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Goals

z To give researchers and practitioners a
starting point for investigating problems of
planning and scheduling with uncertainty
– an overview of the types of problems and

approaches that exist
– a classification independent of any specific

representation model or reasoning technique
– examples in the research literature

What kinds of problems have been addressed in the literature?
• As we will see there are a wide variety of problem definitions and
emphases.

What are the approaches that have been tried and what is their theoretical
basis (if any)?

To really solve a full planning/scheduling problem with uncertainty, it is
necessary to have an integrated  problem-solving-and-execution system with:

• off-line problem solving
• on-line reasoning
• execution monitoring
• communication and coordination among execution and reasoning
components
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Outline

– Introduction
• Classical P&S, Types of Uncertainty

– Quick Examples
– A Framework for P&S with Uncertainty

Break
– (On-line) Reactive Techniques
– (Off-line) Proactive Techniques
– (On-line) Progressive Techniques
– Mixed (on-line/off-line) Techniques
– Summary & Discussion
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Introduction

Classical Planning & Scheduling
Types of Uncertainty
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Classical Scheduling: definition

z Assign activities to resources and times
z Activities

– duration, resource requirements
– temporal relationships (e.g., precedence)

z Resources
– capacity constraints
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Job Shop Scheduling Problem (JSP)
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Classical Scheduling: limitations

z JSP is a simple model
– one resource requirement per activity, no

alternative resources, only precedence
constraints, …

z Everything is known before scheduling
– all activities, resources, durations, temporal

constraints, …

z Think: Manufacturing

There are, of course, other models of scheduling than JSP (e.g., flow-shop,
open-shop, timetabling, RCPSP, …).

The JSP is one of the most common models.
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Classical Planning: definition

z Given:
– start state and a goal state

• state – set of propositions and their “values”

– a set of operators
• with preconditions and effects

z Find an instantiation of operators that move
from the start state to the goal state
– the search might be backward or forward
– operators might be partially or fully ordered

Forward chaining = the search tree takes the start state as the root and
develops branches towards the goal state
Backward chaining = the search tree takes the goal state as the root and
develops branches towards the start state

When operators are partially ordered, this is called non-linear planning and
enforces more complex requirements on the plan (e.g. the Chapman criteria
that demands that if an effect of an action Producer is also the precondition of
an action Consumer, then any other action Threat that "consumes" the same
precondition must not hold in-between)
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Start: a = 0, b = 6

Goal: |b – a| ≤ 1

Operator 1: (a < 3) (a = a+1)
Operator 2: (b > 3) (b = b-1)

a=1
b=6

a=2
b=6

a=2
b=5

a=2
b=4

Classical Planning: example
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Classical Planning: limitations

z Actions are deterministic and have pre- and
post-conditions

z Often no representation of time or resource
usage

z Number of activities (i.e., instantiations of
an operator) is not known a priori

z Think: Robot navigation or blocks world

The most well-known of classical planners is Graphplan.

We will focus on task-oriented planning (a task must be performed to reach a
fixed goal) as opposed to process-oriented planning (a process must be
controlled so that fixed conditions are maintained).
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Temporal Planning

z An explicit representation of time is added
– actions have start and end times and a duration

+ delays between actions
– effects may begin at any time before or after

(delayed effect) the end of the action
– events occurring at known times can be taken

into account

z Temporal constraint-based models often
used, based on intervals or time-points

IxTeT (LAAS-CNRS) and HSTS (planner in NASA project Remote
Experiment) are the main examples of such temporal planners.
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Bridging the gap between P&S...

z Most current systems and approaches in
planning and scheduling share common
features
– activities / resources
– temporal constraints
– consistency checking w.r.t. time and resource
– “output” of problem solving
– types of uncertainty, as we are going to see...
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Reality Check

z Classical planning and scheduling
formulations are “static”
– scheduling: activities, resource capacities,

durations, …
– planning: operators, conditions, effects, …
– the problem doesn’t change while you are

solving (or executing) it

z The real world is not so accommodating
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Uncertainty in Scheduling

z Durations may not be precisely known
– probability distribution?

z Resources may have lower capacity
– machine breakdown
– raw material doesn’t arrive

z New tasks may need be taken into account
– new manufacturing orders coming in
– redo a failed task
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[MacKay 88]

z “Pathological” job shop
– 80 acts/job, 300 resources, 5000 active jobs
– all orders behind schedule

z Uncertainty
– set-up time: varies from 2 days to 6 weeks
– duration: can vary by 100%
– raw material arrival
– high-priority orders
– decreased worker productivity

[MacKay 88] MacKay, K.N., Safayeni, F.R. & Buzacott, J.A. Job-shop
scheduling theory: What is relevant? Interfaces, 18(4): 84-90, 1988.

Set-up time: some time is necessary to configure a resource to be able to
process an activity.  The length of the setup may depend on the preceding and
following activities. The classical example is paint mixing: if you switch from
mixing black paint to white paint, you need to completely clean the machine.
Going from white to grey requires less of a cleaning effort and therefore less
time for a setup.  With sophisticated parameterizable machinery, scheduling
to minimize setup time is a common optimization criterion.
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Uncertainty in Planning

z Arrival of new goals
z Events:

– Unpredicted or varying time of occurrence
– May be only partially observable

z Actions:
– Varying duration
– Undesired effects / overlooked preconditions

• ex: a turn might become an overturn...
• ex: to move, the battery must not be empty!

In this tutorial we will not address uncertainty in the sensing. That means the
executing agent has full observability on the environment and always knows
exactly which state it is in.
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Example: A team of rovers on Mars

z 10 rovers with limited battery capacity and a
unique non sharable recharging station

z Imprecise map of the area
– small obstacles / steep routes will be observed

z Scientific experiments might fail or succeed
z Unexpected events: a rover collapses ...
z Rovers communicate at short distance only
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Representing the Uncertainty

z Variables may take distinct values…

z Basic: simply list possible values

z Probabilities → bayesian networks, MDP
z Possibilities → fuzzy sets

z Use such models to reason on possible
decisions: e.g. Utility (decision theory)

- Basic "disjunctive" models = just distinguish between possible cases
(discrete or continuous) that may arise at execution time:

- intervals of possible durations: d∈ [l, u]

- different states a resource might be in: Ok∨ Fail

- distinct outcomes an action might have: E1∨ E2

No ranking : same probability assumed for all possible cases (or possibility of
1 for each case).

