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Algorithm Design, Performance 
Modeling And Prediction
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Types of Anytime Algorithms

Numerical approximation procedures 
e.g. Taylor’s series approximations

Heuristic search
Dynamic programming

Value iteration
Policy iteration

Monte Carlo simulation
e.g. for computing posterior probabilities

Iterative improvement in general
e.g. sorting an array, insertion sort, bubble sort
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Measures of Quality
Normalize to [0,1] metric for convenience
Measures some aspect of the algorithm’s output

1. Certainty – degree of certainty that the output is 
correct

Example: certainty that diagnosis is correct
2. Accuracy – approximation, bound on difference from 

exact solution
Example: Taylor series approximation of function

3. Specificity – level of detail
Example: diagnose type of injury (penetrating) but not 
mechanism (sharp or blunt instrument)

Measures are somewhat fuzzy and could be 
multidimensional

(adapted from Zilberstein and Russell 96)
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Performance Profile
Model of expected 
quality of computation 
output as function of 
computing time
Coined by [Dean and 
Boddy 88]
May be captured by

Table
Continuous function
Discontinuous function
Parameterized 
representation

Performance profile is 
needed for meta-control
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Building A Performance Profile
Model of expected quality of 
computation output as 
function of computing time
Quality not known precisely

Varies with
• Input 
• Internal randomness

Profile built from
Prior knowledge
Algorithm analysis
Statistics, simulation

Model fitting
• Example: Q(t) = 1 – e -αt
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A Note On Closed-form Models

Generally approximations to true expected 
value
Curve fitting 
Benefits: 

Can perform standard numerical optimizations 
on closed form parameterized families 
Generalize to new problems

Costs: 
Error in approximations 
No closure under composition (composed profile 
is in same curve family as component profiles)
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Types Of Performance Profiles
Expected performance profile Qout(t)

Conditional Performance profile Qout(Qin,t)

Bounds on output quality Qmin(t),Qmax(t)

Probabilistic performance profile Pr(Qout|Qin,t)

Dynamic performance profiles Pr(Qt+1|Qt,t)

Quality trajectories
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More On Profiles
Algorithms often progress in 
discrete steps, rather than 
continuous improvements
Profiles are sensitive to 
problem parameters

Size of problem
Types of input
Existence of pre-cached 
solutions or partial solutions
Etc

Options:
Different profiles to capture 
“reasonably similar” sets of 
problems – classify problems 
prior to meta-reasoning
Capture additional dimensions 
in profile, e.g. problem size, 
input type  0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30

O
ut

pu
t Q

ua
lit

y

Compute Time



20

Resource-bounded and Time-critical Reasoning
Greenwald and Zilberstein 2003

39

Example Anytime Algorithm: 
TSP Tour Improvement
Cost(c, f) + Cost(d, a)    < 
Cost(c, d) + Cost(f, a)
Run many simulations to 
gather data about tour 
quality
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Utility vs. Quality

Quality of computation must ultimately be 
tied to physical action selected by 
computation
Utility of physical action has two 
components

“goodness” of action itself -- also called 
intrinsic utility or object-related value
Utility of world after taking physical action, 
taking into account resources consumed by 
inferential actions (computation) – also called 
comprehensive value
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Increased quality of 
computation maps directly to 
higher precision physical 
action
Intrinsic utility of physical 
action varies non-linearly with 
precision

i.e. need a certain “threshold” 
of precision before action is 
any use, after that the utility 
increases less rapidly
Soft step function

Assume quality = intrinsic 
utility unless stated otherwise
Also, need to understand 
resource consumption costs
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Value of decision 
procedure is 
function of:

Physical action utility
Resource cost

Example resource 
cost: discounting 
for time cost

γt

Deadlines are also 
important – more 
later
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Comprehensive Value (Utility)
Value of decision 
procedure is 
function of:

Physical action utility
Resource cost

Generally assumed
separable
Example: multiply 
intrinsic utility by 
discount factor
(1 – e(-α t)) * γt
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Comprehensive Value Example I

Additive cost 
also common
(1 – e(-α t)) - γ t

Also called time-
dependent utility
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Comprehensive Value Example II

Take quality
Q(t) = 1 – e(-α t))

Transform with 
non-linear utility
1 – e(-β Q(t)) χ

Multiply by 
discount factor
γ t
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Note On Expected Quality
It is sometimes necessary to look beyond expectations – at 
the entire distributions
Variance can make a difference 

same expected length but different probabilities of completing 
travel before hard deadline –>  different utilities depending on 
cost of being late

If variance is not narrow then expected profile is not good 
enough

(adapted from Boddy and Dean 94)
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Anytime Algorithm 
Development

Goal: Build large systems made up of anytime algorithms
First step:  libraries of anytime algorithms

Use as modules for multiple systems
Each algorithm has a performance profile
Need common way to represent profiles
Need common way to call algorithms

(adapted from Zilberstein and Russell 96)
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Anytime Algorithm Development 
Cycle

Create iterative improvement algorithm
Turn into anytime algorithm

Permit varying time allocations
Make interruptible

Create performance profile
Vary input quality
Vary time allocation
Record and summarize output quality (expected 
or full distribution)

Compose with other anytime algorithms 
into system
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Basic Improvement Step

Find basic step
Must be fairly small – for algorithm to be 
interruptible
Examples: process one element in array, one 
node in search tree

Design data structure to represent state 
after basic step

Generate solution from this data structure if 
interrupted
No interruptions during basic step –
interruptions return solution from previously 
completed step

Resource-bounded and Time-critical Reasoning
Greenwald and Zilberstein 2003

50

Profile Generation

Generate sample representative problems
Run algorithm on sample problems

Incrementally giving small amounts of 
computation and recording quality changes
Vary problem inputs if appropriate

Generate statistics
Initial samples used to determine size and 
granularity of data storage
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Measuring Quality

Need way to measure quality of 
intermediate solutions

Used off-line in building profile
Also used on-line if monitoring employed
Ideally it is quick and does not require look-
ahead to end of run
Example: sorting – percent of elements less 
then left neighbor
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Quality Data (Map) For Anytime 
QuickSort Algorithm

