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Chapter 1

Introduction

1.1 Contribution of this Work

This work develops a new methodology for posing and solving scheduling problems. The essence of
this approach is to model the system as a timed automaton where schedules correspond to paths in the
automaton and optimal schedules correspond to shortest paths.

The methods that we propose are inspired by several existing bodies of knowledge. The first is
algorithmic verification methodology whose goal is to prove some properties concerning all runs of a
discrete transition system (automaton). Verification algorithms are based, this way or another, on graph
algorithms that explore paths in the transition graph. On slightly richer models, where numerical weights
are assigned to arcs or to nodes of the graph, one can formulate and solve shortest-path algorithms, that
is, find the minimal cost path between two given nodes. Our goal is to use such algorithms to find optimal
schedules, but in order to do so we need to find a way to extend shortest path algorithms to problems
where the cost associated with a path is the time elapsed from beginning to end.

In the first part of the document, we start by a short survey of the job-shop problem (Chapter 2) and
the techniques traditionally used for its solution. In the Chapter 3 we give a survey of the basic algorithms
for exploring directed graphs. In Chapter 4 we review a naive approach for expressing passage of time
using weighted automata, then we move on to timed automata.

The second part concerns our approach. We first model the classical job-shop problem (Chapter
5), and then extend the model to treat preemption (Chapter 6), partially-ordered tasks (Chapter 7) and
scheduling problems with temporal uncertainty (Chapter 8). For all these problems we develop algo-
rithms, implement them and test their performance on benchmark examples.

The document is a contribution both to the theory and practice of scheduling and to the analysis of
timed automata.

1.2 Related Work

This work can be viewed in the context of extending verification methodology in two orthogonal di-
rections: from verification to synthesis and from qualitative to quantitative evaluation of behaviors. In
verification we check the existence of certain paths in a given automaton, while in synthesis we have an
automaton in which not all design choices have been made and we can remove transitions (and hence
make the necessary choices) so that a property is satisfied. If we add a quantitative dimension (in this
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CHAPTER 1. INTRODUCTION 4

case, the duration of the path), verification is transformed to the evaluation of the worst performance
measure over all paths, and synthesis into the restriction of the automaton to one or more optimal paths.

The idea of applying synthesis to timed automata was first explored in [WH92]. An algorithm for
safety controller synthesis for timed automata, based on operation on zones was first reported in [MPS95]
and later in [AMP95], where an example of a simple scheduler was given, and in [AMPS98]. This
algorithm is a generalization of the verification algorithm for timed automata [HNSY94, ACD93] used
in Kronos [Y97, BDM+98]. In these and other works on treating scheduling problems as synthesis
problems for timed automata, such as [AGP99], the emphasis was on yes/no properties, such as the
existence of a feasible schedule, in the presence of an uncontrolled adversary.

A transition toward quantitative evaluation criteria was made already in [CY91] where timed au-
tomata were used to compute bounds on delays in real-time systems and in [CCM+94] where variants
of shortest-path problems were solved on a timed model much weaker than timed automata. To our
knowledge, the first quantitative synthesis work on timed automata was [AM99] in which the following
problem has been solved: “given a timed automaton with both controlled and uncontrolled transitions,
restrict the automaton in a way that from each configuration the worst-case time to reach a target state is
minimal”. If there is no adversary, this problem corresponds to finding the shortest path. Due to the pres-
ence of an adversary, the solution in [AM99] employs backward-computation (dynamic programming),
i.e. an iterative computation of a function h : Q × H → R+ such that h(q, v) indicates the minimal
time for reaching the target state from(q, v). The implementation of the forward algorithm developed in
this work can be viewed as iterating with a function h such that h(q, v) indicates the minimal time to
reach (q, v) from the initial state. The reachable states in the augmented clock-space are nothing but a
relational representation of h.

Around the same time, in the framework of the VHS (Verification of Hybrid systems) project, a
simplified model of a steel plant was presented as a case-study [BS99]. The model had more features
than the job-shop scheduling problem such as upper-bounds on the time between steps, transportation
problems, etc. A. Fehnker proposed a timed automaton model of this plant from which feasible schedules
could be extracted [F99]. Another work in this direction was concerned with another VHS case-study,
a cyclic experimental batch plant at Dortmund for which an optimal dynamic scheduler was derived in
[NY00].

The idea of using heuristic search is useful not only for shortest-path problems but for verification
of timed automata (and verification in general) where some evaluation function can guide the search
toward the target goal. These possibilities were investigated recently in [BFH+01a] on several classes of
examples, including job-shop scheduling problems, where various search procedures and heuristics were
explored and compared.

In [NTY00] it was shown that in order to find shortest paths in a timed automaton, it is sufficient to
look at acyclic sequences of symbolic states (a fact that we do not need due to the acyclicity of job-shop
automata) and an algorithm based on forward reachability was introduced. A recent generalization of the
shortest path problem was investigated by [BFH+01b] and [ATP01], in a model where there is a different
price for staying in any state and the total cost associated with the run progresses in different slopes along
the path. It has been proved that the problem of finding the path with the minimal cost is solvable.



Chapter 2

Job Shop Scheduling

The job shop problem is one of the most popular problems in scheduling theory. On one hand it is very
simple and intuitive while on the other hand it is a good representive of the general domain as it exhibits
the difficulty of combinatorial optimization. The difficulty is both theoretical (even very constrained
versions of the problem are NP-hard) and practical (an instance of the problem with 10 jobs and 10
machines, proposed by Fisher and Thompson [F73a], remained unsolved for almost 25 years, in spite of
the research effort spent on it). In the rest of the section we give an informal presentation of the problem
and mention some of the methods suggested in the past for its solution.

2.1 The problem

A job shop problem consists of a finite set J = {J1, . . . , Jn} of jobs to be processed on a finite set
M = {m1, . . . ,mm} of machines. Each job J i is a finite sequence of steps to be executed one after
the other, where each step is a pair of the form (m,d), m ∈ M and d ∈ N, indicating the required
utilization of machine m for time duration d. Each machine can process at most one step at a time, and,
due to precedence constraints, at most one step of each job may be processed at any time. Steps cannot
be preempted once started.

The objective is to determine the starting times for each step in order to minimize the total execution
time of all jobs, i.e the time the last step terminates. This problem is denoted in the scheduling community
as J ||Cmax where Cmax is the maximum completion time, called makespan.

Example 1.1 Consider M = {m1,m2,m3} and three jobs J1, J2, J3 to be scheduled on these machines.
The job J1 consists of 3 steps, the first lasts 3 time units and must be carried out on the machine m1, the
second lasts 6 time units on machine m3 and so on.

J1 : (m1, 3), (m3, 6), (m2, 5)
J2 : (m1, 2), (m1, 4), (m3, 7)
J3 : (m3, 1), (m2, 5), (m1, 6)

Two schedules S1 and S2 are depicted in Figure 2.1 The length of S1 is 17 while the length of S2 is
16, and it is the optimal schedule. The two schedules are represented using Gantt diagram, showing the
evolution of each job on the machines.
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Figure 2.1: Two schedules S1 and S2 represented in a Gantt diagram

2.2 Disjunctive Graph Representation

In the lack of resource conflicts (when every job uses a distinct set of machines) the optimal schedule
is achieved by letting every job execute its steps as soon as possible, that is, to start immediately with
the first step and move to the next step as soon the previous step terminates. In this case the minimal
makespan is the maximal (over all jobs) sum of step durations. The difficult (and interesting) part of the
problem comes with conflicts: a job might want to start a step but the corresponding machine is occupied
by another job. Here the optimal schedule need not be based on the greedy principle “start every step as
soon as it is enabled” because it might be globally better to wait and leave the machine free for a later
step of another job. It is this type of decisions that distinguishes one schedule from another as can be
seen in an intuitive manner using the disjunctive graph model, introduced by Roy and Sussman [RS64].

A disjunctive graph associated with a job-shop problem is a graph G = (V,W,A,E) where V is
a set of nodes corresponding to the steps of the problem with two additional (fictitious) nodes “start”
and “end”. The positive weight W (v) associated with each node v is equivalent to the duration the
corresponding step. The precedence constraints between the steps of the same job are represented by a
set A of directed edges such that (v, v′) ∈ A indicates that step v is an immediate predecessor of step v ′.
The resource conflicts are represented by a set E of undirected edges, such that whenever step v and step
v′ use the same machine, both (v, v′) ∈ E and (v′, v) ∈ E. Clearly, E is an equivalence relation and let
us denote by Em the subset of E corresponding to machine m. An orientation of E is a subset E ′ ⊆ E
such that for every machine E ′

m is a linear order. Every orientation can be seen as defining a priority
relation between steps requiring the same machine. Two examples of orientation of the graph appears in
Figure 2.2 where job J2 has priority over job J1 on machine m1 in the orientation corresponding to the
schedule S1 and the opposite on the orientation of the schedule S2.
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Figure 2.2: The two orientations corresponding to the schedules S1 and S2 where Vij is the node corre-
sponding to the step j of the job i.

For every given orientation, the length of the longest path from “start” to “end” is equal to the length
of the shortest schedule among all the schedules that satisfy the corresponding priority relation. So
finding the optimal schedule reduces to finding the priority relation whose associated orientation leads to
the minimal longest path. There are finitely many such priority relations, hence the problem is solvable,
however their number is exponential which makes the problem intractable. Note that some partial choices
of priorities can make other priorities redundant, for example, if one job uses m at an early step and
another job uses machine m toward the end, it might be the case that the priority relation between them
need not be stated explicitly.

2.3 Constrained Optimization Formulations

An alternative formulation of the problem is as a constrained linear optimization problem where the com-
binatorial difficulty is manifested by the non-convexity of the set of feasible solutions. For the purpose of
this formulation let us write a job J i as a sequence of steps

(mi1, di1), (mi2, di2), . . . , (mim, dim),

let tij denote the start time of step j of job i and let T be the global termination time.
The job shop problem can be formulated mathematically in the following form:
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Minimize T where ∀J i tim ≤ T (T is the maximal makespan)
subject to :
∀J i ∈ J ∀k ∈ {1 . . .m} tik ≥ 0
∀J i ∈ J tik − tih ≥ dih if (mih, dih) precedes (mik, dik)
∀J i ∈ J ∀Jj ∈ J if (mik = mjh)

tjk − tik ≥ dik (mik, dik) precedes (mjh, djh)
∨
tik − tjk ≥ djk (mjh, djh) precedes (mik, dik)

As one can see, the question of priority appears now in the form of disjunction. If we transform the
constraints into a disjunctive normal form, every disjunct will indeed correspond to a priority relation
under which the problem transforms into a trivial linear programming problem. An attempt to avoid the
enumeration of priority relation and stay within the framework of linear programming is to transform the
problem into mixed integer linear programming (MILP) format of Manne [Ma96].

A MILP problem is a linear program where some of the variables are integers. In the job shop
problem the integer variables are binary and are used to model the disjunctive constraints.























































Minimize T where ∀J i tim ≤ T (T is the maximal makespan)
subject to :
∀J i ∈ J ∀k ∈ {1 . . .m} tik ≥ 0
∀J i ∈ J ∀Jj ∈ J ∀mk ∈ M yijk ∈ {0, 1}
∀J i ∈ J tik − tih ≥ dih if (mih, dih) precedes (mik, dik)
∀J i ∈ J ∀Jj ∈ J if (mik = mjh)

tjk − tik + K(1 − yijk) ≥ dik

tik − tjk + K(yijk) ≥ djk

K is a big number

Even for the more compact mathematical formulations a large number of constraint are required
[Ma96] and the number of integer variables grows exponentially [B59]. Giffer and Thompson [HLP93]
mention that integer programs have not led to practical methods of solutions while French [GT60] ex-
presses the view that an integer programming formulation of scheduling problems is computationally
infeasible.

The best results that has been obtained using mathematical formulation are due to Lagrangian relax-
ation (LR) approaches [F73b, Fr82, V91, FT63, KSSW95] and decomposition methods [A67, ?, DR94,
M60] The results indicate that solutions are usually of poor quality.

2.4 Enumerative Methods

Since the embedding of the problem in the continuous optimization framework does not seem to work,
most approaches are based on enumeration, a search in the space of feasible solutions. In order to avoid
an exhaustive search, enumerative methods use clever elimination techniques that reduce the number of
solutions that need to be explored. The general framework for such a search is called Branch and Bound
(BB) and is best explained using the following example.

Suppose our search space consists of all 6 priority relations (permutations) over {1, 2, 3}. We can
create the permutations incrementally, for example decide first whether 1 ≺ 2 or 2 ≺ 1. The first choice
amounts to choosing the subset {123, 132, 312} of the possible permutations, and each permutation
corresponds to a leaf in a search tree such as the one in Figure 2.3. A crucial component of BB is the
ability to evaluate the quality of a partial choice (non-leaf node) by an over-approximation. The general
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idea is then to choose one or more full branches in the search tree and evaluate them. This gives an upper-
bound (if the problem is minimization) on the quality of the solution. Then a search can be conducted on
the tree, cutting branches whose estimated evaluation is worse than the upper-bound.

{123, 132, 321}

{123, 132} {213} {231, 321}

{231}

1 ≺ 2 2 ≺ 1

3 ≺ 1

{213, 231, 321}

{123} {132}

{321}

{321}

2 ≺ 3

1 ≺ 31 ≺ 3 3 ≺ 1

2 ≺ 3 3 ≺ 23 ≺ 2

{123, 132, 213,
231, 312, 321}

Figure 2.3: A search in the space of priority relations

The first applications of BB to the job shop problem was proposed by Balas [B69], followed by many
others, including Carlier [C82], Carlier and Pinson [CPP92], Appelgate and Cook [?], Brucker and al.
[BJS94], Perregaard and Clausen [PC95], Boyd and Burlingame [BB96] and Martin [Ma96]. Although
the computational study indicates that improvements have been achieved by BB methods, this is mainly
attributed to improvement in computer technology rather than to the techniques used.