- Probabilities or possibilities?

Probabilities = for each possible case, statistical data (i.e. precise and
reliable numbers) are available

Fuzzy sets = qualitative or subjective + partial knowledge: even full
ignorance might be expressed!

ex: we don't know if a patient is sick or not

with probabilities: P(ok)=P(sick)=1/2 ? 
P(ok)=P(benign)=P(acute)=1/3 ?…

with possibilities: Π(ok)= Π(sick)=1 and N(ok)=N(sick)=0
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Quick Examples
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Rule-based recovery

z [Sadeh & al. 93]
z Problem: off-line schedule + machine

breakdown

z Approach: use simple rules to repair
schedule
– Right Shift Rule
– Right Shift and Jump Rule

z “Reactive”
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Just-In-Case scheduling

z [Drummond et al. 94]
z Problem: telescope observation with

uncertain durations
z Approach: build a contingent schedule

–  take into account likely failures and provide a
new schedule to switch to

z “Proactive”
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Short-term allocation

z [Vidal et al. 96]
z Problem: use multiple robots to load/unload

ships → uncertain task duration &
arrival/departure times

z Approach: interleave execution and planning
– plan until time windows are too uncertain
– execute until better information is available

z “Progressive”



TUT2 -   24

24

Off-line partitions, On-line rules

z [Wu et al. 99]
z Problem: job shop with uncertain durations
z Approach:

– off-line: optimally partition activities (introducing
new precedence constraints)

– on-line: use a dispatching rule, respecting new
precedence constraints

z “Mixed”
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A Framework for Planning &
Scheduling with Uncertainty

Off-line/On-line Reasoning
Generation/Execution Loop
A Spectrum of Techniques
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Off-line/On-line Reasoning

z Off-line  reasoning = predictive schedule 
– usually static  then passed on to the execution

manager

z On-line  reasoning = concurrent with the
process on which it reasons
– it is dynamic  by nature = incremental building
– it needs to meet real-time  requirements
– it is usually reactive  to observations
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Process: schedule
being executed on line

Off-line
scheduling

On-line
scheduling

Dynamic
= changes over
time: states…

Yes Usually not Yes

Real time
= time-bounded
computation

Yes, but only limited
decision making No Yes

Reactive
= in response to
observations

Might be (conditional /
flexible schedule) No Might be

(rescheduling)

Off-line/On-line Reasoning
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Activate

Real WorldSchedule Execution

Actions

Execution in the ideal world

Off line

On line
Schedule

Planning /
Scheduling

 update

– Predictive scheduling,

Observe Events

THEN Execution loop
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Execution under uncertainty?

z The predicted schedule will not always fit the
situation at hand…
– adapt the schedule on line?
– make the initial schedule more robust?
– or a compromise between both options?

→ a spectrum of distinct techniques
→ reconsider the global generation/execution loop
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z Often mentioned, but not yet standard…
– Autonomous  (system) = no user intervention
– Stable  (plan) = off-line decisions are not revised
– Robust  (plan) = quality/optimality not degraded
– Adaptive  (plan) = any reactive behavior that will

be required on line will be tractable
– Flexible  (plan) = not fully set: incomplete or non

committed off-line decisions, taken/tuned on line
– Contingent/Conditional  (plan) = alternatives

are modeled (disjunction: only one is executed)

Tentative definitions



TUT2 -   31

31

z More definitions that seem to be needed:

– Monotonic  (technique) = planning/scheduling
decisions are never questioned later

• non-monotonic  = decisions can be changed

– Synchronous  (event/decision) = placed at a
precise stage of the plan/schedule

• asynchronous  = may occur at any time

Tentative definitions
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1. Reactive techniques

z The nominal schedule executes while nothing
unexpected happens; otherwise it is revised
– non-monotonic: on-line limited revision or

replanning/rescheduling
• extreme cases: redo whole predictive schedule!

– reasoning is costly → usually sub-optimal
• highly reactive situations = no time to reason...

Ex:
- Local search (repair-based) replanning: minimize changes
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update

Activate

Real WorldSchedule Execution

Actions

Observe Events

Off line

On line
Schedule

Planning /
Scheduling

(re)planning /
(re)scheduling

Adaptation

modify

failure
detection

Reactive: system architecture
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Reactive: how it is executed

plan/schedule executed

Asynchronous / Low 
probability event

new plan/schedule

z Not much memory needed to store the plan
– but the search process might need space…

react

time

To summarize:

- planning/scheduling decisions must be quick;

- hence resulting effective plans/schedules are sub-optimal;

- it is a non-monotonic technique;

- it is relevant for asynchronous and/or low probability  perturbations;

- it only requires limited memory to store the plan, but may require
extended memory for on-line search.
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z Two distinct approaches

z 2.1. Use probabilistic /fuzzy  representation
of uncertainty to generate a plan/schedule
that will cover most  cases
– e.g. the schedule will run ok in 90% of cases
– still a predictive schedule: system architecture

and execution as in the classical approach

– in cases not covered? → usually reactive
techniques are used

2. Proactive techniques

To summarize:

For all proactive techniques:

- most decisions are taken off line: no need to be quick.

For 'maximum coverage' techniques: they combine predictive and reactive,
therefore:

- executed plans/schedules are sub-optimal: a compromise is chosen
for covering more cases, and for non-covered cases the need for rescheduling
can usually be anticipated therefore one still has reasonable time to search;

- it  is monotonic except for non-covered cases;

- only non-covered cases may occur as asynchronous perturbations;

- only limited memory required, except for the search in non-covered
cases.
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z 2.2. Build a plan/schedule that takes into
account cases deviating from the nominal
one → flexible  or conditional  plan/schedule
– off-line reasoning + on-line basic decision

making (more precise setting / matching)
– all cases must have been predicted…
– large size of the resulting model...