(adapted from Grass and Zilberstein 96)
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Performance Profile

Expected quality derived from sample data

(adapted from Grass and Zilberstein 96)
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Variance In Expected Quality

Distribution of qualities when run for 1170ms

(adapted from Grass and Zilberstein 96)
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Outline

Introduction to meta-level control of 
computation 
Algorithm design, performance modeling 
and prediction
Algorithm composition and transformations
Meta-reasoning and deliberation scheduling
Sample applications
Current research directions and wrap-up
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Algorithm Composition And 
Transformations
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Toward Building Time-Critical 
Systems

Build systems: trade quality of results 
against cost of computation
Issues: construction, composition, and 
control of such systems
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Recall: Anytime Algorithm 
Development Cycle
1. Create iterative improvement algorithm
2. Turn into anytime algorithm
3. Create performance profile
4. Compose with other anytime algorithms 

into system



30

Resource-bounded and Time-critical Reasoning
Greenwald and Zilberstein 2003

59

Anytime Algorithm 
Development

Building large systems 
made up of anytime 
algorithms
Example compound 
modules:

Each algorithm has a performance profile
A compound module is a graph of algorithms 
without timing information
After compilation, the compound has a system 
profile with timing information, and a monitor
The monitor observes run-time performance wrt
the system profile to determine run-time 
reallocations and interruptions

(adapted from Zilberstein and Russell 96)
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The Composition Problem

Why is composition important?
What problems does it present?
What solutions are currently available?

speech 
recognizer

classify
speaker

recognize
utterance

linguistic
validity

keyword
gender accent

syntax meaning



31

Resource-bounded and Time-critical Reasoning
Greenwald and Zilberstein 2003

61

Composing Two Algorithms

Consider example:
Patient arrives at emergency room with symptoms 
Input
Some time is spent diagnosing the patient, with time-
dependent utility Diagnosis(Input)
Then diagnosis is used to determine treatment, with 
time-dependent AND diagnosis-dependent utility 
Treatment(Diagnosis(Input))
Overall quality of solution is composition of result of 
diagnosis used as input to treatment
Output ← Treatment(Diagnosis(Input))

A B
Input

Intermediate

Output
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Compilation Issues
How can algorithms be combined?

Simple chains
Graphs
Recursion 
Algorithms with side-effects

Complexity of compilation is determined 
by: 

Composition language 
Form of profiles
Choice of run-time monitoring scheme
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Compilation Problem

Given
System of anytime algorithms
Total time allocation

Off-line
Allocate resources to algorithms to optimize 
expected quality of result
Build composite profile for system

On-line
Monitor progress of algorithms for possible 
interruption and re-allocation
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Off-line vs. On-line Meta-control

Model-based meta-reasoning can be 
completed off-line 

Off-line On-line

Decision
Procedure 

Models

Decision
Procedure 

Models

Meta-ReasonerMeta-Reasoner

Decision 
Procedures

Decision 
Procedures

EnvironmentEnvironment

Meta-Control
Solution

Meta-Control
Solution
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Off-line And On-line Components 
Of Time-critical Systems Building

Off-line

On-line

(adapted from Zilberstein and Russell 96)
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Monitoring

Can we do better than strictly relying on 
off-line models?
Use feedback from on-line computation to 
alter meta-level control
Particularly important when faced with 
high variance or unexpected interruptions
Details later
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New Modeling Concept Needed: 
Conditional Performance Profile

Taking expectation over all 
inputs may yield very 
inaccurate profile
Solution

Classify possible inputs
Create separate expected 
profile for each input class
Use any available information 
about inputs to classify

Expected quality relative to 
decision procedure and input 
class

Can also use three dimensional 
version
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Expected Profiles And Composition
Goal is to compose systems of anytime algorithms
Profile of system is function of profiles of 
components
Unfortunately:

Expected value is not closed under composition

Options
Study the basic ideas assuming minimal variance 
approximately deterministic profiles
Use tabular representation in compilation algorithms
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CPP Of Greedy 
Selection
Sort then Select
Maximal input quality 
(output of sorting 
algoritm)

Minimal input quality

(adapted from Grass and Zilberstein 96)
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Composing Two Algorithms

Two Examples
1. Closed form profiles

Diagnosis and treatment
2. Tabular profile representation

Robot path planning (sensing and planning)

A B
Input

Intermediate

Output
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Compilation With Closed-Form 
Profiles

Output ← Treatment(Diagnosis(Input))
Input: patient symptoms
Intermediate: diagnosis of possibly injuries
Output: Treatment action/plan

Profiles: Linear deterministic independent profiles
Q1(t) = q1+α1t (0 ≤ t ≤ T1) – probability diagnosis is correct
Q2(t) = q2+α2t (0 ≤ t ≤ T2) –probability treatment fixes 
problem, given diagnosis

A B
Input

Intermediate

Output

(adapted from Zilberstein and Russell 96)
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Compilation With Closed-Form 
Profiles

What is best allocation? (i.e. contract time to each 
algorithm)

Allocation that maximizes overall quality.  Split total time 
between each algorithm:
• T: R+→ R+ ×R+

Overall quality is product of two independent qualities –
quality of second algorithm does not depend on first
• Q(x) = Q1(x) * Q2(t-x)
• = (q1+α1x) (q2+α2(t-x)) 
• = q1 q2 + q2α1x+q1α2t - q1α2x +α2tα1x -α2α1x2

For total time t, find x that maximizes Q(x)
Combined profile gives optimal quality for any total time 
allocation – compiler needs to solve for each t

(adapted from Zilberstein and Russell 96)
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Optimal Allocation

Proof:
• Q(x) = Q1(x) * Q2(t-x)
• = (q1+α1x) (q2+α2(t-x)) 
• = q1 q2 + q2α1x+q1α2t - q1α2x +α2tα1x -α2α1x2

For total time t, find x that maximizes Q(x)
Maximum achieved when ∂ Q(x) /∂x = 0
• ∂ Q(x) /∂x = q2α1 - q1α2 +α2tα1- 2α2α1x

• Setting equal to 0 and solving for x gives 
solution above

(adapted from Zilberstein and Russell 96)
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What If The Qualities Are Not 
Independent?