2.5 Approximation methods

Although approximation methods do not guarantee optimal solutions, they can attain near optimal solu-
tions within moderate computing time and are adequate to large problems. Main categories of approx-
imation techniques are: priority dispatch rules, bollelneck based heuristics, Constraint Satisfaction and
local search methods.

Approximation applied to job shop problem were first developed on the basis of Priority Dispatching
Rule (PDR). In this method, at each step all the operations which are available to be scheduled are
assigned a priority and the operation with the highest priority is chosen to be sequenced. Usually several
runs of PDRs are made in order to achieve valid results. The best results due to this technique are those
of Sabuncuoglu and Bayiz [SB97]. However the deviations from the optimum are still high, the results
suggest that PDRs are more suitable as an initial solution technique.

The Shifting Bottleneck (SB) procedure decomposes the job shop problem into a series of single-
machine subproblems. It schedules the machines one by one and focuses on bottleneck machines. One
example of such approach is the Shifting Bottleneck Procedure of Adams and all. [ABZ88] A general
weakness of the SB approaches is the level of programmer sophistication required.

Constraint Satisfaction techniques aim at reducing the effective size of the search space by applying
constraints that restrict the order in which variables are selected and the sequence in which possible values
are assigned to each variable. After a value is assigned to a variable any inconsistency arising is removed.
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These techniques has been applied to solve the job-shop problem in [BPN95, CY94, NA96, PT96, NP98].



Chapter 3

Discrete Verification and Graph
Algorithms

3.1 Reachability

The domain of verification is concerned with proving that systems, such as computer programs or digital
circuits, behave as required and contain no bugs under all conceivable circumstances. Typically each
component of such a system is modeled as an automaton, a system with a finite set of states and transitions
between states that corresponds to events or actions performed by the component. In this framework a
job in a job-shop problem can be modeled by an automaton whose states represent the progress of the
job along its sequence of steps, and transitions correspond to the initiation and termination of steps.
The automaton characterizing a whole system is obtained by composing the automata its components1

and obtaining an automaton whose states are elements of the Cartesian product of the state sets of the
components. The set of all possible behaviors of the system is thus represented by the set of all paths in
this transition graph, whose size grows exponentially with the number of components.

So technically, the problem of verification can be reduced to the problem of checking the existence of
certain paths in a directed graph, the transition graph of the automaton. The simplest type of properties to
which verification is applied are reachability properties, properties that are verified by a path depending
on whether or not it visits some specific states. In some cases we want to check that all behaviors avoid
a set of “bad” states (for example, a state where the same machine is given to two jobs), and in others we
do not want behaviors to get stuck but rather to proceed to some final state (for example, a state where
all jobs have terminated). Such properties are examples of safety and liveness properties, respectively.
The algorithmic approach to verification, also known as model-checking, uses graph algorithms in order
to explore the paths in the automaton and to show that they satisfy these and more complex properties.

In the sequel we will survey some of the basic algorithms for exploring directed graphs, starting
with those that can solve reachability problems. Later, by assigning numerical weights to the automaton
transitions, we associate real numbers (length, cost) with runs and search for runs that are optimal in
this sense, using shortest path algorithms. Automata and directed graphs describe essentially the same
objects and we will use the terminology and notation of automata theory.

Definition 1 (Finite State Automata) A finite state automaton is a pair A = (Q, δ) where Q is a finite
set of states, and δ ⊆ Q × Q is a transition relation. A finite run of the automaton starting from a state
q0 is a sequence of states

q0 → q1 → . . . → qk

such that (qi, qi+1) ∈ δ for every i, 0 ≤ i ≤ k − 1.

1There are many forms of compositions depending of the mode of interaction between the components and other features
that are beyond the scope of this document.

11
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In graph-theoretic terminology states are vertices, or nodes transitions are edges or arcs and runs are
paths. We use Succ(q) and Pre(q) to denote the sets of successors and predecessor of a state q:

Succ(q) = {q′ : (q, q′) ∈ δ}

and
Pre(q) = {q′ : (q′, q) ∈ δ}.

A useful concept for visualizing all the possible runs of the automaton starting from a state q is the
q-unfolding of the automaton, a tree constructed by starting at q, adding nodes and transitions for each of
its successors, and repeating the procedure recursively for these nodes. If the automaton contains cycles
(paths leading from a state to itself) its unfolding will be infinite. Otherwise it is finite but its size can be
exponential in the size of the automaton. An automaton is depicted in Figure 3.1 and an initial part of its
unfolding is shown in Figure 3.2.

q1

q5

q7

q2

q3

q4

q6

Figure 3.1: An automaton A = (Q, δ)

q1

q3
q2

q6
q7 q3 q7

q4

q2 q6 q6 q7 q6 q7

q3 q7 q4 q2 q2 q2 q6q6

Figure 3.2: The q1-unfolding of the automaton of Figure 3.1
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We will now demonstrate the various approaches to graph searching in order to solve the following
reachability problem: “given an automaton and two states q and q ′, is there a path leading from q to q′”.
Clearly the answer to this question is positive if the unfolding of the automaton starting at q contains
a node labeled by q′. The simplest algorithm for doing it is the breadth-first search (BFS) algorithm
described below. The algorithm maintains two data-structures, a set of explored states whose successors
have already been encountered and an ordered list of waiting states that need to be explored (these
are sometimes called the frontier of the search). The algorithm terminates either by reaching q ′ and
answering “yes” or by computing all the states reachable from q without reaching q ′. Termination of the
algorithm is guaranteed by the finiteness of Q.

Algorithm 1 (Reachability-BFS (A, q, q′))

Waiting := {q} ;
Explored:={};
Reached := no;
while ( Reached = no and Waiting 6= ∅) do
begin

Pick first v ∈ Waiting;
if (v /∈ Explored) then
begin

for every u such that u ∈ Succ(v) ∧ u /∈ Explored do
if (u = q′) then

Reached := yes;
else

Insert u into the end of Waiting;
Insert v into Explored;

end
Remove v from Waiting;

end
return(Reached);

Note that BFS explores the unfolding of the automaton according to levels, that is, the order in which
it explores the nodes of the tree is consistent with their distance from the root, where “distance” here
means the number of transitions. If, in addition to the yes/no answer, we want to obtain a path when it
exists, we can modify the algorithm by storing with each inserted node the path that has led to it, i.e.
inserting v · u into Waiting instead of inserting only u.

While the BFS algorithm advances “in parallel” over all paths, the depth-first search (DFS) algorithm
attempts to reach q′ along a path and then move to another one. Technically the difference between the
algorithms is in the place where new nodes are added to the waiting list, at the end (BFS) or at the
beginning (DFS). In other words, the list is FIFO (first in first out) in BFS and LIFO (last in first out) in
DFS.

Algorithm 2 (Reachability-DFS (A, q, q′))
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Waiting:= {q};
Explored:={};
Reached := no;
while ( Reached = no and Waiting 6= ∅) do
begin

Pick first v ∈ Waiting;
if (v /∈ Explored) then
begin

for every u such that u ∈ Succ(v) ∧ u /∈ Explored do
if (u = q′) then

Reached := yes;
else

Insert u at the beginning of Waiting;
Insert v into Explored;

end
Remove v from Waiting;

end
return(Reached);

Note that both algorithms have an under-specified component, that is, the order in which the suc-
cessors of the same node are explored. As we will see from the examples, this choice may affect the
behavior of the algorithms, especially that of DFS in case a path exists.
Example: Consider the automaton depicted in Figure 3.1 and the following two reachability problems:

• P1: Is q5 reachable from q1 ?

• P2: Is q6 reachable from q1 ?

For P1, the answer is negative and the two search algorithms end up computing all the states reachable
from q1. In Figure 3.3 we see the behavior of the two algorithms under the following exploration ordering
of successors: q3 ≺ q2 for Succ(q1) and q3 ≺ q7 ≺ q4 for Succ(q2). The dashed nodes indicate the
places where the search stopped, that is, nodes whose successors have not been explored because they
have been explored along other paths.
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Depth-first searchBreadth-first search

q1

q7

q1

q3

q6

q2 q3
q2

q7q3 q4

q6

q2

q7 q4q3

q2

q7

q7q6 q6
q7

Figure 3.3: The explored search BFS and DFS trees for problem P1.

The search trees for P2 under the same successor ordering can be see in Figure 3.4. BFS always finds
the shortest (in terms of transitions) path while DFS, under this ordering finds a longer run q1 → q2 →
q4 → q7 → q6. The sensitivity of DFS to the ordering of successors is demonstrated in Figure 3.5 where
we show the behavior of the algorithm when the successors of q1 are ordered according to q2 ≺ q3. BFS
finds the same shortest path as before (with some less exploration) and DFS now finds this path as well.
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Depth-first searchBreadth-first search

q1

q7

q1

q3

q6

q2 q3
q2

q7q3 q4

q6

q7

Figure 3.4: The search trees for P2 with q3 ≺ q2.

Depth-first searchBreadth-first search

q1q1

q2 q3

q3 q4 q6 q7q7

q2
q3

q7q6

Figure 3.5: The search trees for P2 with q2 ≺ q3.

In certain application domains there might be some useful evaluation function on states that can be
used for a more sophisticated search procedure. For example, if the state-space of the automaton consists
of Boolean n-tuples, and the dynamics is defined in a certain way, the Hamming distance between a
state and q′ will give an indication how close we are to our goal. An algorithm that keeps the waiting
list ordered according to such a measure is called a best-first search algorithm and will be later used
extensively for the job-shop problem.

The algorithms described so far explore the automaton in a forward direction, starting from q toward
q′. Alternatively we could do it backwards, starting from state q ′ and then computing its predecessors
until reaching q or exhausting test set of state from which q ′ is reached. One way to do a backward search
on an automaton A = (Q, δ) is to construct an automaton A′ = (Q, δ′) where δ′ is the inverse of the
transition relation δ. Solving the q′ → q reachability problem in A′ is equivalent to solving the q → q′

reachability problem in A by backward search.
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It is important to mention that the transition graphs of the automata treated in verification are typically
very big and are not stored explicitly in the computer memory, but rather generated on the fly during the
search. The successors of a global state are generated by choosing each time a transition of one of
the components (or several components if this transition is common to more than one component) and
transforming the global state according to the effect of this transition.

3.2 Shortest Paths

For the automata we will construct for the job-shop problem, the answer to the reachability problem is
obvious: in the absence of constraints such as deadlines there will always be a path from the initial state
(before any job has started) to the final state (all jobs have terminated). In fact, there will be infinitely
many such paths corresponding to the different feasible schedules and the optimization problem is to
choose the one with the shortest makespan. This can be done by techniques based on shortest path
algorithms, originally applied to weighted automata/graphs.

Weighted automata can be used to associate some cost (energy, time, etc.) with transitions. Or,
when the nodes correspond to physical locations, the weight associated with an edge can correspond to
the length of the route between its vertices. Formally a weighted automaton is A = (Q, δ,w) where
w : δ → R is a function that assigns to each transition (q, q′) ∈ δ a weight wq,q′ . With every finite run

q0
w0,1
−→ q1

w1,2
−→ . . .

wk−1,k
−→ qk

we associate a cost
C = w0,1 + w1,2 + . . . + wk+1,k.

The shortest path between two states q and q′ is the run with the minimal C. From now on we assume
that w is always positive and hence the shortest path between any two states has no cycles.

The q-unfolding of a weighted automaton is a tree labeled with pairs in Q × R+, starting with
(q, 0) and generating for every node (p, r) successors of the form (p′, r′) such that (p, p′) ∈ δ and
r′ = r′ + wp,p′ . Clearly, for any node (p, r) in the tree, r corresponds to the distance from q to p via
the corresponding path. A weighted automaton and its unfolding appear in Figures 3.6 and 3.7. Finding
the shortest path between q and q′ is thus equivalent to finding the node (q′, r) with the minimal r in the
q-unfolding of the automaton.

1

9
2 3

2

7

4 6

5

10

q2

q3

q4

q5

q1

Figure 3.6: A weighted automaton A(Q, δ,w)
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q1, 0

q3, 5

q5, 7

q4, 9

q3, 12 q4, 11 q2, 8 q4, 14

q4, 13q1, 14q5, 18q3, 10q5, 15q5, 14q4, 21q2, 15

q2, 10

Figure 3.7: The q1-unfolding of the weighted automaton of Figure 3.6

The BFS algorithm can stop after reaching q′ while there exists a shorter path to q′ with more tran-

sitions. For example, BFS can reach q4 via the path q1
10
−→ q2

1
−→ q4, Figure 3.8, while there exists a

shorter path q1
5

−→ q3
3

−→ q2
1

−→ q4.

510

2 1

q1q1

q2 q3

q3 q4

Figure 3.8: BFS algorithm applied to the automata of Figure 3.6

The well-known algorithm due to Dijkstra ?? gives the shortest path from q to any other state for
graphs with positive weights. Dijkstra’s algorithm can be viewed as iterating with a function d : Q → R+

such that at every iteration i, di(p) is the length of the shortest path to p having at most i transitions. If p
is not reachable within i steps di(p) = ∞. When the algorithm terminates d(p) holds the length of the
shortest path to p.

Algorithm 3 (Dijkstra’s algorithm (A, q))
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d0(q) = 0;
∀p 6= q d0(p) = ∞;
i = 0;
Repeat
begin
i := i + 1;
∀p ∈ Q;
di(p) = min({di−1(p′) + Wpp′ ] : p′ ∈ Pre(p)} ∪ {di(p)});

end Until di = di+1



Chapter 4

Adding Time to Automata

Models based on finite-state automata can express only qualitative temporal relations between events
in a system. We can say that one events precedes another but we cannot specify in a natural way the
quantity of time that separates them. In many application domains such as real-time programming or
circuit timing analysis, the correctness of a system depends on the relative speeds of the system and its
environment. Hence we need a formalism where we can express quantitative timing features of systems
such as response time of programs, propagation delays in logical gates or constraints on inter-arrival
times of external events. In the context of scheduling problems, we would like to express the duration of
a step in a job as a constraint on the time elapsed between its initiation and termination transitions.