Proactive techniques

Ex:
- Conditional planning - MDPs - Controllability of STNU
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Choose and
Activate

Real WorldSchedule Execution

Actions

Off line

On line

Flexible / Cond'l
Schedule

Planning /
Scheduling

 update

Observe Events

Proactive: system architecture
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Flexible plan: how it is executed

Synchronous event:
- end of activity observed

plan/schedule executed   
 

 
   

  

  
  

z The more flexibility added, the less optimal!
z Not much memory needed

set next activity

time

To summarize:

- may be sub-optimal because it is also somehow a compromise;

- it is a monotonic technique;

- it copes with synchronous events: each time an observation
brings some new information allowing to take a pending decision;

- it only requires limited memory.

Legend:

activity

current temporal window in which the activity must be set

part of the temporal window squeezed from setting or propagating
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Conditional plan: how it is executed

timeSynchronous event:
- Activity outcome
- Information gathering

z Optimal
z Much more memory needed!

plan/schedule executed

alternative 2 

alternative 1

match observation
to next activities

To summarize:

- can be optimal since cases are strictly distinguished;

- it is a monotonic technique;

- it copes with synchronous events: each time an observation brings the
needed information to prune a branch;

- it requires extended and possibly exploding memory!
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z Interleaving planning/scheduling in the
short term and execution
– on-line reasoning, but as a background task:

can afford to take more time to search
– commit to scheduling decisions when new

information arrives
– monotonic and (possibly) optimal but only

with a short-term view…

3. Progressive techniques
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On line

Short-term
Schedule

Planning /
Scheduling

update

Activate

Real WorldSchedule Execution

Actions

Observe Events

resolved uncertainties ?

Progressive: system architecture
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Progressive: how it is executed

time

plan/schedule executed

Asynchronous
predicted event

possibly revised

plan/schedule cont’d

z Not much memory needed

integrate &
propagate

To summarize:

- need to be rather quick  but the anticipation leaves time to reason;

- may be sub-optimal because it has only a short-term view;

- it is a monotonic technique;

- both synchronous and synchronous events can be accounted for;

- it requires strictly limited memory  (possibly constant).
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z Proactive reasoning to take into account
most cases

 + capabilities to deal on line with
unexpected ones

Ex:
- not that many… actually a current challenge!

4. Mixed approaches
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update

Choose and
Activate

Real WorldSchedule Execution

Actions

Observe Events

Off line

On line

Flexible / Cond'l
Schedule

Adaptation

modify

(re)planning /
(re)scheduling

Towards a complete architecture...
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Questions?
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Break time!
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Reactive Techniques

Recovery
Replanning/Rescheduling
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Reactive Rescheduling

z One schedule to be executed

z During execution something goes wrong
– e.g. a machine breaks down

z Fix the schedule
– so execution can continue

– while minimizing some optimization criteria
• reaction time
• original (off-line) criteria
• perturbation

This model is distinguished from pure dispatching by the fact that here an off-
line schedule exists and some event occurs to make it inconsistent. In pure
dispatching, no off-line schedule is created: the sequence in which activities
are executed is determined entirely at execution time.
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Work Discussed

z [Sadeh et al. 93]
– rule-based recovery
– partial rescheduling: large neighborhood search
– full rescheduling: MicroBoss

z [El Sakkout & Wallace 00]
– full rescheduling: CP/LP hybrid

z Also:
– [Smith 94]  partial rescheduling: specialized

analysis and heuristics

1&2. [Sadeh et al. 93] Sadeh, N., Otsuka, S. and Schelback, R. Predictive and
reactive scheduling with the MicroBoss production scheduling system. In
Proceedings of the IJCAI'93 Workshop on Production Planning, Scheduling, and
Control. 1993.

3. [Smith 94] Smith, S.F. OPIS: A methodology and architecture for reactive
scheduling in Intelligent Scheduling, Morgan Kaufman, 1994.

4. [El Sakkout & Wallace 00] El Sakkout, H. and Wallace, M. Probe backtrack
search for minimal perturbation in dynamic scheduling, CONSTRAINTS, 5(4),
2000.

See Also:

[Ow et al. 88] Ow, P.S., Smith, S.F., and Thiriez, A. Reactive Plan Revision,
AAAI’88, pp. 77-82, 1988.

Large neighborhood local search: a general local search technique where a
subset of decisions to “undo” is identified. Then a constructive search technique
is used to resolve.

CP - Constraint Programming

LP - Linear Programming
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[1] Rule-based Recovery

z [Sadeh & al. 93]
z Idea: use a simple rule to quickly repair the

schedule

z Right Shift Rule
– move activities later in time while preserving

sequence

z Right Shift and Jump Rule
– move activities later in time, jumping over ones

that do not need to be moved
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M1

M2

M3

M1

M2

M3

[1] Right Shift (RSh)
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M1

M2

M3

M1

M2

M3

[1] Right Shift and Jump (RShJ)
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[2] Partial Rescheduling

z Also in [Sadeh et al. 93]
z Large neighborhood search

– identify set of activities to unschedule (“conflict
propagation”)

– use original scheduling algorithm to reschedule
the unscheduled activities

z Idea: use recovery rules for conflict
propagation
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M1

M2

M3

[2] React(RSh)
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[2] Other Rules

z All based around using different rules for
identifying the neighborhood
– React(RShJ)

– React(RShJ+Job)
• RShJ activities + “job critical” activities

– React(RShJ+Job+Int)
• RShJ+Job activities + “intervening” activities

Job critical activities:

• if the second last activity in a job has been unscheduled, unschedule the
last activity

• if the second activity in a job has been unscheduled, unschedule the first
activity

Intervening activities:

• if two activities surrounding activity A on resource R have been
unscheduled, unschedule A

• if two activities surrounding activity A in job J have been unscheduled,
unschedule A
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[1 & 2] Comments

z Reasonable, pragmatic approach

z No explicit reasoning about time to find a
solution

z No reasoning about perturbation
– but number of activities rescheduled is

important

Pragmatic: very clear that this is a way that one can build a system
Also identifies a combined approach (no experiments):