If q2 is defined as quality of first algorithm we 
have: 

Q(x) = Q1(x) * Q2(t-x)
= (q1+α1x) ((q1+α1x)+α2(t-x)) 
= q1

2+ 2q1α1x+α1
2x2+q1α2t - q1α2x +α2tα1x -α2α1x2

For total time t, find x that maximizes Q(x)
Maximum achieved when ∂ Q(x) /∂x = 0

∂ Q(x) /∂x = 2q1α1+2α1
2x - q1α2+α2tα1 -2α2α1x 

Setting equal to 0 and solving for x gives ?

q2=q1+α1x

(adapted from Zilberstein and Russell 96)
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Compilation With Tabular 
Profiles
Output ← Path-Plan(Start, Goal, Get-Domain-

Description(Input))
Input: raw data for visual sensing, start and goal locations
Intermediate: approximate map of environment
Output: path from start to goal (coarse-to-fine search)

Tradeoffs
Better map better plan
More time spent making map less time planning

A B
Input

Intermediate

Output

conditional

(adapted from Zilberstein and Russell 96)
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Profiles Expanded: Map Building

Quality: probability that “blocked” space is viewed as free and vice-versa
(adapted from Zilberstein and Russell 96)
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Profiles Expanded: Path 
Planning – Conditional Profile

Quality: Ratio of length of shortest path to approximate path
(adapted from Zilberstein and Russell 96)
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Compilation With Tabular 
Profiles

Resulting profile after optimal compilation – using discrete 
optimization via search 
Optimal plus default profiles with Min (Ta) and Max (Tb) 
allocations to vision

(adapted from Zilberstein and Russell 96)
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Composing Sorting 
And Selection

Sort then Select
Maximal input quality 
(output of sorting 
algoritm)

Need profile for 
composed system

(adapted from Grass and Zilberstein 96)
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Compilation
First determine 
worst case total time 
for sorting+seeking
Apply multi-
resolution search

An incremental 
algorithm to consider 
all possible 
combinations of time 
allocations
By increasing 
resolution of time, 
incrementally

Build a new combined 
profile

(adapted from Grass and Zilberstein 96)
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Multiple Resolution Search Meta-
control Algorithm For Compilation

(adapted from Grass and Zilberstein 96)
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Compiling The Profiles: 
Multiplicative Probabilities

(adapted from Grass and Zilberstein 96)

[ ] ( )MMMM tqqqtqQ ,|'Pr'),( =

Probabilities
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Compilation: Graphical View

(adapted from Grass and Zilberstein 96)
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Composed Algorithm Is A Contract 
Algorithm

(adapted from Bernstein 2002)

Anytime algorithm: Can be stopped at “any time”
What if you can’t interrupt an algorithm once it starts?
Contract algorithm: “Any time” assumption true only at 
solution design time – not at run time

Can not be stopped prior to “contracted” time
Term coined by [Zilberstein and Russell]
Example: Algorithms that take the deadline as input

• Depth-bounded or cost-bounded tree search: Given a 
deadline, set the depth limit so that all the information is 
processed by the deadline.

• Discretizing a continuous MDP: Given a deadline, partition 
the state set so that dynamic programming will finish by the 
deadline.
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Composed Algorithm Is A Contract 
Algorithm

Compilation result is an allocation of time for 
each component, given a total allocation
But, you can’t go from one allocation to the 
next, incrementally

(adapted from Grass and Zilberstein 96)
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Compilation Of Functional 
Expressions

Functional composition of anytime algorithms
Parameters passed by value
No side effects
Formally: A functional expression over the set F of 
anytime algorithms with input variables I is
1. An input variable in I
2. An expression f(g1,…,gn) where f ∈ F and each gi is a 

functional expression
Goal: find allocation of t total time to anytime 
algorithms to optimize composition quality
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Influence Diagram Solution

Given the 
expression:

E(D(A(x),B(y)),C(z))

Construct and solve
the following
influence diagram:

X Y Z
T

A B C

D

E

V

S

t1 t2 t3

t4

t5
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Tree-structured Composition
f(g1,…,gn) 
Input variables are at the 
leaves
Subexpressions form trees 
with root f and children 
subtrees g1,…,gn

Multiple copies of nodes 
for repeated 
subexpressions
Example:
F(x)=E(D(B(A(x)),C(A(x))))

(adapted from Zilberstein and Russell 96)
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DAG-structured Composition

f(g1,…,gn) 
Input variables are at 
leaves
Subexpressions form 
DAGs with node f and 
links from children 
DAGs g1,…,gn

Needs only one DAG 
for each repeated 
subexpression

(adapted from Zilberstein and Russell 96)
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Calculating The Overall CPP

Global optimization is NP-complete
Local compilation reduces the complexity
It is applicable to tree-structured programs
It is optimal under certain conditions
Complexity O(nkTb) for a program composed 
of n components with k output qualities, 
maximal allocation of T time units, and a 
branching factor b.
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Compiling Deterministic CPPs

Theorem [Zilberstein IJCAI-95]:  Optimality 
of local compilation of deterministic CPPs: Let e 
be a composite expression whose CPPs satisfy 
the input monotonicity assumption, then for any 
input and contract time t:

Qe
L (t) = Qe

G (t)

Proof: By induction on the depth of the tree 
using the local optimality of local compilation.
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Input Monotonicity

We’d like 
conditional 
performance 
profiles to behave 
“reasonably” as 
inputs vary, namely

As input quality 
improves, so should 
the profile
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Compiling Probabilistic CPPs

Theorem [Zilberstein IJCAI-95]:    
Optimality of local compilation of probabilistic 
CPPs: Let e be a composite expression whose 
CPPs satisfy the input linearity assumption, 
then for any input and contract time t:

Qe
L (t) = Qe

G (t)

Proof: An immediate result of the previous 
theorem and input linearity.
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Local Compilation

Only consider profiles of immediate sub-components to a 
node

Treat sub-components as elementary anytime algorithms
Allocating time one piece at a time --- not considering non-local 
effects

Each node has conditional performance profile 
output quality (input qualities, time allocation)
Qnodei,j(q1,q2,t)