Several proposals for extending verification methodology to model quantitative time were proposed
in the late 80s and the timed automaton model Alur and Dill [ACD93, AD94] turned out to be very useful.
This model is rich enough to express all timing problems of practical interest, yet the basic reachability
problems for it can be solved algorithmically [HNSY94] using extensions of the graph search algorithms
presented in Section Chapter 3.1

Timed automata can be viewed as a special class of hybrid systems, systems that combine discrete
transitions and continuous evolution, of the type usually described by differential equation. This intuition
is not so easy to grasp upon first reading. We will present timed automata incrementally, by investigating
first the most straightforward approaches for a adding quantitative time to automata.

4.1 Explicit Modeling of Time

Consider two processes P1 and P2, with execution times of 3 and 2 time units, respectively. Each process
can be in three basic “modes”: it can be waiting before starting, it can be active (executing), and it can be
finished after having passed enough time in the active mode. The state of the process in the active mode
is determined by the amount of time since the process has started. If we fix the time granularity to be one
time unit we can model the processes using the automata A1 and A2 of Figure 4.1. The states of A1 are
{p1, 0, 1, 2, 3, p

1
} where p1 is the initial state indicating that the process is still inactive, and p

1
is the final

state. The other states represent the amount of time elapsed in the active mode. The automaton have two
types of transition, immediate transitions such as “start” and “end”, that consume no time, and a special
time-passage transition “tick” indicating the passage of time unit. The behaviors of the processes are
the runs of the automaton consisting of sequences of states and both types of transitions. For example, a
behavior where P1 waits one of one time unit and then starts is captured by the run

p1
tick
−→ p1

start1
−→ 0

tick
−→ 1

tick
−→ 2

tick
−→ 3

end1
−→ p

1

1Another discrete formalism for which quantitative timing information can be added are the Petri nets, which are quite
popular for modeling manufacturing systems.

20
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and its corresponding duration is the number of tick transitions.

0

start1

tick

tick

end1

1

3

tick

start2

1

tick

22

end2

0

tick

tick

tick

tick tick

p1

p
1

p2

p
2

Figure 4.1: The two automata A1 and A2 corresponding to P1 and P2

When two or more automata run in parallel, each automaton can take its immediate transitions inde-
pendently but the “tick” transitions are synchronized: if one process takes such a transition, all the the
others need to take it as well. The effect of the tick transition on any active process in a state i is is to
move it to state i + 1. The automaton A = A1||A2 is shown in Figure 4.2. It starts in an initial state
(p

1
, p

2
) where the two processes are waiting. Each of the processes can start executing after any number

of ticks and all the possible behaviors of the system correspond to runs of A. For example, the behavior
where both processes wait 2 time units and then start at the same time2 is captured by the run:

(p1, p2)
tick
−→ (p1, p2)

tick
−→ (p1, p2)

start1
−→ (0, p2)

start2
−→ (0, 0)

tick
−→

(1, 1)
tick
−→ (2, 2)

end2
−→ (2, p

2
)

tick
−→ (3, p

2
)

end1
−→ (p

1
, p

2
)

A behavior where P1 starts immediately and P2 starts 2 time units later is represented by the run

(p1, p2)
start1
−→ (0, p2)

tick
−→ (1, p2)

tick
−→ (2, p2)

start2
−→

(2, 0)
tick
−→ (3, 1)

end1
−→ (p

1
, 1)

tick
−→ (p

1
, 2)

end2
−→ (p

1
, p

2
)

2In fact, behaviors where several independent immediate transitions occur at the same time can usually be represented by
more than one run, each run corresponding to a different interleaving of concurrent transitions. For example, the run fragment

(p1, p2)
start1
−→ (0, p2)

start2
−→ (0, 0) can be replaced by (p1, p2)

start2
−→ (p1, 0)

start1
−→ (0, 0).
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A behavior where P2 starts immediately and P1 starts 1 unit after P2 terminates is represented by the run

(p1, p2)
start2
−→ (p1, 0)

tick
−→ (p1, 1)

tick
−→ (p1, 2)

end2
−→ (p1, p2

)
tick
−→

(p1, p2
)

start1
−→ (0, p

2
)

tick
−→ (1, p

2
)

tick
−→ (2, p

2
)

tick
−→ (3, p

2
)

end1
−→ (p

1
, p

2
)

The duration of a run, the time from the initial state to (p
1
, p

1
), is just the number of ticks in the run (5,

4 and 6 units, respectively).
Since each processes can choose to perform its start transition independently, many possible com-

bination of clock values are possible, each reflecting a different choice in the past. This can lead to a
state explosion as the number of processes grow. In addition, each refinement of the time scale (e.g.
letting events occur in time instants that are multiples of 1/2) will increase the number of states in each
automaton. The advantage of this representation is, however, that it allows us to stay within the familiar
framework of automata and to apply standard reachability and shortest-path algorithms to timed systems,
by assigning weight 1 to tick transitions and 0 to immediate transitions
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start2 start1 tick

start1 start2

ticktick start2
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Figure 4.2: The global automaton of A = A1||A2.

4.2 Clock Variables

A more compact representation of such automata can be achieved by using special auxiliary variables
to represent time passage instead of encoding elapsed time explicitly inside states. These are clock
variables or counters that are reset to zero when an active state is entered, incremented by one with
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every tick and their value is tested in transitions that leave active states. Figure 4.3 shows how this is
done for the automata of Figure 4.1, by adding clock variables X1 and X2. A state (or configuration)
of an augmented automaton is a pair of the form (q, v) where q is an explicit state and v is a value for
the variable(s). Such clock variables can range over the non-negative integers with the special value ⊥
indicating that the clock is not active in a state. A run of A′

1 will look like

(p1,⊥)
tick
−→ (p1,⊥)

atart1
−→ (p1, 0)

tick
−→ (p1, 1)

tick
−→ (p1, 2)

tick
−→ (p1, 3)

end1
−→ (p

1
,⊥)

start1 start2

end1 end2

tick

tick tick

tick tick

tick

p2p1

p
2p

1

p1 p2

x1 := 0 x2 := 0

x2 := x2 + 1

x1 = 3 x2 = 2

x1 := x1 + 1

Figure 4.3: The automata A′
1 and A′

2: using clocks variables.

Note that the difference between the two approaches is purely syntactic. If we expand the automata
A′

1 and A′
2 by adding clock values to the states we obtain automata isomorphic to A1 and A2 (see

Figure 4.4).
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start1

tick

tick

end1

tick

start2

tick

end2

tick

tick

tick

tick tick

(p1, 3)

(p2, 2)(p1, 2)

(p1, 1) (p2, 1)

(p2, 0)(p1, 0)

(p1,⊥) (p2,⊥)

(p
2
,⊥)

(p
1
,⊥)

Figure 4.4: The automata A′
1 and A′

2 expanded with explicit representation of clock values in the state.

When we compose A′
1 and A′

2 we obtain the global automaton A′ of Figure 4.5 which looks simpler
than A of Figure 4.2. This simplicity of the transition graph is, however, misleading. Consider for
example state (p1, p2) where both processes are active. There are two transitions leaving this state and
they are guarded by conditions X1 = 3 and X2 = 2, respectively. The state itself does not tell us whether
each of the transitions can be taken as this depends on the values of the clocks which, in turn, depends
on the previous history (when the clocks were reset to zero). In the worst case, reachability algorithms
for A′ might need to expand it into A. Nevertheless, although modeling with clock variables does not
change the worst-case complexity of the reachability problem, it allows us to use symbolic methods and
work with an arbitrary time granularity.
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Figure 4.5: The global automaton A′ = A′
1||A

′
2.

Symbolic or implicit representation methods can be applied to variables that belong to some mathe-
matical domain such as integers. Instead of representing a set of states explicitly (e.g. in a table) it can
be represented by a formula. Suppose, for example, two processes with durations d1 and d2, respectively
such that d1 < d2, that enter their respective active states 2 time units one after the other. The set of
reachable clock values has the form

{(2, 0), (3, 1), (4, 2), . . . (d1, d1 − 2)}

and its size depends on d1. However the formula X1 − X2 = 2 ∧ X1 ≤ d1 characterizes this set, and
its size does not depends on d1. In fact, it can characterize the reachable states even if we do not assume
any fixed time granularity and work with dense time. This way we may allow events happen anywhere
on the real-time axis and view the clocks differently, as continuous variables that evolve with derivative
1 inside active states. These are timed automata, see Figures 4.6 and 4.7, which can be seen as the limit
of a process that makes the time steps associated with tick transitions infinitesimal.
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Figure 4.6: Two Timed Automata
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Figure 4.7:

4.3 Basics of Timed Automata

Definition 2 (Timed Automata) A timed automaton is a tuple A = (Q,C, s, f,∆) where Q is a finite
set of states, C is a finite set of clocks, and ∆ is a transition relation consisting of elements of the form
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(q, φ, ρ, q′) where q and q′ are states, ρ ⊆ C and φ (the transition guard) is a boolean combination of
formulae of the form (c ∈ I) for some clock c and some integer-bounded interval I . States s and f are
the initial and final states, respectively.

Definition 3 (Clock Valuation) A clock valuation is a function v : C → R+ ∪ {0}, or equivalently a
|C|-dimensional vector over R+. We denote the set of all clock valuations by H. A configuration of the
automaton is hence a pair (q, v) ∈ Q × H consisting of a discrete state (sometimes called “location”)
and a clock valuation. Every subset ρ ⊆ C induces a reset function Resetρ : H → H defined for every
clock valuation v and every clock variable c ∈ C as

Resetρ v(c) =

{

0 if c ∈ ρ
v(c) if c 6∈ ρ

That is, Resetρ resets to zero all the clocks in ρ and leaves the other clocks unchanged. We use 1 to
denote the unit vector (1, . . . , 1) and 0 for the zero vector.

Definition 4 (Steps and Runs) A step of the automaton is one of the following:

• A discrete step: (q, v)
0

−→ (q′, v′), where there exists δ = (q, φ, ρ, q′) ∈ ∆, such that v satisfies φ
and v′ = Resetρ(v).

• A time step: (q, v)
t

−→ (q, v + t1), t ∈ R+.

A run of the automaton starting from a configuration (q0, v0) is a finite sequence of steps

ξ : (q0, v0)
t1−→ (q1, v1)

t2−→ · · ·
tn−→ (qn, vn).

The logical length of such a run is n and its metric length is t1 + t2 + · · · + tn.

It is sometimes useful to augment a time automaton A with an additional clock t which is active in
every state and never reset to zero. We call the obtained automaton A′ the extended automaton of A, and
its runs are called extended runs of A′. Since t always represents absolute time, (q, v, t) is reachable in
A′ iff (q, v) is reachable in A at time t.

Note that we omit transition labels, such as “start” or “end”, used in the previous section from the
runs because we will not need them in the sequel, and we use their duration, 0, instead. Although in the
formal definition all clocks evolve uniformly with derivative 1 in all states, there are states were certain
clock values are not important because in all paths starting from those states they are not tested before
being reset to zero (for example, clock X1 in state (p1, p2)). We say that a clock is inactive in such a
state and instead of writing down its value we use the symbol ⊥. The following run of the automaton A′′

of Figure 4.7 corresponds to the case where P1 started after 0.23 time units and P2 started 2.1 time units
later:

(p1, p2,⊥,⊥)
0.23
−→ (p1, p2, 0,⊥)

2.1
−→ (p1, p2, 2.1,⊥)

0
−→ (p1, p2, 2.1, 0)

0.9
−→

(p1, p2, 3, 0.9)
0

−→ (p1, p2
,⊥, 0.9)

1.1
−→ (p1, p2

,⊥, 2)
0

−→ (p
1
, p

2
,⊥,⊥)

Note also that the definition of a run allows to “split” time steps, for example, the step (p1, p2, 0,⊥)
2.1
−→

(p1, p2, 2.1,⊥) can be written as (p1, p2, 0,⊥)
0.6
−→ (p1, p2, 0.6,⊥)

0.7
−→ (p1, p2, 1.3,⊥)

0.8
−→ (p1, p2, 2.1,⊥).

One of the most useful features of timed automata is their ability to epxress and analyze system
with temporal uncertainty. In the automaton of Figure 4.8 we see that the transition from q1 to q2 can
happen when the value of X is anywhere in the interval [1, 3]. A verification algorithm should explore
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all these infinitely-many runs that correspond to this choice, and the major result on timed automata
[AD94, HNSY94, ACD93] is that although the state space is infinite, reachability and other verification
problems for timed automaton are solvable.

The basic idea for reachability computation for timed automata is the following:

1. Sets of reachable configurations are stored as unions of symbolic states of the form (q, Z) where q
is a discrete state and Z is a subset of the clock space H.

2. Computation of successors of a symbolic state is done in two phases. First all the time successors
of (q, Z) are computed leading to (q, Z ′) where Z ′ consists of all clock valuation reachable from
Z by letting time progress by any amount. Then Z ′ is intersected with the transition guard of
each transition to determine the configuration where the transition can take place and then the reset
operations is applied to those configurations.

q1

q3

1 ≤ X ≤ 3 X := 0

q2

2 ≤ Y ≤ 4

q4
X = 1

2 ≤ Y ≤ 4

Y := 0

Figure 4.8: A timed automaton.

Consider the automaton of Figure 4.8. Starting from the symbolic state (q1,X = Y = 0), letting
time pass we reach the symbolic state (q1,X = Y ≥ 0). The intersection with the guard of the transition
to q2 gives (q1, 1 ≤ X = Y ≤ 3) and the resetting of X leads us finally to (q2,X = 0 ∧ 1 ≤ Y ≤ 3)
from where we restart with time passage and so on. The whole computation for that automaton appears
in Figure 4.9. The fundamental result concerning timed automata is that the sets of clock valuations in
symbolic states always belong to a special class of polyhedra called zones which is finite for any given
automaton.