• Control level: small changes use rule-based recovery
• Scheduling level: larger disruptions use partial rescheduling

Does not make any contributions in answering the questions:
• when to use rules (“control level”) and when to use partial rescheduling
(”scheduling level”)?
• are there principled ways for identifying the neighborhood?
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[3] Partial Rescheduling

z [Smith 94]
z OPIS

– full scheduling system based on repeatedly
reacting to events

– predates [Sadeh 93]
– more sophisticated (AI-ish) mechanism for

analysis of conflicts
– strong performance in real applications
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[4] Minimal Perturbation Rescheduling

z [El Sakkout & Wallace 00]
z Given:

– an original schedule and a reduction in
resource capacity

z Find:
– a schedule which minimizes the sum of

absolute deviation from activity start time in
original

z Idea: hybrid LP/CP branch-&-bound

Recall the approaches to reactive scheduling:
• rule-based recovery
• partial rescheduling
• complete rescheduling

This is an extreme approach.
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[4] Hybrid Approach

z Represent temporal constraints and cost
function in an LP

z Represent temporal constraints and
resource capacity constraints in CP

z Use the relaxed optimal start times from the
LP to drive the CP branching heuristic

z “Probe Backtrack Search”

LP – linear programming
CP – constraint programming
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CPLP

Resource
profiles

Relaxed opt.
start times

New linear constraints

New Precedence
Constraint
(Branch)

[4] Probe Backtrack Search
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[4] Experiment

z One (non-unary) resource with a given
schedule

z An event reduces resource capacity over
some time interval

z Reschedule to minimize the sum of the
absolute change in start times

z Hybrid approach better than pure CP and
pure MIP

Non-unary resource – resource can process more than one activity at a time.
Often called a discrete resource.



TUT2 -   62

62

[4] Comments

z Main idea: hybrid search for minimal
perturbation

z Only practical in situations where the time-
to-solve is irrelevant
– no reasoning about time-to-solve (not needed)

z Optimization criteria of original schedule is
ignored

z Application: airline scheduling

Minimal perturbation rescheduling is useful when:
• activity durations are long compared to the solve time
• information about a breakdown is known in advance
• it is very expensive to change already scheduled activities
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Reactive Planning

z "Low-level" failures with resource usage or
slight delays = basically rescheduling

→ local changes (see next part)

z Harder failures → need deeper replannning:
a straightforward approach is often used
– put the robot in a "safe state"
– call the deliberative planner for a new plan
– wait for the new plan
– restart execution

We will consider examples of planning with reactive capabilities in the "mixed
approaches" section.
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Reactive Techniques

z Approaches:
– resolve quickly and myopically: rules
– partial resolve

• large neighborhood local search
• specialized heuristics

– full resolve

z Time pressure and solution quality
requirements largely determine approach
– rule-based for quick, sub-optimal solutions
– minimal perturbation when you have the time
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Reactive Issues

z Time pressure
– ratio between activity duration and time-to-

resolve

z Resolving strategies
– constructive vs. iterative repair

z Optimization criteria
– original vs. perturbation

• exploiting positive changes
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Reactive Issues

z Brittleness
z Comparison with other approaches

– do we really need to reason about uncertainty
at all?

– can we do without reactivity?

Brittleness: after a number of reactive repairs, does the solution become
increasingly brittle? That is, can a small disruption have disproportionate effects
on the schedule?

Learning to react …
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Proactive Off-line Techniques

Maximal coverage
Flexible models

Conditional models
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Proactive Scheduling

z We know that something may go wrong
z Create the schedule to reduce impact of

events
z E.g.,

– given a probability distribution for the duration
of each activity

– find a schedule with minimal probability of
tardiness greater than T

This model does not pay any attention to what will happen at execution time
to handle unexpected events. It is purely off-line.
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Work Discussed

z [Daniels & Carrillo 97]
– find the schedule that minimizes probability of

performance less than a threshold

z [Drummond et al. 94]
– contingency

z Also
– [Dubois et al. 93]  similar to [Daniels & Carrilo

97] with fuzzy durations
– [Davenport et al. 01]  add slack to critical

activities, solve as usual

5. [Daniels & Carrillo 97]  Daniels, R.L. and Carrillo, J.E. β-Robust
scheduling for single-machine systems with uncertain processing times, IIE
Transactions, 29, 977-985, 1997.

6. [Dubois 93] Dubois, D., Fargier, F. and Prade, H. The use of fuzzy
constraints in job-shop scheduling, Proceedings of the IJCAI-93 Workshop on
Knowledge-Based Planning, Scheduling and Control, Chambéry, 1993.

7. [Davenport et al. 01] Davenport, A.J., Gefflot, C., and Beck, J.C. Slack-
based techniques for building robust schedules, Proceedings of the Sixth
European Conference on Planning (ECP-01), 2001.

8. [Drummond et al. 94] Drummond, M., Bresina, J., & Swanson, K. Just-in-
case scheduling, Proceedings of the Twelfth National Conference on
Artificial Intelligence (AAAI-94), 1994.
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[5] Beta-robustness

z [Daniels & Carrillo 97]
z One machine problem
z Uncertain durations

z Use the uncertainty statistics (µ and σ2) to
find a schedule with the greatest probability
of being better than some threshold
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[5] Given

λ1

λ2

ƒ(λ1,π1)
π1

π2

ƒ(λ2,π1)

λ1

λ2

ƒ(λ1,π2)

ƒ(λ2,π2)
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[5] Find

z The sequence of jobs, πβ, which maximizes
 Prob[ƒ(πβ, Λ) ≤ T] where
– Λ = {λ1, λ2, …, λ |Λ|}
– T = a given threshold

– Prob[λj] = the probability of scenario λj is known

z πβ is the “β-robust schedule”
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[5] Complexity

z When ƒ is flow time and each activity has
independent µ and σ2:
– a shortest expected processing time (SEPT)

schedule can be found in O(n log n)