Allocate time to each node to maximize quality of root

(adapted from Zilberstein and Russell 96)
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Local Compilation

Leaf node profile:
Internal nodes:

For each internal node, consider all allocations to its sub-
components and pick allocation that maximizes node quality, for 
each total time – locally compiled performance profile 

For example, multi-resolution search over t1 and t2

Assumes input quality is given prior to compilation

(adapted from Zilberstein and Russell 96)
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Repeated Sub-expressions
One activation of multiple copies is needed
Graph representation becomes a DAG
Local compilation does not work

D

F G

C

A B

F G

C

M

D

F G

C

A B

M
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Approximate Time Allocation

Beyond the tree-structure assumption 
[Zilberstein 1993]

Hill-Climbing-Allocation -- solves the global 
compilation problem directly.
Conditioning-Allocation -- 2-level search 
using local compilation as a subroutine.
Trading-Allocation -- uses local compilation 
to trade time among repeated sub-
expressions until only one copy receives non-
zero time.
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Contract To Interruptible 
Transformations

What if we want to use a contract algorithm in a 
setting where we do not know the deadline?
We can repeatedly activate the contract algorithm 
with increasing run times.
When the deadline occurs, we can return the 
result produced by the last contract to finish:

1t 2t 3t 4t 5t 6t …
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The Resulting Performance 
Profile

We want to minimize the inefficiency due to 
scheduling the contract algorithm.

time

Q(t)

…
1t 2t 3t 4t 5t 6t

Contract PP
Interruptible PP
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Some Details

We use X to denote a schedule.
X(i) is the length of the ith contract algorithm run 
(we assume w.l.o.g. X(1) = 1).
G(i) = X(1) + X(2) + ⋅⋅⋅ + X(i) is the total time taken 
by the first i contracts.
We define L(t) to be the length of the last 
contract algorithm to finish before time t.

1 )2(X )3(X )4(X )5(X )6(X …
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Inefficiency Of Scheduling

If the interruption occurs at time t, the loss from 
scheduling is t / L(t).

We are interested in minimizing the time wasted 
in the worst case.

1 )2(X )3(X )4(X )5(X )6(X …

t

L(t)
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Acceleration Ratio

A worst-case measure of the inefficiency 
of the resulting interruptible algorithm 
[Russell, Subramanian, and Parr 1993]

Note that the worst time for a contract 
algorithm to be interrupted is just before 
it returns a result.
So,

.
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An Exponential Schedule

This schedule achieves an acceleration ratio of 4:

Is this schedule optimal?
From [Russell and Zilberstein 1991]. First proof of 
optimality in [Zilberstein, Charpillet, and Chassaing
1999]
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Multiple Processor Case

time

…

Q(t)
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Some Details

X(i, j) is the length of the ith contract run 
on the jth processor.
Upon interruption, the best result from any 
processor is returned.
Acceleration ratio:

t
L(t)

…

Resource-bounded and Time-critical Reasoning
Greenwald and Zilberstein 2003

106

A Generalized Exponential 
Schedule

For m processors, the ith contract 
algorithm run on any processor has length 
[(m+1)1/m]i-1.

In the two processor case: 

…
3

3

33

1 9 27

39
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Acceleration Ratio

It is easy to show that 

We also show that no better ratio can be achieved.
This is a nontrivial extension of the single 
processor proof [Bernstein, Perkins, Zilberstein, 
Finkelstein 2002]

m
mXR

mm /)1()1()(
++

=

Resource-bounded and Time-critical Reasoning
Greenwald and Zilberstein 2003

108

Some Optimal Acceleration 
Ratios

At m = ∞, there is no distinction between contract 
and interruptible algorithms.

∞

100

10
4

3

2

1
m

1.00

1.05

1.39
1.86

2.11

2.59

4.00

Optimal ratio
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Multiple Problem Instances

time

QA(t)
QB(t)

…
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Some Details

X(i, j) = (r,d), where r is the problem and d is the 
time spent
Upon interruption, a solution to the least-worked-
on problem will be requested
Acceleration ratio:

t
L(t)

…
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A More General Exponential 
Schedule

For m processors and n problems, the ith
contract algorithm run on any processor 
has length [((m+n)/n)1/m]i-1.
Problems are handled in a round-robin 
fashion.
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Acceleration Ratio

It is easy to show that

We can also prove that no better ratio can be 
achieved by any schedule with the following 
properties:

Problems are addressed in a round-robin manner
The lengths of contracts for each problem increase with 
time

In [Bernstein, Finkelstein, Zilberstein 2003]
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Some Optimal Acceleration 
Ratios

N/A1.001.001.001.00∞

∞4.001.391.101.05100

∞28.534.001.711.3910

∞137.214.924.002.592
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A Related Problem:  Search On 
Rays

Imagine m robots searching for a goal on one of p
rays (where m < p)
The search starts with all robots at the origin

G
2 robots,
3 rays
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Competitive Ratio

X(i,j) = (r,d), where r is the ray and d is the distance 
travelled out on the ray
The competitive ratio, C(X):

for the worst possible goal location
For the one robot case, the best ratio was known 
previously
In [Kao, Ma, Sipser, Yin 1998]
The general case is solved in [Bernstein, 
Finkelstein, and Zilberstein 2003].

actual search time
search time if goal location was known
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Back To Contract Algorithms

There has also been work on incorporating 
probabilistic information about the performance 
profile and deadline.
A stochastic deadline, PD(t), is a probability 
distribution of the deadline over time.
A stochastic performance profile, PA(q|t), is a 
distribution of the output quality conditioned on 
the run time of the contract algorithm.
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Using Probabilistic Information

With probabilistic information the problem is to 
find a scheduling strategy that maximizes the 
expected result quality at the deadline.
Under certain assumptions, the one-processor, 
one-problem version can be formalized as an MDP:

States:  (quality so far, time so far)
Actions:  contract lengths

Multi-processor, multi-problem case?
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Possible Extensions

Even with probabilistic information, the 
contract algorithm model still has a worst-
case aspect.
We assume that when the contract 
algorithm finishes, the next instantiation 
must “start from scratch.”
It may be useful to explicitly model the 
information carry-over from one 
computation to another.
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Outline