Definition 5 (Zones and Symbolic States) A zone is a subset of H consisting of points satisfying a con-
junction of inequalities of the form ci − cj ≥ d or ci ≥ d. A symbolic state is a pair (q, Z) where q is a
discrete state and Z is a zone. It denotes the set of configurations {(q, z) : z ∈ Z}.

Definition 6 (Successors) Let A = (Q,C, s, f,∆) be a timed automaton and let (q, Z) be a symbolic
state.

• The time successor of (q, Z) is the set of configurations which are reachable from (q, Z) by letting
time progress:

Postt(q, Z) = {(q, z + r1) : z ∈ Z, r ≥ 0}.

We say that (q, Z) is time-closed if (q, Z) = Postt(q, Z).



CHAPTER 4. ADDING TIME TO AUTOMATA 30

• The δ-transition successor of (q, Z) is the set of configurations reachable from (q, Z) by taking the
transition δ = (q, φ, ρ, q′) ∈ ∆:

Postδ(q, Z) = {(q′,Resetρ(z)) : z ∈ Z ∩ φ}.

• The δ-successor of a time-closed symbolic state (q, Z) is the set of configurations reachable by a
δ-transition followed by passage of time:

Succδ(q, Z) = Postt(Postδ(q, Z)).

• The successors of (q, Z) is the set of all its δ-successors:

Succ(q, Z) =
⋃

δ∈∆

(Succδ(q, Z)).

Equipped with these operations (which transform zones into zones) we can solve reachability prob-
lems for timed automata using graph search algorithms that work on the “simulation graph”, a graph
whose nodes are symbolic states connected by the successor relation. This approach for verifying timed
automata was first proposed in [HNSY94] and implemented in the tool KRONOS [Y97]. As we will see
in the next chapter, the timed automata for modeling job-shop problems have a special structure and in
particular they are acyclic. The following generic algorithm computes all the reachable configuration for
such automata starting from configuration (s, 0).

Algorithm 4 (Forward Reachability for Acyclic Timed Automata)
Waiting:={Postt{(s, 0)}};
while Waiting 6= ∅ do

Pick (q, Z) ∈ Waiting;
For every (q′, Z ′) ∈ Succ(q, Z);

Insert (q′, Z ′) into Waiting;
Remove (q, Z) from Waiting;

end
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X = Y = 0

1 ≤ Y ≤ 3

2 ≤ Y ≤ 4

2 ≤ X ≤ 4

q1

q2 q3

q4

X ≥ 0

X = 0 Y = 0

Figure 4.9: Forward reachability computed for the automaton of Figure 4.8

Since the automaton is acyclic the algorithm will terminate even if we do not keep a list of explored
states. However, for performance reasons such tests are important as we will see later, especially when
there are many paths that lead to the same discrete state.

As in untimed automata, reachable sets can be computed backwards by computing the predecessors
of a symbolic state. The definitions are similar to that of successors, except for the fact the we need to
compute inverse images of reset functions.

Definition 7 (Predecessors) Let A = (Q,C, s, f,∆) be a timed automaton and let (q, Z) be a symbolic
state.

• The time predecessors of (q, Z) is the set of configurations from which (q, Z) can be reached by
letting time progress:

Pret(q, Z) = {(q, v) : v + r1 ∈ Z, r ≥ 0}.

We say that (q, Z) is time-closed if (q, Z) = Pret(q, Z).

• The δ-transition predecessor of (q, Z) is the set of configurations from which (q, Z) is reachable
by taking the transition δ = (q′, φ, ρ, q) ∈ ∆:

Preδ(q, Z) = {(q′, v′) : v′ ∈ Reset−1
ρ (Z) ∩ φ}.

• The predecessors of (q, Z) is the set of all configuration from which (q, Z) is reachable by any
transition δ followed by passage of time:

Pre(q, Z) =
⋃

δ∈∆

Pret(Preδ(q, Z)).
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The following algorithm computes the set of states from which a final state f is reachable.

Algorithm 5 (Backward Reachability for Acyclic Timed Automata)
Waiting:={(f,H)};
while Waiting 6= ∅ do

Pick (q, Z) ∈ Waiting;
For every (q′, Z ′) ∈ Pre(q, Z);

Insert (q′, Z ′) into Waiting;
Remove (q, Z) from Waiting;

end

q2 q3

q4

X ≤ 3 Y ≤ 4
Y − X ≤ 3

X ≤ 1 Y ≤ 4

Y − X ≥ 1

q1q1

X ≤ 1Y ≤ 4

Figure 4.10: Backward reachability computed for the automaton of Figure 4.8



Chapter 5

Deterministic Job Shop Scheduling

In this chapter we model the job-shop scheduling problem using a special class of acyclic timed au-
tomata. Finding an optimal schedule corresponds, then, to finding a shortest (in terms of elapsed time)
path in the automaton. This representation provides new techniques for solving the optimization prob-
lem. We present algorithms and heuristics for finding shortest paths in timed automata and test their
implementation on numerous benchmark examples.

5.1 Formal definitions

Definition 8 (Job-Shop Specification)
Let M be a finite set of resources (machines). A job specification over a set M of resources is a triple
J = (k, µ, d) where k ∈ N is the number of steps in J , µ : {1..k} → M indicates which resource is
used at each step, and d : {1..k} → N specifies the length of each step. A job-shop specification is a set
J = {J1, . . . , Jn} of jobs with J i = (ki, µi, di).

We make the assumption that each machine is used exactly once by every job. This assumption simplifies
the presentation but still maintains the inherent complexity. We denote R+ by T , abuse J for {1, . . . , n}
and let K = {1, . . . , k}.

Definition 9 (Feasible Schedules)
A feasible schedule for a job-shop specification J = {J1, . . . , Jn} is a relation S ⊆ J ×K ×T so that
(i, j, t) ∈ S indicates that job J i is busy doing its jth step at time t and, hence, occupies machine µi(j).
A feasible schedule should satisfy the following conditions:

1. Ordering: if (i, j, t) ∈ S and (i, j ′, t′) ∈ S then j < j′ implies t < t′ (steps of the same job are
executed in order).

2. Covering and Non-Preemption: For every i ∈ J and j ∈ K, the set {t : (i, j, t) ∈ S} is a non-
empty set of the form [r, r + d] for some r ∈ T and d = di(j) (every step is executed continuously
until completion).

3. Mutual Exclusion: For every i, i′ ∈ J , j, j′ ∈ K and t ∈ T , if (i, j, t) ∈ S and (i′, j′, t) ∈ S then
µi(j) 6= µi′(j′) (two steps of different jobs which execute at the same time do not use the same
machine).

The start time time of step j in job i is

s(i, j) = min
(i,j,t)∈S

t

33
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The length of a schedule is the maximal t over all (i, j, t) ∈ S.

The optimal schedule of a job-shop specification J is a feasible schedule with the shortest length.

From the relational definition of schedules one can derive the following commonly-used definition,
namely

1. The machine allocation function α : M × T → J stating which job occupies a machine at any
time, defined as α(m, t) = i if (i, j, t) ∈ S and µi(j) = m.

2. The task progress function β : J × T → M stating what machine is used by a job is at a given
time, defined as β(i, t) = m if (i, j, t) ∈ S and µi(j) = m.

The machine allocation and task progress function are partial, because a machine or a job might be
idle at certain times.

A machine m is idle at t, α(m, t) = ⊥, if

∀i, j s.t. µi(j) = m (i, j, t) /∈ S.

A job i is idle at t, β(i, t) = ⊥, if

∀j s.t. µi(j) = m (i, j, t) /∈ S.

A step j in a job i is enabled at t if

s(i, j − 1) + di(j − 1) < t < s(i, j)

and
α(m, t) = ⊥.

As an example consider M = {m1,m2,m3} and two jobs

J1 = (m3, 2), (m2, 2), (m1, 4) and J2 = (m2, 3), (m3, 1)

Two schedules S1 and S2 are depicted in Figure 5.1 in both machine allocation and task progress forms.
The length of S2 is 8 and it is the optimal schedule.
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Figure 5.1: Two feasible schedules S1 and S2 visualized as the machine allocation function α and the
task progress function β.

Note that a job can be idle at time t even if its precedence constraints are satisfied and the machine
needed at this time is available. As one can see in schedule S2 of Figure 5.1, machine m2 is available at
time t = 0 whereas J2 does not use it and remains idle until time t = 4. If we execute the steps of J 2 as
soon as they are enabled we obtain the longer schedule S1.

The ability to achieve the optimum by waiting instead of starting immediately increases the set of
feasible solutions that need to be explored and is the major source of the complexity of scheduling.

5.2 Modeling with Timed Automata

5.2.1 Modeling Jobs

We construct for every job J = (k, µ, d) a timed automaton with one clock c and 2k+1 states. For every
step j such that µ(j) = m there will be two states in the timed automata, a state m which indicates that
the job is waiting to start the step and a state m indicating that the job is executing the step. The initial
state is the state µ(1) where the job J has not started yet, and the final state is the state f where the job
has terminated all its steps. The clock c is inactive at states m and upon entering m it is reset to zero
without being tested. The automaton can leave the state m only after time d(j) has elapsed, this is done
while testing if the clock c is larger or equal to d(j).

Let M = {m : m ∈ M} and let µ : K → M be an auxiliary function such that µ(j) = m whenever
µ(j) = m.

Definition 10 (Timed Automaton for a Job)
Let J = (k, µ, d) be job. Its associated timed automaton is A = (Q, {c},∆, s, f) with Q = P ∪P ∪{f}
where P = {µ(1), . . . µ(k)}, and P = {µ(1), . . . , µ(n)}. The initial state is µ(1). The transition
relation ∆ consists of the following tuples

(µ(j), true, {c}, µ(j)) j = 1..k
(µ(j), c = d(j), ∅, µ(j + 1)) j = 1..k − 1
(µ(k), c = d(k), ∅, f)
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µ(k)

µ(j)

c := 0

µ(j)

µ(1)

µ(1)

c := 0

f

c = d(j)

c = d(k)

µ(j + 1)

Figure 5.2: The automaton corresponding to the job J = (k, µ, d).

5.2.2 Modeling Job Shop Specifications

To construct the timed automaton for the whole job shop specification we need to compose the automata
for the individual tasks. The composition is rather standard, the only particular feature is the enforcement
of mutual exclusion constraints by forbidding conflicting states, that is, global states in which two or more
automata are in a state corresponding to the same resource m.

Definition 11 (Conflicting states)
An n-tuple q = (q1, . . . , qn) ∈ Qn is said to be conflicting if it contains two components qa and qb such
that qa = qb = m ∈ M .

Let be J = {J1, . . . , Jn} a job shop specification, and let be Ai = (Qi, {ci},∆
i, si, f i) the timed

automaton for job J i. We compose these automata and obtain a time automaton A = (Q,C,∆, s, f)
with n clocks. The states of the composition is the Cartesian product of the states of the individual
automata, excluding conflicting states.

Definition 12 (Mutual Exclusion Composition)
Let J = {J1, . . . , Jn} be a job-shop specification and let Ai = (Qi, Ci,∆i, si, f i) be the automaton
corresponding to each J i. Their mutual exclusion composition is the automaton A = (Q,C,∆, s, f)
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such that Q is the restriction of Q1×. . . Qn to non-conflicting states, C = C1∪. . .∪Cn, s = (s1, . . . , sn),
f = (f1, . . . , fn) and the transition relation ∆ contains all the tuples of the form

((q1, . . . , qa, . . . , qn), φ, ρ, (q1, . . . , pa, . . . , qn))

such that (qa, φ, ρ, pa) ∈ ∆a for some a and both (q1, . . . , qa, . . . , qn) and (q1, . . . , pa, . . . , qn) are
non-conflicting.

q1
2 , q2

0 , . . . , qn
0 q1

1 , q2
1 , . . . , qn

0

q1
2 , q2

1 , . . . , qn
0

q1
0 , q2

0 , . . . , qn
0

q1
0 , q2

1 , . . . , qn
0 q1

0 , q2
0 , . . . , qn

1
q1
1 , q2

0 , . . . , qn
0

∆1

∆1

∆1

∆2
∆n

∆2

∆2

Figure 5.3: The timed automaton corresponding to the job shop specification J = {J 1, J2, . . . , Jn}

As can be seen from the definition and Figure 5.3, each discrete transition in A corresponds to a
transition in one automaton. This is called the interleaving semantics and it is used only for technical
convenience. If in a schedule two automata make transitions δ1, δ2 at the same time instant, there will be

two corresponding run fragments q
δ1
−→ q′

δ2
−→ p and q

δ2
−→ q′′

δ1
−→ p in the automaton.

As an example consider M = {m1,m2} and two jobs

J1 = (m1, 4), (m2, 5) and J2 = (m1, 3)

The corresponding automata for the two jobs are depicted in Figure 6.4 and there composition in Fig-
ure 8.5.

The job-shop timed automaton is acyclic and “diamond-shaped” with an initial state in which no job
has started and a final state where all jobs have terminated. A run of this automaton is called complete if
it starts at s and terminates at f .

All transitions in the global timed automaton indicate either a component moving from an active to
an inactive state (these are guarded by conditions of the form ci = d), or a component moving into an
active state (these are labeled by resets ci := 0 and are called starti transitions).