– finding a β-robust scheduling is NP-hard
(reduction to assignment problem)

flow time: the sum (over all activities) of the interval of time between the
release time of the activity and when its execution is finished.
The release of an activity is the earliest time at which it can be scheduled.
Here, the release time for all activities is 0.
Example: two activities, A and B, with durations of 10 and 100 respectively.
The release time for each is 0.
Flow time = (endtime(A) – 0) + (endtime(B) – 0)

•A → B: flow time = (10 – 0) + (110 – 0) = 120
•B → A: flow time = (110 – 0) + (100 – 0) = 210
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[5] Solution Techniques

z Branch-and-bound
– assign sequence chronologically
– dominance rules
– bounds based on partial sequence

z Approximation technique
– repeatedly generate SPT schedule for “well-

chosen” scenarios {λ*1, λ*2, …} ⊆ Λ
– evaluate Prob[ƒ(πSPT, λ*i) ≤ T]
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[5] Comments

z β-robustness is an interesting problem
definition

z Neat and clean
z Easy underlying problem but with

uncertainty it is NP-hard
z Concept is similar to probabilistic customer

service in inventory management

Probabilistic customer service allocates inventory so that there are
probabilistic guarantees on achieving full customer service. For example, a
95% customer service level means that 95% of the time all customer orders
will be met from the stored inventory.
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[6] Possibilistic Approach

z [Dubois et al. 93]
z Similar to β-robustness with fuzzy durations
z Classical search, but

– replace constraint satisfaction requirement by
"reasonably sure that no constraint will be
violated”

z Realistic approach between
– accepting only schedules that are sure to work
– accepting a schedule without accounting for

possible deviations
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[7] Redundancy-based Scheduling

z [Davenport et al. 01]
z Add slack to activities on breakable

resources
z Simple and pragmatic
z Obvious application to a real problem
z No real theoretical foundation
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[8] Just-In-Case scheduling

z [Drummond et al. 94]
z Real world telescope observation

scheduling problem
z Durations of observations are uncertain
z Solution: build a contingent schedule

–  takes into account likely failures and provides
a new schedule to switch to
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[8] Original Problem

time

W1

time

E1

A1

A2

A3
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[8] Execution Model

E2

S1 F1

z If F1 ∈ E2 → OK
– A2 is executed

z Else → Schedule Breakage
– need to reschedule
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[8] The Uncertainty

z Assume we have a scheduling algorithm for
the original problem (no uncertainty)

z But each observation has an uncertain
duration
– uniform distribution: µi, σi

z Can we increase the % of the schedule that
can be executed without breakage?

Original Problem: find a sequence of observations and assign an enablement
interval, Ei, to each observation.
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[8] Just-In-Case Scheduling

z Off-line
– identify most likely breakage
– split the schedule
– find new schedule assuming the breakage

z On-line
– no breakage → keep executing same schedule
– breakage → if covered, switch to new schedule

     → else, stop

In the real application, when a breakage that was not anticipated happens, the
dynamic rescheduling is done. For the experiments the focus is the amount of
the schedule that can be executed without breakage.
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[8] Splitting the Schedule

[t1 t2) are the possible finish
times for A1. In practice:
[S1 + µ1 - σ1, S1 +  µ1 + σ1)

t1 tnew t2

E2

A1 A2

A2 is the most likely break
If F1 ∈ [t1, tnew)

OK
Else

create a new schedule to
deal with the case:
F1 ∈ [tnew t2)
 (use original scheduler)
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[8] A Multiply Contingent Schedule
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[8] Comments

z Successful, real world solution!
z On-line portion is trivial

– switch schedules

z One-machine scheduling problem
– combinatorics of building a contingent schedule

for multiple machines? multi-rover application?
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Proactive Planning

z Classical planning = open loop
– complete information: no feedback needed from

execution

z Contingent planning = closed loop
– next actions depend upon observations…
– Conditional planning = branches in the task plan
– State-based planning = MDPs

• probabilities on moving from state s1 to state s2 after
action A

- Closed loop = actions that are outputs of the execution system have
consequences that become inputs of the same process.

- Open loop = inputs and outputs are independent.

MDPs (Markov Decision Processes) are related to decision-theoretic
planning. They are relevant approaches with respect to uncertainty handling
in P&S but they will not be addressed in this tutorial. They are very general
and are especially well suited to process-oriented planning. For detailed
analysis of such techniques, please refer to

C. Boutilier, T. Dean, and S. Hanks. Decision-theoretic 
planning: Structural assumptions and computational leverage.
Journal of Artificial Intelligence Research, 11:1--94, 1999.

Briefly speaking, they lie in the general set of approaches in which
alternatives are explicitly represented and must be matched at execution time,
hence they are very efficient but have the drawback of needing a lot of
memory. More compact factored representations exist (intensional state
representation, translation into bayesian temporal networks) but are effective
only under specific assumptions. MDPs also incorporates probabilities and
can hence be used with a combination of maximal coverage and conditional
approaches.
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Proactive Planning

z Partial observability
– uncertainties on the observations as well!
– extension of MDPs to POMDPs: belief states
– probabilistic planning = partial knowledge on the

initial state

z Conformant planning = no observation…
– back to the open loop…: need a plan that will

reach the goal whatever the actual situation is

Partial observability, probabilistic planning and conformant planning are only
cited for situating the other approaches with respect to them. Just recall that in
this tutorial we chose to restrict ourselves to full observability.

For an example of conformant planning, see:

D. Smith and D. Weld, Conformant Graphplan. Proceedings of the Sixteenth
National Conference on Artificial Intelligence, Madison, WI, 1998
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Work Discussed

z [Morris et al. 01]
– Off-line Controllability checking, to prove that a

simple dynamic execution strategy is viable on
line

z Also: [Tsamardinos et al. 03]
– Conditional constraint-based planning

9. [Morris et al. 01] Morris, P., Muscettola, N. and Vidal, T. Dynamic
Control Of Plans With Temporal Uncertainty. In Proceedings of the 17th
International Joint Conference on A.I. (IJCAI-01). Seattle, 2001.