Introduction to meta-level control of 
computation 
Algorithm design, performance modeling 
and prediction
Algorithm composition and transformations
Meta-reasoning and deliberation scheduling
Sample applications
Current research directions and wrap-up
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Meta-reasoning And Deliberation 
Scheduling
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Recall: Applying Decision Theory At 
Meta-level

Recall: Comprehensive value captures 
Physical action effect on world utility
Resource consumption costs due to inference

Meta-level rationality
Choose inferential action (or sequence) that maximizes 
expected value of world outcomes
Under uncertainty -- weigh each outcome (state) by 
probability that it occurs

World Utility = Expected Comprehensive Value 
Assumption

Assume comprehensive value completely captures 
expected utility of physical action taken after inferential 
action
Rational meta-level agent chooses inferential action that 
maximizes comprehensive value
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Solving Meta-level Control 
Problems

Composing a sequence of decision 
procedures – composition 
Stopping of single decision procedure
Resource allocation over a set of 
alternative decision procedures – portfolio
Resource allocation across a sequence of 
required decision procedures with 
deadlines – schedule
Conditional scheduling of a sequence of 
decision procedures – policy
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Optimal Stopping Problem

Single decision 
procedure

Anytime 
algorithm

Meta-level 
decision

Choose how long 
to run anytime 
algorithm before 
selecting physical 
action
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Optimal Stopping: Approach I
Take derivative of closed-
form model of expected 
comprehensive value 
function

Find t such that derivative 
is zero

t* = -5 ln(0.1) = 11.51
Value = (1-e -.2*11.51) -
.02*11.51 = .67
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Optimal Stopping: Approach II

Re-express 
comprehensive value 
as an incremental 
expression

Having already 
computed for t time
What is expected 
quality improvement 
for ∆t more time?
∆Value(t, t+∆t ) = 
Value(t+∆t) – Value(t)

Also called marginal 
expected value of 
computation
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Optimal Stopping: Approach II
Iterative meta-level control 
algorithm
t = 0
While (∆Value(t, t+∆t ) > 0) 

t = t+∆t
Stop. Return t. 

Greedy on-line search
Works forward in time –
can be applied on-line

Treats ∆Value(t, t+∆t)  as a
black box

Could be closed-form model 
summarizing non-local data
Or statistics-driven with 
local or non-local data
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Optimal Stopping: Approach III

Limitations of greedy 
approach

Finds first local optima
• global optimum under 

certain conditions i.e. 
diminishing returns

Complexity and accuracy 
depend on ∆t

Can also apply Hill climbing 
with gradient ∆Value(t, t’) 

If off-line, not limited to 
finding first local optima

• Simulated annealing
• Random re-starts
• Etc.

Can be extended to 
multiple dimensions Compute Time
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Off-line vs. On-line Meta-control

Meta-reasoning algorithms based on models 
can be executed completely off-line

Off-line On-line

Decision
Procedure 

Models

Decision
Procedure 

Models

Meta-ReasonerMeta-Reasoner

Decision 
Procedures

Decision 
Procedures

EnvironmentEnvironment

Meta-Control
Solution

Meta-Control
Solution
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Monitoring – Handling 
Uncertainty

Algorithm performance is not always known deterministically 
Profile may be:

Approximate model based on limited data (uncertainty about 
performance)
True model with considerable variability (randomized algorithm, 
uncertainty about world/problem) 

Sources of uncertainty
Ignorance – not enough data, novel situations
Approximation 

• Deterministic model easier to manipulate efficiently
• True model leads to computationally intractable meta-deliberation 

problem
Stochastic dynamics – world really does behave non-
deterministically
World may change during deliberation
Changing requirements
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Monitoring Questions
How should the variance in solution quality affect 
the frequency of monitoring?
How should the cost of monitoring affect the 
frequency of monitoring?
When solution quality is hard to determine, what 
degree of approximation should be used?
How does approximation of solution quality 
degrade the effectiveness of monitoring?
Is it better to monitor periodically or more 
frequently toward the expected stopping time?
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Monitoring – Handling 
Uncertainty

On-line feedback
Monitoring contract algorithms
On-line stopping
Off-line conditional plans/policy 
Approximate feedback
Current Research

Model-free approach
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Monitoring – On-line Feedback

Feedback
From algorithm itself
From observing changes to world
Variance from off-line models

• Expected performance
Example: measurement of current intrinsic 
solution quality

With respect to initial solution
With respect to optimal solution – approximation ratio
With respect to bound on optimal solution obtained from 
relaxed problem

Difficulties
Quality not directly observable

Cost
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Monitoring Contract Algorithms

QA(q,t)[qi] = the probability of output quality qi
UA(S,t,qi) = utility of results of quality qi

Since the quality of future results is unknown:
UA'(S,t) = Σi QA(q,t)[qi] UA(S,t,qi)

Since the future state of the domain is unknown:
UA''(t) = Σs Pr(St = S| S0) UA'(S,t)

The best contract time:
tc = argmaxt {UA''(t)}

In [Zilberstein 1993]
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Optimality Of The
Fixed-contract Approach

Theorem: The fixed-contract monitoring strategy is 
optimal when the domain has predictable utility, and 
the system has a deterministic PP.

Examples:
-- Data transfer with limited but known bandwidth
-- Multiple methods for diagnosis and repair

Optimality of the fixed-contract approach in other 
situations
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Incremental Comprehensive Value

Now let’s create an incremental version

Compare to previous version
∆Value(t, t+∆t ) = Value(t+∆t) – Value(t)

Doesn’t treat Value as a block box
Can reason about terms

New version uses more information
current quality level
computation expended to get there

Also called marginal myopic expected value of 
computation

( ) )),(),'((,,|'Pr),,(
'

tqUttqUtttqqtttqValue
q

−∆+∆+=∆+∆ ∑
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Monitoring I: Stopping With On-
line Feedback

Iterative on-line meta-level control algorithm with 
feedback
t = 0
q = 0
Do

Compute (deliberate) until t+∆t
t = t+∆t
Observe U(q,t) /* or observe q and predict U(q,t) */