Two transitions outgoing from the same state might represent a choice of the scheduler, for example,
the two transitions outgoing from the initial state represent the decision to whom to give first the resource
m1, either to J1 and move to (m1,m1), or to J2 and move to (m1,m1). The scheduler can also decide
to start a job or let it idle, as we can see in the two transitions outgoing from the state (m2,m1). The
scheduler either starts job J2 on machine m1 or let time pass until clock c1 satisfies the guard, and
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move to (f,m1). On the other hand some duplication of paths are just artifacts due to interleaving, for
example, the two paths outgoing from (m2,m1) to (m2,m1) are practically equivalent. Recall that in a
timed automaton, the transition graph might be misleading, because two or more transitions entering the
same discrete state, e.g. transitions to (m2, f) might enter it with different clock valuations, and hence
lead to different continuations.

f

f

c1 := 0

c1 := 0

c2 := 0

m1

m1

m2

m2

m1

m1

c1 = 4

c1 = 5

c2 = 3

Figure 5.4: The automata corresponding to the two jobs J 1 = (m1, 4), (m2, 5) and J2 = (m1, 3).
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c1 := 0

c1 = 5

m1 m1

m1 m1

m2m1

m2 m1 m2 m1
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m1 m1

m1 f

m2 f

m2 f

f f

f m1

m2 m1f m1

c1 := 0 c2 := 0

c2 = 3

c1 := 0

c1 = 4
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c2 := 0

c1 = 5

c2 = 3

c1 := 0

c1 = 4
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c2 := 0

c2 = 3

c2 = 3

Figure 5.5: The global timed automaton for the two jobs.

5.3 Runs and Schedules

In this section we will show the tight correspondence between feasible schedules and runs of the automa-
ton.

Definition 13 (Derived Schedule)
The derived schedule Sξ of a run ξ is a schedule where for every i, j s(i, j) = t where t is the absolute
time in ξ and Ai makes a start transition from µi(j) to µi(j)

Claim 1 Let A be the automaton generated for the job-shop specification J according to Definitions 1
and 2. Then:

1. For every complete run ξ of A, its derived schedule Sξ is feasible for J .

2. For every feasible schedule S for J there is a complete run ξ of A such that Sξ = S.

Proof: The proof is by induction on the lengths of the run and schedule. A partial schedule S ′ is a
schedule S restricted to an interval [0, t]. A partial run is a run not reaching f . The section of a schedule
at time t is given by a tuple (P,P, P , e) such that P , P and P are, respectively, the sets of waiting, active
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and finished steps and e is a function from P to R+ indicating the time elapsed since the beginning of
each active state. Formally:

P = {(i, j) : s(i, j) > t}
P = {(i, j) : 0 ≤ t − s(i, j) ≤ di(j)}
P = {(i, j) : di(j) ≤ t − s(i, j)}

and e(i, j) = t − s(i, j). We define the following correspondence between configurations of the au-
tomaton and sections of a schedule. Let ((q1, . . . , qn), (v1, . . . , vn), t) be an extended configuration. Its
associated section is defined by defining for each i ∈ J

qi = µi(j) iff
∀j′ < j (i, j) ∈ P ∧
∀j′ ≥ j (i, j) ∈ P

qi = µi(j) iff

∀j′ < j (i, j) ∈ P ∧
∀j′ > j (i, j) ∈ P ∧

(i, j) ∈ P ∧
vi = t − s(i, j)

The inductive hypothesis is that every partial run reaching (q, v, t) corresponds to a partial schedule
which is feasible until t and whose section at t matches (q, v, t). This is true at the initial state and time
t = 0 and can be easily shown to be preserved by discrete transitions and time passage. The proof of the
other direction is similar, progressing over the ordered set of start and end time points.

The schedules S1 and S2 appearing in Figures 5.6 and 5.7 correspond respectively to the complete
runs ξ1 and ξ2 of the timed automaton of Figure 8.5.

4 7 90J2

J1

S1

m2m1

m1

Figure 5.6: A schedule

ξ1 : (m1,m1,⊥,⊥)
0

−→ (m1,m1, 0,⊥)
4

−→ (m1,m1, 4,⊥)
0

−→ (m2,m1,⊥,⊥)
0

−→ (m2,m1, 0,⊥)
0

−→ (m2,m1, 0, 0)
3

−→ (m2,m1, 3, 3)
0

−→ (m2, f, 3,⊥)
2

−→ (m2, f, 5,⊥)
0

−→ (f, f,⊥,⊥)
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0 3 7 12J2

J1

m1

m1

S2

m2

Figure 5.7: Another schedule

ξ2 : (m1,m1,⊥,⊥)
0

−→ (m1,m1,⊥, 0)
3

−→ (m1,m1,⊥, 3)
0

−→ (m1, f,⊥,⊥)
0

−→ (m1, f, 0,⊥)
4

−→ (m1, f, 4,⊥)
0

−→ (m2, f,⊥,⊥)
0

−→ (m2, f, 0,⊥)
5

−→ (m2, f, 5,⊥)
0

−→ (f, f,⊥,⊥)

Corollary 2 (Job-Shop Scheduling and Timed Automata)
The optimal job-shop scheduling problem can be reduced to the problem of finding the shortest path in

a timed automaton.

5.4 Shortest Path using Timed Automata Reachability

In this section we show how the symbolic forward reachability algorithm is used to find a shortest path
and hence to solve the optimal job-shop scheduling problem.

Let A′ be the extended timed automaton obtained from A by adding an absolute clock t. The two
runs ξ′1 and ξ′2 are, respectively, the extended runs of ξ1 and ξ2.

ξ′1 : (m1,m1,⊥,⊥, 0)
0

−→ (m1,m1, 0,⊥, 0)
4

−→ (m1,m1, 4,⊥, 4)
0

−→ (m2,m1,⊥,⊥, 4)
0

−→ (m2,m1, 0,⊥, 4)
0

−→ (m2,m1, 0, 0, 4)
3

−→ (m2,m1, 3, 3, 7)
0

−→ (m2, f, 3,⊥, 7)
2

−→ (m2, f, 5,⊥, 9)
0

−→ (f, f,⊥,⊥, 9)

ξ′2 : (m1,m1,⊥,⊥, 0)
0

−→ (m1,m1,⊥, 0, 0)
3

−→ (m1,m1,⊥, 3, 3)
0

−→ (m1, f,⊥,⊥, 3)
0

−→ (m1, f, 0,⊥, 3)
4

−→ (m1, f, 4,⊥, 7)
0

−→ (m2, f,⊥,⊥, 7)
0

−→ (m2, f, 0,⊥, 7)
5

−→ (m2, f, 5,⊥, 12)
0

−→ (f, f,⊥,⊥, 12)

The value of the additional clock in each reachable configuration represents the time to reach the con-
figuration according to this run, and, in particular, its value in the final state represents the length of this
run, 9 in ξ1 and 12 in ξ2.

Consequently to find the shortest path in a timed automaton we need to compare the value of t in all
the reachable extended configurations of the form (f, v, t). This set of reachable configurations can be
found using the standard forward reachability algorithm for acyclic timed automata Algorithm 4.

Remark: A common method used in reachability algorithms for reducing the number of explored sym-
bolic states is the inclusion test. It is based on the fact that Z ⊆ Z ′ implies Succδ(q, Z) ⊆ Succδ(q, Z ′)
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for every δ ∈ ∆. Hence, whenever a new symbolic state (q, Z) is generated, it is compared with any
other (q, Z ′) in the waiting list: if Z ⊆ Z ′ then (q, Z) is not inserted and if Z ′ ⊆ Z, (q, Z ′) is removed
from the list. Allowing the job-shop automaton to stay indefinitely in any state makes the explored zones
“upward-closed” with respect to absolute time and increases significantly the effectiveness of the inclu-
sion test.

Figure 5.8 shows the simulation graph of the extended timed automaton of Figure 8.5. From every
final symbolic state (f, Z) in the simulation graph we can extract G(f, Z), the length of the minimal run
among all the runs that share the same qualitative path:

G(f, Z) = min{t : (v, t) ∈ Z}

Thus the length of the optimal schedule is

t∗ = min{G(f, Z) : (f, Z) is reachable in A′}.

To construct the optimal schedule it is sufficient to find a run of length t∗. Hence, running a reacha-
bility algorithm on A′ is guaranteed to find the minimal schedule.
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Figure 5.8: The simulation graph of the extended job-shop timed automaton of Figure 5.3

5.5 Laziness and Non-Laziness

In this section we show that only one point inside the zone of each symbolic state is sufficient for finding
the optimal schedule.
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5.5.1 Lazy Schedule

Definition 14 (Lazy Schedules)
Let S be a schedule, let i be a job and j a step with µi(j) = m. We say that S exhibits laziness at (i, j)
if there exists in S an interval [t, s(i, j)] where (i, j) is enabled. A schedule S is non-lazy if it exhibits no
laziness.

Laziness captures the phenomenon of useless waiting: a job whose step is enabled is waiting while
no other job profits from its waiting. We will prove that every schedule can be transformed into a non-
lazy one without increasing its length. Consider first the schedule S of Figure 5.9 exhibiting laziness at
(2, 1). By starting step (2, 1) earlier we obtain the schedule S ′ with two new occurrences of laziness at
(2, 2) and (3, 1). Those are removed yielding S ′′ with laziness at (3, 2) and after removing it we obtain
the non-lazy schedule Ŝ.

Claim 3 (Non-Lazy Optimal Schedules) Every lazy schedule S can be transformed into a non-lazy
schedule Ŝ with |Ŝ| ≤ |S|. Hence every job-shop specification admits an optimal non-lazy schedule.

Proof: Let S be a schedule, and let L(S) ⊆ J × K be the set of steps that are not preceded by laziness
in S, namely

L(S) = {(i, j) : ∀(i′, j′) � (i, j) there is no laziness in(i′, j′)}.

In Figure 5.9 these sets are at the left of the dashed lines. We pick a lazy step (i, j) s.t. s(i, j) ≤ s(i′, j′)
for all (i′, j′) /∈ L(S) and shift its start time backward until we obtain a new feasible schedule S ′ which
is not lazy at (i, j). The schedule S ′ verifies

L(S′) ⊇ L(S) ∪ (i, j)

and
|S′| ≤ |S|.

Applying this procedure successively we increase L(S) at each step and due to finiteness of the set of
steps, the laziness removal procedure terminates.
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Figure 5.9: Removing laziness from a schedule. The dashed line indicates the frontier between L(S) and
the rest of the steps

5.5.2 Immediate and Lazy Runs

Having shown that an optimal schedule can be found among the non-lazy ones we can modify our search
procedure to look only for runs of the automaton whose corresponding schedules are non-lazy. We first
define the weaker notion of immediate runs such that each non-lazy schedule corresponds to an immediate
run but not all immediate runs are non-lazy.

Definition 15 (Immediate Runs)
An immediate run is a run where all the transitions are taken as soon as they are enabled. A non-
immediate run contains a fragment

(q, v)
t

−→ (q, v + t)
0

−→ (q′, v′)
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where the transition taken at (q, v + t) is enabled already at (q, v + t′) for some t′ < t.

Clearly a derived schedule of a non-immediate run exhibits laziness.

Corollary 4 In order to find an optimal schedule it is sufficient to explore the (finite) set of immediate
runs.

Every qualitative path in a timed automaton may correspond to infinitely many runs. For example
the family of runs {ξ(r) : 0 ≤ r ≤ 2}

ξ(r) : (m1,m1,⊥,⊥)
0

−→ (m1,m1, 0,⊥)
4

−→ (m1,m1, 4,⊥)
0

−→ (m2,m1,⊥,⊥)
0

−→ (m2,m1, 0,⊥)
r

−→ (m2,m1, r,⊥)
0

−→ (m2,m1, r, 0)
3

−→ (m2,m1, r + 3, 3)
0

−→ (m2, f, r + 3,⊥)
2−r
−→ (m2, f, 5,⊥)

0
−→ (f, f,⊥,⊥)

Each ξ(r) corresponds to a schedule like S(r) of Figure 5.10. Whenever r > 0 the run is not
immediate and the schedule is lazy. Corollary 4 allows us to explore only ξ(0).

940
J2

J1
m2m1

m1

S(r)

7 + r4 + r

Figure 5.10:

Note that the derived schedule of an immediate run is not necessarily non-lazy. The feasible schedule
of Figures 5.11 derived from run ξ3 is a lazy schedule, while run ξ3 is an immediate run.

4 70 9 12J2

J1
m2m1

m1

S3

Figure 5.11:

ξ3 : (m1,m1,⊥,⊥)
0

−→ (m1,m1, 0,⊥)
4

−→ (m1,m1, 4,⊥)
0

−→ (m2,m1,⊥,⊥)
0

−→ (m2,m1, 0,⊥)
5

−→ (m2,m1, 5,⊥)
0

−→ (f,m1,⊥, 0)
0

−→ (f,m1,⊥, 0)
3

−→ (f,m1, 3,⊥)
0

−→ (f, f, 5,⊥)
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Definition 16 (Lazy Runs)
A lazy run in a job-shop timed automaton A is a run containing a fragment

(q, v) . . .
t

−→ . . . (q′, v′)
starti−→ (q′′, v′′)

s.t. the starti transition is enabled in all states (q, v) . . . (q′, v′).

The immediate run ξ3 is lazy due to the fragment (m2,m1, 0,⊥)
5

−→ (m2,m1, 5,⊥)
0

−→ (f,m1,⊥, 0)
0

−→
(f,m1,⊥, 0). The start transition for J2 is taken at (f,m1) while it was continuously enabled since
(m2,m1).

Claim 5 Let S∗ be the set of non-lazy schedules of a job shop specificationJ and let A be its automaton.
Let SI and SL be the sets of derived schedules for all the immediate and non-lazy runs of A, respectively,
then

S∗ = SL ⊆ SI .

Corollary 6 (Job-Shop Scheduling and Timed Automata) The optimal job-shop scheduling problem
can be reduced to the problem of finding the shortest non-lazy path in a timed automaton.

5.6 The Search Algorithm

Based on Corollary 11 we build a search algorithm that explores only the non-lazy runs. For more clarity
we start by showing how to generate immediate runs, then reduce even more the search space to obtain
the set of non-lazy runs.

Definition 17 (Domination point)
Let (q, Z) be a symbolic state in an extended timed automaton. We say that the reachable configuration
(q, v∗, t∗) is domination point of (q, Z) if

t∗ = G(q, Z) (earliest arrival time)

and for every i,
v∗i = max{vi : (v1, . . . , vi, . . . , vn, t∗) ∈ Z}.