See also :

 [Huguet et al. 02] Huguet, M.J, Lopez, P. and Vidal, T. Dynamic task
sequencing in temporal problems with uncertainty. AIPS'02 Workshop on On-
line Planning and Scheduling, Toulouse, 2002.
http://www.laas.fr/aips/ws-we3.pdf

10. [Tsamardinos et al. 03] Tsamardinos, I., Vidal, T. and Pollack, M.E.
CTP: A New Constraint-Based Formalism for Conditional, Temporal
Planning. CONSTRAINTS, An International Journal, vol. 8:4,  2003.
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[9] Dynamic controllability

z [Morris et al. 01]
z Context: uncertain duration and/or event

time = interval of possible values
z Model: Simple Temporal Networks

extended to account for Uncertainties
z Goal: check Controllability = guaranteed

consistent execution of the plan, whatever
the observations of "real" times and
durations will be → strong requirement!
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Execution

ScheduleResource 
Allocation

Setting of
 start times

Task
Sequencing

Consistency ?

All time and resource
constraints are

satisfied

Task plan Planning

Off line

On line

[9] Classical constraint-based P&S

Off-line scheduling



TUT2 -   91

91

Task plan Planning

Off line

On line

[9] Dynamic scheduling

Execution
Setting of
 start times

Flexible
Schedule

Resource 
Allocation

Task
Sequencing

Controllability  ?

All time and resource
constraints will be satisfied

Update (Propagate)
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[9] Temporal Constraint Problems

z Simple Temporal Network (STN)
– Nodes = Time-points; Edges = Durations

X1

[10,20]

[10,50]

[10,20]

X2

X3

– Constraint propagation in O(n3)
→ filters out durations that would lead to inconsistency

→ ensures consistent execution

[20,40]
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[9] STN with Uncertainty

z STNU = STN with Uncertainty
– Some durations are contingent  = effective

value decided by Nature

z Consistency?
– a schedule  is a setting of a start time to each

activity in the plan: under control
– a scenario  is a setting of an effective duration

to each contingent constraint: not under control
– consistency redefined: one must ensure

consistent execution under ALL scenarios!
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[9] Dynamic Controllability

– Execution strategy
• mapping: for each scenario there is a schedule
• problem: scenario not known when one starts the

schedule!

– Static execution strategy (→ conformant)
• look for a unique schedule fitting all scenarios

– Dynamic execution strategy
• ensure each start time setting may depend only on

past observations!

z Dynamic Controllability = 
existence of a Dynamic execution strategy
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[9] DC checking: examples

– New propagation algorithm in O(n3)

A C
[20,30]

B

[5,10][10,25]

• Case where start time B
must not depend on AC

• Case where start time B
may or not depend on AC

A C
[20,30]

B

[-5,5][10,25]
]20,35]Wait for C at least 25 <C,25>

[15,20]
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[9] Comments

z The requirement is strong: only plans that
are proved to safely execute are accepted
– might be combined with probabilistic or fuzzy

modelling to accept "reasonably sure" plans

z The off-line checking process is inspired by
how the plan will be dynamically executed
– provides strong guarantees upon execution

z Simple network propagation
– low cost both in time and memory!
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[10] Conditional temporal planning

z [Tsamardinos et al. 03]
z No temporal uncertainty: STN model

– Some flexibility allowed: setting of start times
made on line

z Uncertainty on the state of the world / effects
of actions → alternative branches in the plan
– Conditional plan = CTP (cond'l temporal problem)

for each condition c, two types of nodes added:
• branch(c) = next steps depend upon condition c
• obs(c) = node at which value of c is known
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[10] Main issues

z Goal: off-line checking of temporal
consistency
– must be redefined: scheduling decisions should

only depend on earlier observations
→ Dynamic Consistency (similar to Dynamic
Controllability)

z Differences with STNU
– explicit conditional branches instead of simply

adding wait labels ⇒ more memory needed!
– dynamic consistency checking not polynomial...

Dynamic consistency is complex mainly because, when observation nodes
and others are unordered, one gets disjunctive constraints… The resulting
problem to solve is a DTP (Disjunctive Temporal Problem) solved by
dedicated solvers.

A basic reference on DTPs is

K. Stergiou and M. Koubarakis, Backtracking algorithms for disjunctions of
temporal constraints. Artificial Intelligence 120, 81-117, 2000.
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Proactive techniques: summary

z Three main approaches

1) maximal coverage : assess the level of
feasibility of the schedule knowing the
probability/possibility of deviations

• use this as an optimality criterion (robustness)
• provide one and only plan/schedule that is expected

to work "most of the time" ...

[Daniels & Carrillo 97] and [Dubois et al. 93] are examples of the first line of
approaches.
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Proactive techniques: summary

2) flexible models : leave some decisions to be
tuned on line

• "mostly" proactive: very limited on-line reasoning
• often needs off-line checking of consistent execution

• compact but sub-optimal → no solution found if
distinct situations require substantially different plans!

3) conditional models : precomputed alternative
plans that just need to be matched on line to
observations

• always optimal but memory blow-up!

[Davenport et al. 01] and [Morris et al. 01] are examples of the second line of
approaches.

[Drummond et al. 94] and [Tsamardinos et al. 03] are examples of the third line
of approaches.
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Proactive techniques: main issues

z The aim is twofold
– guarantee off line the plan execution feasibility
– limit the need to reason on line

z Completeness?
– Mid-term → may be complete

• task duration intervals → controllability checking

– Long-term → incomplete
• allocate slack
• maximize likelihood of some level of performance

(e.g., β-robustness)
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Progressive On-line Techniques

Rolling-time horizon
Telescoping-time horizon
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Work discussed

z Main idea: interleave P&S and execution
– monotonic plan generation, with a limited look-

ahead, incrementally updated

z Rolling time-horizon [Vidal et al. 96]
– uncertainty on activity durations
– short-term allocation of rovers to tasks: made as

new effective times come from execution

z Also: Telescoping time-horizon

11. [Vidal et al. 96] Vidal, T., Ghallab, M. and Alami, R. Incremental
Mission Allocation to a Large Team of Robots. In Proceedings IEEE Robotics
and Automation, Minneapolis, 1996.