Repeat until (∆Value(q,t,t+∆t ) < 0) 
Stop

( ) )),(),'((,,|'Pr),,(
'

tqUttqUtttqqtttqValue
q

−∆+∆+=∆+∆ ∑
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Monitoring I
Myopic algorithm

Only considers expected value at 
next time step
Optimal stopping decision may 
depend on looking further into 
future

Optimal if marginal myopic 
expected value of computation 
has diminishing returns 

Example: the PP is monotonically 
increasing and concave down, and 
the cost of time is monotonically 
increasing and concave 
up[Zilberstein 1993, Hansen and 
Zilberstein 2001]

May account for future by using 
more data to predict value

Model fitting
Dynamic programming

PP
Cost

Time
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A Note On Dynamic Performance 
Profiles

Monitoring I algorithm 
relies on the utility 
model

As well as the 
transition model

The later is a variation 
of a dynamic 
performance profile 
(coined by Zilberstein)

Makes Markov 
assumption
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Monitoring Policies

Framework:
Constructing an off-line monitoring policy 
using dynamic programming.
Modeling quality improvement with a dynamic 
performance profile.
Taking into account the cost of monitoring.
Monitoring based on exact or estimated 
solution quality.
In [Hansen and Zilberstein 1996, 2002]
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Monitoring – Off-line Policy 
Generation

Sequence of decisions on when to stop deliberation –
determined using off-line models of potential on-line 
information
Non-myopic: consider both current and future information 
Dynamic programming formulation:

Monitoring policy: function of current quality and time

Optimally solved with dynamic programming algorithms
Polynomial in number of quality levels and time steps
Quality must be Markovian
Does not take monitoring cost into account
Also solved through search (e.g. AO*)

),(),(),( tqUtqVstoptq =⇔=π

( ) ( ) )),'(,,|'Pr,,(max),(
'

ttqVtttqqtqUtqV
q

∆+∆+= ∑



72

Resource-bounded and Time-critical Reasoning
Greenwald and Zilberstein 2003

143

Monitoring Policies Cont.
Anytime algorithm: traveling salesman problem 
using randomized tour improvement.

Policy based on actual solution quality

time-step
quality start ... 5 6 7 8 9 10 11

5 0 0 0 0 0 0 0
4 1M 1M 1M 1M 1M 1 0
3 1M 1M 1M 1M 1M 1 0
2 3M 3M 3M 3M 2 1 0
1 4M 5 4 3 2 1 0
0 5M 6 5 4 3 2 1 0
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Monitoring With Cost

Each monitoring action incurs a fixed cost C
Can reason about frequency of monitoring in 
addition to stopping time
Two decisions per time step:

How much time to run algorithm (time slices 
between monitoring not of fixed size)
Whether or not to monitor at end

Also formulated and solved with dynamic 
programming
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Approximate Feedback

Too costly to determine exact quality at 
run-time
Estimate quality

Based on easily observable “features”
Take into account cost of estimation 
procedure
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Modeling Issues

From Hansen and Zilberstein while 
discussing performance profiles for solving 
a 12-city TSP instance:

“… compiled by generating and solving a 
thousand random twelve-city traveling salesman 
problems”

Too much simulation needed
No theory on how to generalize over 
problem instances
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Continual Computation

Uncertain stream of challenges encountered over 
time (also called problem instances)
Some ability to predict future challenges
Allocate computation time to selecting actions for 
current and future challenges

Termed: pre-computation
Motivation: time divided into bursts of challenges 
and long stretches of idle time

Example: Web page pre-fetching
Grand vision: a solution for situated autonomous 
systems
Coined in [Horvitz 97], Similar notion called
response planning [Greenwald, Dean 94]
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Idle Time Options
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Trauma Care Example

What to do while 
waiting for needle 
aspiration results:

Nothing
Reason about possible 
outcomes
Reason about other 
causes of shock
Reason about further 
diagnostic actions
Reason about other 
injuries/challenges
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Solution Is A Computational 
Portfolio
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Some Simplifying Assumptions

One decision procedure per challenge – no overlap 
in reasoning
Distribution over future challenges known at start 
of idle time
No current challenges
Consider idle time period to be equivalent to:

Common release date for all challenges
Common, possibly uncertain, deadline for all challenges –
when the next real-time challenge occurs

Only one real-time challenge occurs at deadline 
and then problem ends
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Definitions
Set of challenges I
Idle time T

time between prior solved challenge and next 
challenge

Pre-computation time tp,i >=0
amount of idle time allocated to challenge i ε I

Equivalently, as a portfolio, tf
i = tp,i/T

Distribution over future challenges given 
evidence at the release date P(I|E)

∑
∈

≤
Ii

ip Tt ,
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First Problem: All-or-Nothing

Additional assumption: 
traditional algorithms 
(also called run-to-
completion)
t(Ii) is fixed time to 
complete computation 
for challenge Ii
Optionally: Intrinsic 
utility is constant 
times output quality
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Minimizing Expected Delay
Uncertain idle time
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Algorithm
1. Schedule in decreasing order of future challenge 

probability P(Ii|E)
2. Compute to completion
3. Repeat while there is still idle time remaining

In [Horvitz 2001]
Works on-line, independent of T

Proof Idea:  Taking any processing away from most likely 
challenge can not decrease expected delay
In other words: the gradient of expected delay is equal to 
the challenge probability.  The largest diminishment of 
expected delay is to process challenge with largest 
gradient.
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Example
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Solution Portfolio
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Minimizing Expected Cost Of Delay

Still All-or-Nothing algorithms
Now each challenge has a time cost that 
begins at challenge point (deadline)
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Minimizing Expected Cost of Delay

Gradient of cost of delay is constant

[Horvitz 2001]
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Zero Cost Pre-computation

If pre-computation incurs no
time cost
Assume cost-free pre-
computation for t units
Flexible algorithm has already 
produced quality level q after
t units of computation
Marginal myopic expected 
value of spending ∆t more time 
in pre-computation

Compute Time
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Reasoning About Pre-computation

Three options for evaluating next unit of pre-
computation

1. Pre-computation incurs no cost – [Boddy and Dean 94]

2. Pre-computation accumulates cost for entire duration –
[Horvitz 97]

3. Pre-computation incurs no cost until challenge is 
observed – soft deadline – [Parkes and Greenwald 2001, 
Horvitz 2001]
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Expected Value Of 
Pre-computation