This point is the one reachable via an immediate run. Restricting the search algorithm to these points
and their successor makes the algorithm much more efficient. Instead of working with symbolic state of
the form (q, Z) where Z is a zone represented by a DBM of size O(n2), and where computing succes-
sors is a non-trivial operation, we can work with a point representation of size O(n) where passage of
time is a simple vector addition.

We define the timed successor Succt(q, v, t) and the discrete successor Succδ(q, v, t) of every con-
figuration (q, v, t) as follows:

Let θ be the maximal amount of time that can elapse in a configuration (q, v, t) until an end transition
becomes enabled, i.e.

θ = min{(di − vi) : ci is active at q}.

The timed successor of a configuration is the result of letting time progress by θ and terminating all
that can terminate by that time:

Succt(q1, . . . , qn, v1, . . . , vn, t) = {(q′1, . . . , q
′
n, v′1, . . . , v

′
n, t + θ)}
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such that for every i

(q′i, v
′
i) =

{

(q′′i , v′′i ) if the transition (qi, vi + θ) → (q′′i , v′′i ) is enabled
(qi, vi + θ) otherwise.

The discrete successors are all the successors by immediate start transition:

Succδ(q, v, t) = {(q′, v′, t) s.t. (q, v, t)
starti−→ (q′, v′, t)}

The set of successors of each (q, v, t) is:

Succ(q, v, t) = Succt(q, v, t) ∪ Succδ(q, v, t)

Using the successor operator in a reachability algorithm for discrete graphs, we can compute all the
immediate runs in a timed automaton. Figure 5.12 shows the 5 immediate runs of the automaton of
Figure 8.5.
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Figure 5.12: The immediate runs of the timed automaton of Figure 8.5

To restrict the search further to non-lazy runs, we must eliminates all useless waiting. This can
be done as follows. If from a state (q, v) we choose to take the time successor (q, v + θ) while a starti
transition associated with a step (i, j) is enabled in (q, v), we mark component i as “freezed” in (q, v+θ)
and this marking is propagated to its successors and is removed only after the starti transition was
disabled and enabled again (some other job took and then released the machine in question). In every
configuration we restrict the set of successors only to transitions of non-freezed components. Moreover,
if the duration of step (i, j) is such that if started at (q, v) it will terminate before another conflicting
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transition is enabled, it must be taken immediately and not freezed (this is the case when it is the only
remaining step that needs the machine).

This successor computation is implemented using annotated configurations of the form (q, v, t, F )
where F is a set of freezed components, initialized to the empty set. The successors are computed as
follows:

Succt(q, v, t, F ) = (Succt(q, v, t), F ∪ F1 − F2)

where F1 is the set of components i s.t. a starti transition is enabled in (q, v, t) and F2 is the set of
components i s.t. the transition releases the machine for which i is waiting, and

Succδ(q, v, t, F ) = {(q′, v′, t, F ) : (q, v, t) → (q′, v′, t)}

where (q, v, t) → (q′, v′, t) is a starti transition s.t. i /∈ F.

If there is a transition enabled at (q, v) which will not block any other job

Succ(q, v, t, F ) = Succδ(q, v, t, F )

otherwise
Succ(q, v, t, F ) = Succδ(q, v, t, F ) ∪ Succt(q, v, t, F )

Applying these operators in a reachability algorithm, we obtain the set of non-lazy runs. Figure 5.14
shows the 4 non-lazy runs of the automaton of Figure 8.5.
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Figure 5.13: Non-lazy runs of the timed automaton of Figure 8.5
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5.7 Reducing the Search Space

Although using points instead of zones reduces significantly the computational cost, the inherent combi-
natorial explosion remains. In this section we describe further methods to reduce the search spaces, some
of which preserve the optimal solutions and some provide sub-optimal ones.

5.7.1 Domination Test

The configurations (m2, f, 3,⊥, 7) and (m2, f, 0,⊥, 7) in Figure 5.14 share the same state (m1, f) but
have different clock values. Both are reached at the same time t = 7 but in (m2, f, 0,⊥, 7) the value
of c1 is smaller, and hence all the run continuing from it cannot reach f before those continuing from
(m2, f, 3,⊥, 7). Hence the successors of (m2, f, 0,⊥, 7) can be discarded without missing the optimum.

Definition 18 (Domination)
Let (q, v, t) and (q, v′, t′) be two reachable configurations. We say that (q, v, t) dominates (q, v′, t′) if
t′ ≤ t and v ≥ v′.

Clearly if (q, v, t) dominates (q, v′, t′) then for every complete run going through (q, v′, t′) there is a
run which traverses (q, v, t) and which is not longer.
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Figure 5.14:

5.7.2 Best-first Search

In order to apply best-first search and explore the “most promising” directions first, we need an evaluation
function over configurations. For every configuration (q, v) of a job automaton g(q, v) is a lower-bound
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on the time remaining until f is reached from the configuration (q, v):

g(f, v) = 0

g(µ(j), v) =
∑k

l=j d(l)

g(µ(j), v) = g(µ(j), v) − min{v, d(j)}

The evaluation of global configurations is defined as:

E((q1, . . . , qn), (v1, . . . , vn, t)) = t + max{gi(qi, vi)}
n
i=1

Note that max{gi} gives the most optimistic estimation of the remaining time, assuming that no job will
have to wait. The best-first search algorithm is guaranteed to produce the optimal path because it stops
the exploration only when it is clear that the unexplored states cannot lead to schedules better than those
found so far.

Algorithm 6 (Best-first Forward Reachability)
Waiting:={Succ(s, v, t)};
Best:=∞
(q, v, t):= first in Waiting;
while Best > E(q, v, t)
do

For every (q′, v, t) ∈ Succ(q, v, t);
if q′ = f then
Best:=min{Best,E(q′, v, t)}

else
Insert (q′, v′, t) into Waiting;

Remove (q, v, t) from Waiting
(q, v, t):= first in Waiting;

end

5.7.3 Sub-Optimal Solutions

The best-first algorithm improves performance but the combinatorial explosion remains. To avoid it
we use an algorithm which is a mixture of breadth-first and best-first search with a fixed number w of
explored nodes at any level of the automaton. For every level we take the w best (according to E) states,
generate their successors but explore only the best w among them, and so on. The number w is the main
parameter of this technique, and although the number of explored states grows monotonically with w,
the quality of the solution does not — sometimes the solution found with a smaller w is better than the
one found with a larger w.

5.8 Experimental Results

We have implemented a prototype that models the job shop problem in a timed automaton, and generates
all the non-lazy runs. Applying the domination test and using a best first search we could solve prob-
lems with 6 jobs and 6 machines in few seconds. Beyond that we had to employ the sub-optimal heuristic.

We tested the heuristic algorithm on 10 problems among the most notorious job-shop scheduling
problems. Note that these are pathological problems with a large variability in step durations, con-
structed to demonstrate the hardness of job-shop scheduling. For each of these problems we have applied
our algorithm for different choices of w. In Table 6.4 we compare our best results on these problems with
the best results reported in Table 15 of the recent survey [JM99], where the results of the 18 best-known
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methods were compared. As one can see our results are typically 5 − 10% from the optimum.

problem heuristic Opt
name #j #m time length deviation length
FT10 10 10 3 969 4.09 % 930
LA02 10 5 1 655 0.00 % 655
LA19 10 10 15 869 3.21 % 842
LA21 10 15 98 1091 4.03 % 1046
LA24 10 15 103 973 3.95 % 936
LA25 10 15 148 1030 5.42 % 977
LA27 10 20 300 1319 6.80 % 1235
LA29 10 20 149 1259 9.29 % 1152
LA36 15 15 188 1346 6.15 % 1268
LA37 15 15 214 1478 5.80 % 1397

Table 5.1: The results for 10 hard problems using the bounded width heuristic. The first three columns
give the problem name, no. of jobs and no. of machines (and steps). Our results (time in seconds, the
length of the best schedule found and its deviation from the optimum) appear next,

To appreciate the contribution of the fact that we use points instead of zones due to non-laziness,
we can look at he performance of zone-based versions of our algorithms et Table 5.2, where the largest
problem that can be solved exactly is of size 6 jobs and 4 machines.

Problem size Inclusion Domination Best-first
#j #ds #tree #s time #s time #s time
2 77 632 212 1 100 1 38 1
3 629 67298 5469 2 1143 1 384 1
4 4929 279146 159994 126 11383 2 1561 1
5 37225 m.o. m.o. m.o. 116975 88 2810 1
6 272125 m.o. m.o. m.o. 1105981 4791 32423 6

Table 5.2: The results for n jobs with 4 tasks. Columns #j, #ds and #tree show, respectively, the number
of jobs, the number of discrete states in the automaton and the number of different reachable symbolic
states (which is close to the number of nodes in the unfolding of the automaton into a tree). The rest of the
table shows the performance, in terms of the number of explored symbolic states and time (in seconds),
of algorithms employing, progressively, the inclusion test, the domination test, and the best-first search
(m.o. indicates memory overflow).



Chapter 6

Preemptive Job Shop Scheduling

In this chapter we extend the results on deterministic Job-shop scheduling problem to preemptible jobs,
i.e. jobs that can use a machine for some time, stop for a while and then resume from where they stopped.
Such situations are common, for example, when the machines are computers.

As an example let M = {m1,m2,m3} be a set of resources and J = {J1, J2} a job specification
over a M where

J1 = (m1, 3), (m2, 2), (m3, 4) and J2 = (m2, 5).

Two feasible schedules S1 and S2 appear in Figure 6.1. In the schedule S1 the job J2 is preempted at
time t = 3 on the machine m2 to give the machine to the job J1. After J1 has terminated job J2 restarts
on m2. The length of S1 is 9 and it is the optimal schedule.
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Figure 6.1: Two schedule S1 and S2 visualized as the machine allocation function α and the task progress
function β.

The definition of a job-shop specification (Definition 1) and of feasible schedule (Definition 2) re-
mains the same except the relaxation of the non preemption constraint in Definition 2. this means that
for every step (i, j) the set {t, (i, j, t) ∈ S} is a union of intervals such that the sum of their lengths is
equal to the step duration.

53
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6.1 Modeling with Stopwatch Automata

The timed automaton model proposed in the Chapter 1, is not valid any more because it can not express
preemption of a step. A job automaton can leave an execution state only if the step has terminate.

To model preemption we need an additional state “preempt” such that the automaton can move back
and forth between “execute” and “preempt” as in Figure 6.2.

Since only the time spent in “execute” counts, we cannot use the value of c1 as is in the transition
guard to termination. One solution is to add an additional clock c2, measuring the preemption time and
updating c1 to be c1 − c2 each time execution resumes. This operation is beyond the reset operation
allowed in timed automata.

preempt

execut

start

terminate
c1 := 0

c2 := 0c1 := c1 − c2

c2 := 0
c1 := 0

Figure 6.2:

An alternative and more natural solution is to extend the model of timed automata to have clocks
which can be freezed at certain states, in other words clocks with derivative zero. Such automata were
called Integration Graphs in [KPSY99] where they were studied as models for the Duration Calculus
[CHR91]. The results in [KPSY99] included the undecidability of the reachability problem for these
automata, and a decision procedure for some special sub-classes based on reducing the problem into
linear constraint satisfaction. Similar automata were also investigated in [MV94] and in [CL00] where
an implementation of an approximate verification algorithm was described.

Definition 19 (Stopwatch Automata)
A stopwatch automaton is a tuple A = (Q,C, s, f, u,∆) where Q is a finite set of states, C is a finite
set of n clocks, u : Q → {0, 1}n assigns a constant slope to every state and ∆ is a transition relation
consisting of elements of the form (q, φ, ρ, q′) where q and q′ are states, ρ ⊆ C and φ (the transition
guard) is a boolean combination of formulae of the form (c ∈ I) for some clock c and some integer-
bounded interval I . States s and f are the initial and final states, respectively.

6.1.1 Modeling Jobs

We construct for every job J = (k, µ, d) a stopwatch automaton with one clock such that for every step
j with µ(j) = m there are three states: a waiting state m, an active state m and a state m̃ indicating that
the job is preempted after having started. Upon entering m the clock is reset to zero, and measures the
time spent in m. Preemption and resumption are modeled by transitions to and from state m̃ in which
the clock does not progress. When the clock value reaches d(j) the automaton can leave m to the next
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waiting state. Let M = {m : m ∈ M}, M̃ = {m̃ : m ∈ M} and let µ : K → M and µ̃ : K → M̃ be
auxiliary functions such that µ(j) = m and µ̃(j) = m̃ whenever µ(j) = m.

Definition 20 (Stopwatch Automaton for a Job)
Let J = (k, µ, d) be a job. Its associated automaton is A = (Q, {c}, u,∆, s, f) with Q = P ∪ P ∪
P̃ ∪ {f} where P = {µ(1), . . . µ(k)},P = {µ(1), . . . , µ(n)} and P̃ = {µ̃(1), . . . , µ̃(n)}. The slope is
defined as uq = 1 when q ∈ P and uq = 0 otherwise. The transition relation ∆ consists of the following
types of tuples

type q φ ρ q′

1) begin µ(j) true {c} µ(j) j = 1..k
2) pause µ(j) true ∅ µ̃(j) j = 1..k
3) resume µ̃(j) true ∅ µ(j) j = 1..k
4) end µ(j) c = d(j) ∅ µ(j + 1) j = 1..k − 1

end µ(k) c = d(k) ∅ f

The initial state is µ(1).

c = d(k)

c = d(j)

c := 0

c := 0

µ(1)

µ(1)

µ(j)

µ(j)

µ(k)µ̃(k)

µ̃(j)

µ̃(1) ċ = 1

ċ = 1

ċ = 1

ċ = 0

ċ = 0

ċ = 0

f

µ(j + 1)

Figure 6.3: A generic stopwatch automaton for a job

The stopwatch automata corresponding to the two jobs of the Example are depicted in Figure 6.4.
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c1 := 0
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Figure 6.4: The automata corresponding to the jobs J1 = (m1, 3), (m2, 2), (m3, 4) and J2 = (m2, 5).