Telescoping time horizon means a global plan is generated but it is only
detailed in the short range, maintaining an incomplete or abstract plan in the
longer range. The plan is further detailed as far as execution progresses.

One can think of using different temporal granularities (see for instance
Thomas Dean, Using temporal hierarchies to efficiently maintain large
temporal databases. Journal of the ACM 36(4), 1989) or of using a
hierarchical representation of activities, as can be found in HTN (Hierarchical
Temporal Networks) planners.



TUT2 -   104

104

[11] Short-term resource allocation

z [Vidal et al. 96] : MARTHA Esprit project
z Context: autonomous robots in a harbour

environment
– repetitive storehouse tasks to move a container

from a location to another: four basic actions
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[11] Uncertainties and optimisation

z Temporal uncertainties
– uncertain durations [li, ui] for actions
– uncertain arrival and departure times for boats

and trains → uncertain time windows for
pickup/putdown actions

z Goal: centralized planner allocate robots to
tasks while minimizing the overall makespan
– always choose the closest robot



TUT2 -   106

106

[11] Approach

z Interleave execution and scheduling over a
rolling time-horizon
1. iterative allocation of robots to successive

tasks: which robot is expected to arrive first?
• easy in the short-term, then temporal uncertainties

sum up and make the choice less obvious: stop

2. wait until execution gives real times that
makes next choice possible: goto 1
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[11] Ordering task-graphs
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[11] Comments

z All events are known, only times of
occurrence vary…

z Easy to anticipate and take near-optimal
decisions, always ensuring smooth
execution

z The more uncertainty on durations of
actions, the lower the requirement on the
accuracy of choosing the best robot
– tuning this parameter is not easy → fuzzy logic?

The accuracy requirement was straightforward: just measure the overlapping
of the intervals of possible arrival times of the two "best" robots, if this
overlapping exceeds a given threshold then the choice is not accurate enough.
Moreover, in order to avoid dead ends, the choice was always enforced if the
best robot to allocate was idle.
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Progressive techniques: main issues

z Anticipation guarantees responsiveness
z Planning is reactivated because of incoming

data arriving dynamically (not known a priori)
– effective times / new goals / deviations

z The time horizon  is a crucial parameter
– the larger, the more predictive, the smaller, the

more "reactive"

z Often used in combination with reactive
techniques...

A very small time horizon accounts to a purely reactive behavior with no
indicative schedule. Therefore reaction here is not destructive since there is
no schedule to revise, but it consists in simply scheduling the next step. As
said before, these techniques are known in production scheduling as
dispatching techniques.
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Mixed Approaches

Continuous + Reactive
Proactive + Reactive
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Work Discussed

z Progressive + Reactive (on line)

z CASPER [Chien et al. 00]
– new goals + unexpected events during

execution
– complete and/or modify the current plan: plan

merging + plan iterative repair if needed
– extension to multi-robot [Estlin et al 99]

12. [Chien et al. 00] Chien, S., Knight, R., Stechert, A., Sherwood, R. and
Rabideau, R. Using Iterative Repair to Improve the Responsiveness of
Planning and Scheduling. In Proceedings of the 5th International Conference
on Artificial Intelligence Planning and Scheduling (AIPS'2000),
Breckenridge, 2000.

http://www-aig.jpl.nasa.gov/public/home/chien/home.html

See also:

[Estlin et al 99] Estlin, T., Rabideau, G., Mutz, D. and Chien, S. Using
Continuous Planning Techniques to Coordinate Multiple Rovers. IJCAI-99
Workshop on Scheduling and Planning meet Real-time Monitoring in a
Dynamic and Uncertain World, Stockholm, 1999. H

http://www.enit.fr/~Thierry/WsIjcai99/Papiers/estlin.ps
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Work Discussed

z Proactive (off line) + Reactive (on line)

z Planning: [Washington et al. 00]
– Off line: Flexible and conditional plans
– On line: Rescheduling if needed

z Scheduling: [Wu et al. 99]
– Off line: partial scheduling: partition through

addition of selected precedence constraints
– On line: simply dispatch within each set

13. [Washington et al. 00] Washington, R., Golden, K. and Bresina, J. Plan
Execution, Monitoring, and Adaptation for Planetary Rovers. Electronic
Transactions on Artificial Intelligence, Vol. 4 (2000), Section A, p. 3-21.
http://www.ep.liu.se/ej/etai/2000/004/.

14. [Wu et al. 99] Wu, S.D., Byeon, E. & Storer, R.H. A graph-theoretic
decomposition of the job shop scheduling problem to achieve scheduling with
robustness, Operations Research, 47(1). 1999.
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[12] Continuous planning

z [Chien et al. 00] : JPL, NASA
z Context: rover / spacecraft

z Classical approach (Sojourner):
– planning = ground batch process, uplinked daily
– upon failure: stop, downlink data, wait for new

plan: ↑ time!

z CASPER: planning on board!
– uplink science requests, downlink results
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[12] Types of uncertainties

z Plan failures (negative)
– resource breakdown (e.g. oven to process

experiments on board)
– resource oversubscription (e.g. a data buffer to

store pictures of imprecise size)
– activity finishing later than expected

z Opportunistic science (positive)
– new goals uplinked or opportunistically

encountered

Plan failures = something "bad" occurs: the executed plan will be as good
(best case) or less satisfactory than the predicted one.

Opportunistic science = something "good" occurs (actions are faster than
expected, some interesting sample detected while the robot has time to take
care of it): The executed plan will incorporate more actions and be actually
better than the predicted one.
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[12] Approach

z Continuous planning
– update at each time: current plan, goals and

state + next predicted states
• abstract planning in the long-term + more detailed in

the short-term: precise conflicts handled only when
they get near

– new goal → current plan extended
– new plan failure: iterative repair through greedy

search (TSP heuristic) → only in the short-term
• alternative resource reallocation
• move / renew / remove activities

Iterative Repair = local search technique that tries to modify the current
solution (here: the plan) locally until it reaches a satisfactory (here:
consistent) one. In the best case these techniques minimize changes between
the initial failed plan and the final one.