Expected value of challenge i given 
allocation tp,i

Zero cost

Non-zero cost

Probability of challenge Ii

Expected value of pre-computation

( ) )0,'(|'Pr)(
'

,, qUtqtValue i
q

ipiipi ∑=

( )EIi |Pr

( )ipiiipi tValueEItEVP ,, )|Pr()( =
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Portfolios

Consider some current allocation of idle 
time T
Pre-computation time tp,i >=0

amount of idle time allocated to challenge i ε I

Portfolio, tp

Equivalently tf
i = tp,i/T

∑
∈

∈
≤∀

Ii
ipipIi

Tttst ,, ..,
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Expected Value Of Portfolio

Given portfolio tp
Probability distribution over challenges I

Total expected value of portfolio

Re-expressed in terms of marginal values 
(flux)

( )E|IPr
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Greedy Time-slicing For Portfolio 
Construction

Find portfolio tp,  that maximizes total expected value

For any pre-computation time T
Assume challenges includes null challenge with Pr(null|E)=0
Iterative meta-level control algorithm

For all i, qi =0, tp,i=0
While (challenge not received)

dp = argmaxi (Pr(Ii|E) * ∆Valuei(qi,tp,i,tp,i+∆t ))
Execute decision procedure for challenge dp for ∆t time
Observe qdp
tp,dp= tp,dp +∆t

( )∑ ∑
∈

∆−

=

∆+∆=
Ii

tt

t
iii

ip

tttqValueEIEVP
,

0
,,)|Pr()( pt

(adapted from Horvitz 2001, Parkes and Greenwald 2001)
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Greedy Time-slicing Analysis
Greedy on-line search

Works forward in time – can be applied on-line using 
observed qualities rather than model
Does not use knowledge of T
Stops at first local maxima for each challenge
Globally optimal if all value functions show diminishing 
returns

If T is known we can use off-line hill climbing with 
models to find optimal portfolio
Extensions [Parkes and Greenwald 2001]: off-
line/on-line approximation method for 
1. non-diminishing returns 
2. approximate models
3. risk minimization objective (mean/variance tradeoff)
4. soft deadlines 

Resource-bounded and Time-critical Reasoning
Greenwald and Zilberstein 2003

168

Sequential Challenges

Solve time-dependent planning problem using 
decision-theoretic deliberation scheduling [Boddy 
and Dean 94]

Meta-reasoning method
Schedule decision procedures (anytime algorithms) for a 
sequence of independent challenges – here called events
Real-time response requirements

Similar solution approach, exploit properties of:
monotonically non-decreasing expected performance 
profiles
independence of events
limited notion of time-cost (hard deadlines)
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Time-dependent Planning Problem

Given: 
list of events/conditions (C) and hard deadlines, time(c), 
exactly one decision procedure for each condition, dp(c), 
and
performance profile for each decision procedure

Allocate: time between each condition to 
computing responses to all conditions
No benefit for responding before deadline
If responses are independent, maximize: 

(adapted from Boddy and Dean 94)

( )( )∑
∈Cc

cResponseV
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Time-dependent Planning 
Problem (continued)

Set of anytime decision procedures, 
one per condition

Monotonically increasing expected value
Interruptible
Answer always available

Performance profiles map to following 
function for each condition

Expected value of using the action 
resulting from deliberating for δ time

Assume  µc(δ) are all
piecewise linear
with decreasing slope of consecutive 
segments – diminishing returns

(adapted from Boddy and Dean 94)

( ) ( ) ( )( )( )ccEc dp,alloc,|cResponseV( δδµ =
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Compare To Expected Value Of 
Portfolio

Similarities: 

New wrinkles:
In pre-computation the challenges are only expected
In deliberation scheduling all challenges (events) will 
occur
Plus, this complication of varying deadlines

( ) ( )( )( )∑∑
∈∈

≈
CcIi

i ccE ))dp(,alloc(,|cResponseVtValue ip, δ
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Solution: Greedy Time-slicing 
Algorithm

Work backward from deadline of latest 
condition
Choose an interval of time to allocate
Allocate interval of time among all 
conditions that lie forward of start of 
interval
Choose condition whose performance 
profile indicates the greatest expected 
gain in value for this interval
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Greedy Time-slicing Algorithm  
Notation

time(c) is deadline for condition c
t is start of current allocation interval
Set of conditions eligible for allocation

Gain γi (x) : slope of linear segment of µi at 
x (or positive side of x, if discontinuous) 
Gain is value of more computation time, 
after already having computed for x time

(adapted from Boddy and Dean 94)

( ) { }))(time()(| tcCcct ≥∧∈=Λ
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Choosing Next Interval min_alloc

Set of eligible conditions 
cannot change in the 
middle of the interval
last(t) : first time point 
before t at which the set 
of eligible conditions 
(lambda) changes

i.e. can’t go back any 
further without the set of 
conditions changing mid-
interval
Gain must be constant over 
all eligible conditions
δi is time already allocated 
to condition i

(adapted from Boddy and Dean 94)

( ) ( ) ( ){ }tCcct Λ−∈= |timemaxlast
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Greedy Time-Slicing Algorithm 
Sketch

Loop 1: initialize allocations to all conditions 
to zero
Loop 2: time-slice backwards to determine 
allocations
Loop 3: re-allocate to determine ordering 
of execution
Assume that events/conditions/dp’s are 
labeled by the order of deadlines (time(c))
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Deliberation Scheduling Algorithm

(adapted from Boddy and Dean 94)
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Example 
Of DS

• 2 conditions

• Deadlines c1 and c2

• Performance profiles 
given

(adapted from Boddy and Dean 94)
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Optimality of DS 
Theorem 1 [Boddy and Dean 94]:  DS is optimal in 
the sense that it generates a set of allocates {δc} 
maximizing

Proof idea: relies on decreasing slope of 
consecutive line segments – diminishing returns
Note that DS only produces legal schedules

All allocation of time to c occurs before time(c)
Total time allocation to conditions in an interval does not 
exceed length of interval
Procedures are scheduled in order of deadline