6.1.2 The Global Model

To obtain the stopwatch automaton modeling the preemptive job shop problem we need to compose the
automata of the jobs, using the mutual exclusion composition described in the Chapter 1.

Part of the automaton obtained by composing the two automata of Figure 6.4 appears in Figure 6.5.
We have omitted the preemption/resumption transitions for m1 and m3 as well as some other non-
interesting paths. Unlike the non-preemptive job-shop automaton, this automaton is cyclic, due to the
possibility to preempt and resume a step at any moment.
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Figure 6.5: Part of the global stopwatch automaton for the two jobs.

6.1.3 Runs and Schedules

The correspondence between runs and feasible schedules is similar to the non-preemptive problem.

Claim 7 Let A be the stopwatch automaton of a preemptive job shop specification J . Every complete
run of A corresponds to a feasible schedule with a length equal to the metric length of the run.

The two schedules of Figure 6.1 correspond to the following two runs:



CHAPTER 6. PREEMPTIVE JOB SHOP SCHEDULING 58

ξ1 :

(m1,m2,⊥,⊥)
0

−→ (m1,m2, 0,⊥)
0

−→ (m1,m2, 0, 0)
3

−→ (m1,m2, 3, 3)
0

−→

(m2,m2,⊥, 3)
0

−→ (m2, m̃2,⊥, 3)
0

−→ (m2, m̃2, 0, 3)
2

−→ (m2, m̃2, 2, 3)
0

−→

(m3, m̃2,⊥, 3)
0

−→ (m3,m2,⊥, 3)
0

−→ (m3,m2, 0, 3)
2

−→ (m3,m2, 2, 5)
0

−→

(m3, f, 2,⊥)
2

−→ (m3, f, 4,⊥)
0

−→ (f, f,⊥,⊥)

ξ2 :

(m1,m2,⊥,⊥)
0

−→ (m1,m2, 0,⊥)
0

−→ (m1,m2, 0, 0)
3

−→ (m1,m2, 3, 3)
0

−→

(m2,m2,⊥, 3)
2

−→ (m2,m2,⊥, 5)
0

−→ (m2, f,⊥,⊥)
0

−→ (m2, f, 0,⊥)
2

−→

(m2, f, 2,⊥)
0

−→ (m3, f,⊥,⊥)
0

−→ (m3, f, 0,⊥)
4

−→ (m3, f, 4,⊥)
0

−→
(f, f,⊥,⊥)

Corollary 8
The optimal preemptive job-shop scheduling problem can be reduced to the problem of finding the short-
est path in a stopwatch automaton.

While trying to find the shortest path in this automaton we encounter two problems:

1. General reachability problems for stopwatch automata are known to be undecidable [C92, KPSY99].

2. The global stopwatch automaton is cyclic and thus have an infinite number of qualitative runs.

However, we will show, using a well-known result concerning optimal preemptive schedules, that
these problems can be overcome.

6.2 Efficient Schedules

Definition 21 (Conflicts and Priorities)
Let S be a feasible schedule. let T i

j be the set of time instants where job i ∈ J is executing its jth step
and E i

j = [s(i, j − 1) + di(j − 1), s(i, j) + di(j)] i.e. the time interval between the enabling of the step
and its termination. We say that job i is in conflict with job i′ on machine m in S (denoted by i ∦m i′)
when there are two respective steps j and j ′ such that µi(j) = µi′(j′) = m and E i

j ∩ E i′

j′ 6= ∅. We say
that i has priority in S on m over a conflicting job i′ (denoted by i ≺m i′) if it finishes using m before i′

does, i.e. s(i, j) + di(j) < s(i′, j′) + di′(j′).

Definition 22 (Efficient Schedules)
A schedule S is efficient if for every job i and a step j such that µi(j) = m, job i uses m during all the
time interval E i

j except for times when another job i′ such that i′ ≺m i uses it.

In other words, efficiency means that every step (i, j) uses the machine during all E i
j except for times

when the machine is used by a step which terminates earlier than (i, j).
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Figure 6.6: Three inefficient schedule S3, S4 and S5. The interval of inefficiency are indicated by the
dashed lines

The schedules of Figure 6.6 are three feasible schedules of the example. We will see why these three
schedules are all inefficient schedules. According to Definition 21 we can deduce for each problem the
priority relation between the jobs J1 and J2 on machine m2 and the time intervals E1

2 and E2
1 .

• S3 : J1 ≺m2 J2, E1
2 = [3, 5], E2

1 = (0, 10]

• S4 : J1 ≺m2 J2, E1
2 = [3, 6], E2

1 = (0, 7]

• S5 : J2 ≺m2 J1, E1
2 = [3, 7], E2

1 = (0, 6]

In schedule S3 job J2 can use machine m2 during the time interval [0, 10] while it starts at t = 5 and
no other job uses the machine in [0, 3].

In schedule S4 job J1 can use machine m2 during the time interval [3, 6] while in [3, 4], job J2 oc-
cupies the machine while J1 ≺m2 J2.



CHAPTER 6. PREEMPTIVE JOB SHOP SCHEDULING 60

In schedule S5 job J2 can use machine m2 during the time interval [0, 6] while in [3, 4], job J1 oc-
cupies the machine while J2 ≺m2 J1.

We will show that any problem admits an optimal schedule that corresponds to fixed priority relation
among jobs on machine such that:

• A step of a job executes as soon as it is enabled except for times when it is in conflict with a higher
priority job.

• Preemption occurs only when a step which has higher priority than an executing step becomes
enabled. Hence the number of preemptions is finite.

Theorem 9 (Efficiency is Good) Every preemptive job-shop specification admits an efficient optimal
schedule.

Proof: The proof is by showing that every inefficient schedule S can be transformed into an efficient
schedule S′ with |S′| ≤ |S|. Let I be the first interval when inefficiency occurs for job J i and machine
m. We modify the schedule by shifting some of the later use of m by J i into I . If m was occupied during
I by another job J i′ such that J i ≺m J i′ , we give it the time slot liberated by J i. The termination of the
step by J i′ is not delayed by this modification because it happens anyway after J i terminates its step.

As an illustration consider the schedules appearing in Figure 6.7 with J 1 ≺m J2 ≺m J3 and where
J2 is enabled in the interval [t1, t2]. The first inefficiency in S1 is eliminated in S2 by letting J2 use
the free time slot before the arrival of J1. The second inefficiency occurs when J3 uses the machine
while J2 is waiting, and it is removed in S3. The last inefficiency where J3 is waiting while m is idle is
removed in S4.

J3

S2

S3

S4

S1

J2 J3

t1 t2

J1 J3 J2

J2

J2

J2 J1

J1

J1 J3

J2

J2 J3

J3 J3

Figure 6.7: Removal of inefficiency, J1 ≺ J2 ≺ J3.

This result reduces the set of candidates for optimality from the non-countable set of feasible sched-
ules to the finite set of efficient schedules, each of which corresponds to a fixed priority relation. There
are potentially kn! priority relations but only a fraction of those needs to be considered because when i
and i′ are never in conflict concerning m, the priority i ≺m i′ has no influence on the schedule.
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6.3 Searching for Efficient Runs

In order to find shortest paths in stopwatch automata we will take advantage of Theorem 9 to restrict the
search to runs whose corresponding schedules are efficient.

Definition 23 (Efficient Runs) A run of a stopwatch automaton is efficient if all discrete transitions are
taken as soon as they are enabled, and all conflicts are resolved according to a fixed priority relation.

An efficient run allow us :

1. To restrict the search only to immediate runs.

2. To restrict the number of qualitative paths to be finite by avoiding loops and other useless preemp-
tions and resumption.

To be more precise, let J1 and J2 be two jobs which are in conflict concerning machine m and let J 1 be
the one with the highest priority on m. Table 6.3 depicts all the potential conflict situations and how they
are resolved.

state action new state remark
1 (m,m) start 1 (m,m)
2 (m, m̃) start 1 (m, m̃)
3 (m,m) preempt 2 (m, m̃)
4 (m̃,m) resume 1 (m,m)
5 (m̃, m̃) resume 1 (m, m̃)
6 (m̃,m) (impossible)
7 (m,m) (continue) (m,m)
8 (m, m̃) (continue) (m, m̃)
9 (m,m) (impossible)

Table 6.1: Resolving conflicts when J1 �m J2.

In situations 1, 2, 4, and 5 J1 is waiting for the machine which is not occupied and so it takes it. Such
situations could have been reached, for example, by a third job of higher priority releasing m or by J 1

finishing its prior step and entering m. Situation 3 is similar but with J 2 occupying m and hence has to
be preempted to reach situation 2. Situation 6, where J1 is preempted and J1 is executing, contradicts
the priority and is not reachable. In situations 7 and 8, J 1 is executing and no preemption action is taken.
Finally situation 9 violates mutual exclusion.

Claim 10 Let A be the stopwatch automaton of a preemptive job shop specification J . Every complete
efficient run of A corresponds to a feasible efficient schedule with a length equal to the metric length of
the run.

Corollary 11 (Preemptive Scheduling and Stopwatch Automata)
The optimal preemptive job-shop scheduling problem can be reduced to the problem of finding the short-
est efficient run in a stopwatch automaton.

The restriction to efficient runs makes the shortest path problem decidable: we can enumerate all the
priority relation, and for each of them check the length of the induced efficient run.
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As in the non-preemptive case, the search algorithm that we employ on the unfolding of the automa-
ton generates priorities on the fly whenever two jobs come into conflict. In the example of Figure 6.5 the
first conflict is encountered in state (m2,m2) and from there we may choose between two options, either
to continue with time passage or preempt J2. In the first case we fix the priority J2 ≺m2 J1 and let
J2 finish without considering preemption anymore while in the second case the priority is J 1 ≺m2 J2,
we move to (m2, m̃2) and the transition back to (m2,m2) becomes forbidden. From there we can only
continue to (m2, m̃2) and let the time pass until J1 releases m2.

To formalize this we define a valid successors relation over tuples of the form (q, v, t,Π) where
(q, v, t) is a global configuration of the extended automaton and Π is a (partial) priority relation.

When there are no start transitions enabled in (q, v, t) we have

Succ(q, v, t,Π) = {(Succt(q, v, t),Π)}

where Succt(q, v, t) is the timed successor as defined for the non-preemptive case.

When there are start transitions enabled in (q, v, t) we have

Succ(q, x,Π, θ) = L1 ∪ L2 ∪ L3

where
L1 = {(q′, x′,Π, θ) : (q, x)

δ
−→ (q′, x′)}

for every immediate transition δ such that δ is non-conflicting or belongs to the job whose priority on
the respective machine is higher than those of all competing jobs. In addition, if there is a conflict on m
involving a new job i whose priority compared to job i∗, having the highest priority so far, has not yet
been determined, we have

L2 = {(q, x,Π ∪ {i∗ ≺ i}, θ)}

and
L3 = {(q, x,Π ∪

⋃

{i′:i′∦mi}

{i ≺ i′}, θ)}.

The successor in L2 represent the choice to prefer i∗ over i (the priority of i relative to other waiting or
preempted jobs will be determined only after i∗ terminates), while L3 represents the choice of preferring
i over all other jobs.

The search tree generated by our algorithm for the example appears in Figure 6.8.
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Figure 6.8: The efficient runs of the timed automaton of Figure 6.5

6.4 Experimental Results

With a best-first algorithm we were able the find optimal schedules of system with up to 8 jobs and 4
machines (128 discrete states and 8 clocks). We test the same heuristic proposed in the case of determin-
istic job shop problem on 16 difficult job-shop scheduling problems, for each of these problems we have
applied our algorithms for different choices of w (it takes, on the average few minutes for each problem).
In Table 6.4 we compare our best results on these problems to the most recent results reported by Le Pape
and Baptiste [PB96, PB97] where the problem was solved using state-of-the-art constraint satisfaction
techniques.
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problem non preempt preemptive
name #j #m optimum optimum [PB96, PB97] stopwatch deviation
LA02 10 5 655 655 655 655 0.00 %
FT10 10 10 930 900 900 911 1.21 %
ABZ5 10 10 1234 1203 1206 1250 3.76 %
ABZ6 10 10 943 924 924 936 1.28 %
ORB1 10 10 1059 1035 1035 1093 5.31 %
ORB2 10 10 888 864 864 884 2.26 %
ORB3 10 10 1005 973 994 1013 3.95 %
ORB4 10 10 1005 980 980 1004 2.39 %
ORB5 10 10 887 849 849 887 4.28 %
LA19 10 10 842 812 812 843 3.68 %
LA20 10 15 902 871 871 904 3.65 %
LA21 10 15 1046 1033 1033 1086 4.88 %
LA24 10 15 936 909 915 972 6.48 %
LA27 10 20 1235 1235 1235 1312 5.87 %
LA37 15 15 1397 1397 1397 1466 4.71 %
LA39 15 15 1233 1221 1221 1283 4.83 %

Table 6.2: The results of our implementation on the benchmarks. Columns #j and #m indicated the
number of jobs and machines, followed by the best known results for non-preemptive scheduling, the
known optimum for the preemptive case, the results of Le Pape and Baptiste, followed by our results and
their deviation from the optimum.



Chapter 7

Task Graph Scheduling

In this chapter we apply the methodology suggested for the job shop problem to a different problem, task
graph scheduling on parallel identical machines. In this problem we have a fixed number of parallel and
identical machines on which we have to execute a set of tasks linked by a set of precedence constraints
represented by a task graph as in Figure 7.1. A task can be executed only if all its predecessors in this
graph have completed. The job shop problem is a particular case where this graph is a set of linear chains,
each chain representing the precedence relation in one job.