TSP = traveling salesman problem.

Possible modifications for recovery:

- a resource fails →  look for a backup resource that is available and
reallocate

- an action takes longer than expected  → postpone further actions

- a shared resource gets oversubscribed (previous actions have used more than
expected) → insert an action whose effect is to free the resource (see next
slide)
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[12] Example

z Oversubscription
– e.g. a data buffer →  insert a data uplink action

30 Mb
conflict!

take pic 3

15 Mb

take pic 1

25 Mb

take pic 2

5 Mb

Current predicted plan 
after taking picture 2

10 Mb

take pic 1

15 Mb

take pic 2

20 Mb

take pic 3

5 Mb

First predicted plan

5 Mb
15 Mb

25 Mb

take pic 1
take pic 2

After replanning

data uplink

5 Mb

take pic 3

10 Mb
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[12] Extension to multi-rovers

z [Estlin et al. 99]
z Mixed centralized / distributed approach

– Central goal dispatcher + abstract plan
– Distributed planning/replanning (CASPER): each

rover continuously updates its own plan
– Shared resource: lander that gathers data and

uplinks them to the orbiter

z Advantage : robustness
– if a rover fails, its goals might be reassigned to

another rover
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[12] Comments

– New incoming goals + failures/deviations
• complete predictive plans would be hardly reliable

and/or would need a lot of memory on board

– Responsiveness: needed to be opportunistic
but autonomy required by the long distance

• replanning upon demand is not feasible

– High-level goals
• only reactive is not desirable
• anyway, if higher level of uncertainties: need to be

combined with reactive techniques
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[13] Adaptive / Contingent planning

z [Washington et al. 00]
z Context: planetary rover

– limited resource capacities (power, data storage)

z Uncertainties on
– the terrain

• unexpectedly easy: science opportunities
• unexpectedly hard: task taking longer

– the weather: more/less solar energy
– the rover itself: uncertain absolute position
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[13] Proactive part

z Nominal flexible and conditional plan
– uplinked from the ground
– includes contingent plans: branches from

contingent nodes (synchronous deviations)
– includes alternate plans: triggered at any time

by a condition that becomes true
(asynchronous deviation)
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[13] On-line execution

z Executive:
– resource manager
– conflict identification

z Conflict: various possible recoveries
– a contingent branch at that point solves it
– start an alternate plan (might be anticipative!)

– fail → stable state then replan
– ignore: e.g. too far in the future
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[13] Reactive part

z Upon failure
– recovery plans can be computed by the state

identification module
– the resource manager provides on-board

rescheduling capabilities
• e.g. look for an alternate resource if the allocated

one is not available
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[13] Comments

z No predictive planning on board
– less CPU needed but more memory to store all

contingent and alternate plans!

z Mixed proactive/reactive approach
– most of the cases handled proactively
– react only rarely upon need, but then various

techniques are available from local rescheduling
to planning short-term recovery plans
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[14] Off-line partitions

z [Wu et al. 99]
z Identify a critical subset of decisions that, to

a large extent, dictate global schedule
performance

z Make these decisions off-line
z Make the rest of the decisions on-line
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[14] Approach

z Off-line
– optimally solve an Ordered Assignment

Problem (OAP)
– introduces a set of precedence constraints to

the problem

z On-line
– use a dispatching rule, respecting OAP

precedence constraints
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[14] OAP
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[14] OAP
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[14] OAP
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[14] OAP
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[14] OAP

z Partition the activities s.t.
– original precedence constraints are respected
– the increase in tardiness (given the precedence

constraints induced by the partition) is
minimized

z Solve a JSP just to evaluate a partition
– in practice use lower bounds
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[14] OAP Partition Size

z The size of the partition acts as an off-
line/on-line parameter
– if size is n: whole problem is solved on-line
– if size is 1: whole problem is solved off-line
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[14] Comments

z Nice off-line/on-line division
– use of partition size as an off-line/on-line

parameter is especially interesting

z The approach is begging for further
development
– add constraints off-line to solve bottlenecks?
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Mixed approaches: main issues

z Still not many contributions, but becoming
more attractive …

z Respond to various needs
– limit the memory blow-up induced by proactive

techniques: do not take everything into acount
– account for unavoidable failures AND handle

them better: proactive/progressive techniques
restrict the need to react, hence more effort can
be devoted to unforeseen events
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Distinct properties of the approaches

On-line
memory

need

On-line
CPU
need

Optimal Monotonic

Reactive Average High No No

Proactive
Maximal Coverage

Low Low Close Almost

Proactive
Flexible

Low Low Close Yes

Proactive
Conditional

High Low Yes Yes

Progressive Very low Average No Yes
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Scope of each technique wrt events

z Reactive
→ unpredicted & low probability events/outcomes

z Progressive
→  predicted events but asynchronous: unknown

timing/value
e.g., arrival of new order/goal, data collection

z Proactive
→ known and most probable events/outcomes
→ synchronous observations
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A reference framework

z You know a technique which has not been
addressed today?
– you can guess in which cell it fits
– you can then assess its qualities and drawbacks

z You have a problem at hand?
– knowing the main features (available memory

and CPU, types of uncertainties, etc) you can
decide which type of approach is best
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Combining approaches

z Systems vs Algorithms
– systems – CASPER, MARTHA

• tend to be more focused on working in practice

– algorithms – β-robustness, OAP, controllability
• tend to be more focused on mathematical foundations

We need both!
z Spectrum of techniques

– reactive, proactive, progressive

We need all!
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Putting it All Together

z Reactive techniques
– unavoidable

z Progressive techniques
– limit the need to replan → more reliable plans

z Proactive techniques
– limit the frequency of on-line reasoning

z Reactive/Progressive techniques
– limit the sub-optimality of flexible schedules and

memory blow-up of conditional schedules
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Questions?