( )( )( )∑
∈Cc

ccE ))dp(,alloc(,|cResponseV δ
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DS Doesn’t Work For Non-
concave Profiles

ii. Allocation produced by DS
iii. Optimal allocation

Cannot allocate greedily without considering future

(adapted from Boddy and Dean 94)
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Deliberation Scheduling Extensions

Uncertain deadlines [Boddy and Dean 94]
Continuous profiles
Mean/variance portfolios, approximations 
for non-linear profiles, and soft deadlines 
using construction of [Parkes and 
Greenwald 2001]
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Outline

Introduction to meta-level control of 
computation 
Algorithm design, performance modeling 
and prediction
Algorithm composition and transformations
Meta-reasoning and deliberation scheduling
Sample applications
Current research directions and wrap-up
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Sample Applications



92

Resource-bounded and Time-critical Reasoning
Greenwald and Zilberstein 2003

183

Some Applications
Mars rover scheduling [Bresina et. al. 99]
Telescope scheduling [Drummond et. al. 94]
Information gathering [Grass and Zilberstein 2000] [Lesser et. al. 
2000]
Avionics scheduling [Greenwald and Dean 98]
Bayesian network inference [Guo and Hsu 2002] [Ramos et. al. 
2002]
Heuristic search [Hansen et. al. 97] [Pemberton and Korf 94]
Medical decision-making [Horvitz and Rutledge 91]
Graphics [Horvitz and Lengyel 97]
Web pre-fetching [Horvitz 2001]
Robot mapping and navigation [Kwok et. al. 2002]
Agent bargaining [Larson and Sandholm 2000]
Network congestion control [Millan-Lopez et. al. 94]
Satellite scheduling [Pemberton and Greenwald 2002]
Game search [Russell and Wefald 91]
Data analysis [Smyth and Wolpert 97]
And many more …
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Example: Anytime A*
A* is best first search with f(n) = g(n) + h(n)
Three simple changes make it an anytime algorithm:
(1) Use a non-admissible heuristic so that sub-

optimal solutions are found quickly.
(2) Continue the search after the first solution is 

found using it to prune the open list.
(3) When the open list is empty, the last 

solution generated is optimal.
How to choose a non-admissible heuristic?

(adapted from Hansen, Zhou, and Zilberstein 2003)
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Weighted Evaluation Function
Use  f(n) = g(n) + w ∗ h(n)

Higher weight on h(n) tends to search deeper.

Admissible if h(n) is admissible and w ≤ 1.0

Otherwise, the search is non-admissible, but it 
normally finds solutions much faster.

The technique applies to a wide range of heuristic 
algorithms (e.g.  A*, AO*)
In [Pohl, 1970] [Kool and Kaindl, 1992]
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Pseudocode Of Anytime WA*
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Optimality Of Anytime WA*

Theorem: Anytime WA* always terminates 
and the last solution it produces is an 
optimal solution
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Performance Analysis Of AWA*

Performance profiles using three different weights, averaged over all 
instances of the 8-puzzle.
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Performance Analysis Of AWA*

Average number of nodes opened and expanded by AWA* over all 
instances of the 8-puzzle 
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Domain-independent Planning

Comparison of A* and AWA* on five benchmark 
problems from the biennial Planning Competitions.  The 
Nodes column gives the total number of nodes stored
[Experiments were performed on an UltraSparc II with a 300 Mhz
CPU and two gigabytes of RAM]
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Multiple Sequence Alignment

Convergence of bounds for Anytime WA* in 
aligning sets of 5 sequences from [Kobayashi and 
Imai 1998].
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Comparison Of Search Algorithms

Average performance of search algorithms in aligning 
sets of 5 sequences from [Kobayashi and Imai 1998]



97

Resource-bounded and Time-critical Reasoning
Greenwald and Zilberstein 2003

193

Outline

Introduction to meta-level control of 
computation 
Algorithm design, performance modeling 
and prediction
Algorithm composition and transformations
Meta-reasoning and deliberation scheduling
Sample applications
Current research directions and wrap-up
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Current Research Directions And 
Wrap-up
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Progress:
Satisficing versus Optimizing
Problem:

“Currently, ad hoc techniques are used for 
making a system produce a response within 
a specified time interval.”

-- Laffey et al., AI Magazine, 1988

Solution:
Many techniques are available now to 
optimize the quality of the response, net 
of computational costs.
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Progress:
Optimal Composition

Problem:
“There is currently no general theory of combining 
anytime algorithms.  For cases in which the 
decision problems are dependent, there is not a 
great deal that we can say.”

-- Dean and Wellman, Planning and Control, 1991

Solution:
Local compilation techniques allow for optimal 
composition of anytime algorithms for a class of 
programming constructs.
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Progress:
Performance Guarantees
Problem:

Anytime algorithms “ensure that some result will 
be available by a deadline.  However, the quality or 
correctness of that result cannot be guaranteed.”

-- Musliner et al., Artificial Intelligence, 1995

Solution:
With more informative performance profiles and 
active monitoring it is possible to guarantee a 
minimal quality level.
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Some Unifying Themes

Greedy on-line time-slicing algorithms apply 
to many problem variations, with similar 
assumptions of diminishing returns

Optimal stopping
Monitoring
Continual computation
Deliberation scheduling

Non-diminishing returns can often be 
formulated as Markov Decision Problems 
(MDPs) and solved off-line with dynamic 
programming
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Research Directions
What properties of resource-bounded reasoning algorithms make 
them useful and easy to control?
How important are properties of monotonicity in quality, convergence 
on optimal results, interruptibility, and diminishing returns?
How can we best identify and take advantage of dependencies 
between memory, time, challenges, and informational resources?
What representations of knowledge allow for efficient 
implementation of flexible inference strategies?
What is an ideal representation for performance profiles?
How can we ideally partition resources between meta-level and 
object-level reasoning?
How can we best estimate the value of partial results and predict the 
outcome of allocating additional amounts of resources?
How might unsupervised learning and data mining be used to acquire 
knowledge about problem-solving performance and control? 
How might exploration strategies be applied within on-line model-free 
approaches?
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