2

1662

16 2

8

P2 P1

P6

P7 P5

P4P3

Figure 7.1: A task graph. The numbers represent task durations

Contrary to the job shop problem, a task can be executed on any idle machine and every pair of tasks
can be a-priori in conflict two tasks can thus be in conflict on any machine. The significant parameter in
this problem is not any more the identity of the occupied machines but the number of occupied machines.

7.1 The Problem

A task graph is a triple G = (P,≺, d) such thatP = {P1, . . . , Pm} is a set of m tasks, ≺ is a partial-order
relation on P and d : P → N is a function which assigns a duration to each task. We denote by Π(P )
the set of immediate predecessors of P . Given a set {M1, . . . ,Mn} of n parallel identical machines, we
need to find the schedule that minimizes the total execution time and respects the following conditions:

65
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• A task can be executed only if all its predecessors have completed.

• Each machine can process at most one task at a time.

• Tasks cannot be preempted.

If we have as many machines as we want, the optimal schedule is obtained by starting every task as
soon as its predecessors terminate. In that case the length of the optimal schedule is the length of the
maximal path from a minimal to a maximal element of (P,≺. The schedule of Figure 7.2 is an optimal
schedule for the task graph of Figure 7.1 when the number of machines is unlimited. Notice that 3 ma-
chines are sufficient to construct this schedule, because no more than 3 tasks are enabled simultaneously,
see Figure 7.3.

0 2 18 20 268 16

P1

P3

P2

P4

P5

P6

P7

Figure 7.2: An optimal schedule of the task graph of Figure 7.1 when the number of machine is unlimited.

0 2 18 20 268 16

P1
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M2

M3

P3

P6P7

P5P4

P2

Figure 7.3: An optimal schedule of the task graph of Figure 7.1 using 3 machines.

On the other hand, if we have only 2 machines the number of enabled tasks may exceed the number
of machines. We can see in schedules S1 and S2 of Figure 7.4 that at t = 2, P2 is already occupying M1

where both P3 and P4 become enabled. In S1 we give the remaining machine to P3, and in S2 we give it
to P4.
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Figure 7.4: Three feasible schedules of the task graph of Figure 7.1 on 2 machines.

Unlike the case of infinitely many machine and similarly to the job-shop problem, an optimal sched-
ule may be obtained by not executing a task as soon as it is enabled. For example, schedule S3 achieves
the optimum while not starting task P2 as soon as possible.

7.2 Modeling with Timed Automata

Our goal is to translate this problem into a timed automaton such that every run corresponds to a feasible
schedule and the shortest run gives the optimal schedule. For every task P we build a 3-state automaton
with one clock c and a set of states Q = {p, p, p} where p is the waiting state before the task starts, p
is the active state where the task executes and p is a final state indicating that the task has terminated.
The transition from p to p resets the clock and can be taken only if all the tasks in Π(P ) are in their final
states. The transition from p to p is taken when c = d(p). The automata for the task graph of Figure 7.1
appear in Figure 7.5.

In order to model task graph as composition of timed automata we need to modify a bit the definition
of the transition relation ∆ to include tuples of the form (q, φ, ρ, q ′) where φ is either, as before, a
combination of clock inequalities, or a formula specifying states of other automata.

Definition 24 (Timed Automaton for a Task)
Let G = (P,≺, d) be a task graph. For every task P ∈ P its associated timed automaton is A =
(Q, {c},∆, s, f) with Q = {p, p, p} where the initial state is p and the final state is p. The transition
relation ∆ consists of the two transitions:

(p,
∧

P∈Π(P )

p′, {c}, p)
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and
(p, c = d(p), ∅, p)
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Figure 7.5: The automata for the task graph of Figure 7.1

As for the job shop problem, the global automaton representing all the feasible schedules can be
obtained as a composition of the individual task automata, a composition that takes care that the number
of tasks active in any global state does not exceed the number of machines. Although in terms of the
number of reachable global states this automaton is as good as we can get, it has some features which
make its analysis impractical and which can be improved. The global states are m-tuples where m can
be very large and the number of clocks is m as well. In reality, however, even in the presence of infinitely
many machines, the number of tasks that can be active simultaneously is bounded by the width of the
task graph, the maximal number of elements incomparable with respect to ≺.

Definition 25 (Chain) A chain in a partially-ordered set (P,≺) is a subset P ′ of P such that for every
P,P ′ ∈ P ′ either P ≺ P ′ or P ′ ≺ P .

Definition 26 (Chain Cover) A chain covering of a partially-ordered set (P,≺) is a set of chains H =
{H1, . . .Hk} satisfying

1. Each Hi is a linearly ordered subset of P .

2. Hi ∩ Hj = ∅ for every i 6= j.

3.
⋃

i≤k Hi = P

An example of a chain cover for our task graph appears in Figure 7.6. The structure of a chain is
similar to that of a job except for the fact that tasks in one chain might depend also on the termination of
tasks in other chains.

The external predecessors of a task P ∈ Hi are

Π′(P ) = Π(P ) ∩ (P − Hi).
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The start transition from p′ to p is then enabled if for every P ′ ∈ Π(P ) ∪ Hj , the automaton for P ′ is in
a state beyond p′. We denote this condition by:

∧

P ′∈Π′(P )

> p′.

From here we can apply the methodology developed in Chapter 5, built an automaton for every chain
(Figure 7.7, compose the chain automata and apply the same search algorithms.

It is worth mentioning that chain covers are related to the width of a partial order via Dilworth’s
theorem [D50].

Theorem 12 (Dilworth) The width of a partial order is equal to the minimal number of chains needed
to cover it.

Although the computation of the width and its associated cover is polynomial, we do not compute it
exactly but use a fast and simple algorithm to approximate it.

P2 P1

P6

P7 P5

P4P3

Figure 7.6: A chain covering of the task graph of Figure 7.1
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Figure 7.7: The automata for the chain cover of Figure 7.6

The timed automaton of Figure 7.8 represents a part of the timed automaton obtained by composing
the automata of Figure 7.6 when there are 2 machines. This automaton has only 3 clocks (the number
of chains in the cover). In the initial state, where tasks P2, P1 and P4 are waiting, there are only two
possible successors, to start P2 (state (p2 p1 p4)) or to start P1 (state (p2 p1 p4)). The transition to the
state (p2 p1 p4) is disabled because task P1 has not terminated. No start transition can be taken from
(p2, p3, p4) because all the machines are occupied in this state.
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Figure 7.8: The timed automaton obtained by composing the automata of Figure 7.7 for the case of 2
machines. The two runs corresponding to the schedules S2 and S3 are indicated by the dashed and dotted
lines, respectively.
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7.3 Adding Deadlines and Release Times

Our model can be extended to include two additional feature that are often present in task graph schedul-
ing problems ,deadlines and release times. For every task Pj a deadline λ(j) indicates that the task must
imperatively terminate before time t = λ(j). The release time r(j) indicates that the task can not be
executed before time t = r(j).

A feasible schedule S must respect thus two new constraints:

• ∀Pj ∈ P s(Pj) + d(j) ≤ λ(j).

• ∀Pj ∈ P s(Pj) ≥ r(j).

These features can be easily integrated into the model by making reference to the additional clock t
measuring absolute time, as can be seen in Figure 7.9. This way a complete run corresponds to a feasible
schedule respecting the additional constraints (a run fragment violating a deadline cannot be completed).
The results concerning non-lazy schedules hold in this setting as well. It is worth mentioning that these
results do not hold if we add relative deadline constraints of the form s(P ) − s(P ′) ≤ λ.

p

p

p

t ≥ r ∧

c = d ∧ t ≤ λ

∧

P ′∈Π(P ) > p′/c := 0

Figure 7.9: An automaton for a task with release time and deadline.

7.4 Experimental Results

To test our approach we have taken several benchmark problems from [YI99] having up to few thousands
of tasks. For each of them we have applied a simple algorithm for finding a chain cover, built the automata
and applied the heuristic sub-optimal shortest path algorithm. The execution time of the algorithm was
around 1 minute for a problem and the results very close to the best known results as reported in Table 7.4.
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name #tasks #cchains # machines [YI99] TA
001 437 125 4 1178 1182
000 452 43 20 537 537
018 730 175 10 700 704
074 1007 66 12 891 894
021 1145 88 20 605 612
228 1187 293 8 1570 1574
071 1193 124 20 629 634
271 1348 127 12 1163 1164
237 1566 152 12 1340 1342
231 1664 101 16 t.o 1137
235 1782 218 16 t.o 1150
233 1980 207 19 1118 1121
294 2014 141 17 1257 1261
295 2168 965 18 1318 1322
292 2333 318 3 8009 8009
298 2399 303 10 2471 2473

Table 7.1: Computation of optimal schedules for benchmark problems. Our results appear in the TA
column



Chapter 8

Scheduling Under Uncertainty

All models presented in the previous chapters were deterministic in the sense that all tasks and their
durations are known in advance to the scheduler. The only non-determinism in the problem specification
comes from the scheduler’s decisions and once they are chosen, the system exhibits a unique run/schedule
with pre-determined start times for each task. In this chapter we extend our framework to treat the more
challenging problem of scheduling under uncertainty. Among the many ways to introduce uncertainty to
the model, we have chosen one of the most natural ones, namely uncertainty in the duration of tasks.

8.1 The Problem

We work on a variation of the job-shop scheduling problem where the duration of each task, instead of
being given, is only known to be inside an interval of the form [l, u]. It is the external environment that
chooses each time number d ∈ [l, u] for every task. An assignment of a number to each uncertainty
interval is called an instance1 of the environment.

As a running example consider two jobs

J1 = (m1, 10) ≺ (m3, [2, 4]) ≺ (m4, 5) J2 = (m2, [2, 8]) ≺ (m3, 7)

The uncertainties concern the durations of the first task of J 2 and the second task in J1. Hence an
instance is a pair d = (d1, d2) ∈ [2, 8] × [2, 4]. In this example the only resource under conflict is m3

and the order of its usage is the only decision the scheduler needs to take.
Each instance defines a deterministic scheduling problem, Figure 8.1 depicts optimal schedules for

instances (8, 4), (8, 2) and (4, 4). Of course, such an optimal schedule can only be generated by a
clairvoyant scheduler which knows the instance in advance.

1Or realization.

74
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J1

J2

20

J1

J2

19

d = (8, 2)

d = (4, 4)

m4

21

J1

J2

d = (8, 4)

m1 m3

m3m2

m1 m3 m4

m3m2

m1 m3 m4

m2 m3

Figure 8.1: Optimal schedules for three instances. For the first two the optimum is obtained with J 1 ≺ J2

on m3 while for the third — with J2 ≺ J1.

If worst-case Performance is all that we care about we can do the following: find an optimal schedule
for the worst instance, extract the start time for each task and stick to the schedule regardless of the
actual instance. The behavior of a static schedule based on instance (8, 4) is depicted in Figure 8.2, and
one can see that it is rather wasteful for other instances. Intuitively we will prefer a smarter adaptive
scheduler that reacts to the evolution of the environment and uses additional information revealed during
the execution of the schedule. This is the essential difference between a schedule (a plan, a feed-forward
controller) and a scheduling strategy (a reactive plan, a feedback controller). The latter is a mechanism
that observes the state of the system (which tasks have terminated, which are executing) and decides
accordingly what to do. In the former, since there is no uncertainty the scheduler knows exactly what
will be the state at every time instant, so the strategy can be reduced to a simple assignment of start times
to tasks.
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d = (8, 2)

d = (4, 4)

m4
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m3

m4

m2

m1

m2

m3 m4

m3

21

19

21

Figure 8.2: A static schedule based on the worst instance (8, 4). It gives the same length for all instances.

8.2 The Hole-Filling Strategy

One of the simplest ways to be adaptive is the following. First we choose a nominal instance d and
find a schedule S which is optimal for that instance. Rather than taking S “literally”, we extract from
it only the qualitative information, namely the order in which conflicting tasks utilize each resource. In
our example the optimal schedule for the worst instance (8, 4) is associated with the ordering J 1 ≺ J2

on m3. Then, during execution, we start every task as soon as its predecessors have terminated, provided
that the ordering is not violated. As Figure 8.3 shows, such a strategy is better for instances such as (8, 2).
It takes advantage on the earlier termination of the second task of J 1 and “shifts forward” the start times
of the two tasks that follow. On the other hand, instance (4, 4) cannot benefit from the early termination
of m2, because shifting m3 of J2 forward will violate the J1 ≺ J2 ordering on m3.
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m1 m4

m2 m3
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21

m1 m3 m4

m3m2
d = (4, 4)

Figure 8.3: The behavior of a hole filling strategy based on instance (8, 4).

Note that this “hole-filling” strategy is not restricted to the worst-case. One can use any nominal
instance and then shift tasks forward or backward as needed while maintaining the order. On the other
hand, a static schedule can only be based on the worst-case (a static schedule based on another nominal
instance may assume a resource available at some time point, while in reality it will be occupied).

While the hole filling strategy can be shown to be optimal for all those instances whose optimal
schedule has the same ordering as that of the nominal instance, it is not good for instances such as (4, 4),
where a more radical form of adaptiveness is required. If we look at the optimal schedules for (8, 4)
and (4, 4) in Figure 8.1, we see that the decision whether or not to execute the second task of J 2 is
done in both cases in the same qualitative state, namely m1 is executing and m2 has terminated. The
only difference is in the time elapsed in the execution of m1 at the decision point. Hence an adaptive
scheduler should base its decisions also on such quantitative information which, in the case of timed
automata models, is represented by clock values.

8.3 Adaptive Scheduling

Consider the following approach: initially we find an optimal schedule for some nominal instance. Dur-
ing the execution, whenever a task terminates (before or after the time we assumed it will) we reschedule
the “residual” problem, assuming nominal values for the tasks that have not yet terminated. In our ex-
ample, we first build an optimal schedule for (8, 4). If task m2 in J2 terminated after 4 time we have the
residual problem

J ′
1 = (m1, 6, !) ≺ (m3, 4) ≺ (m4, 5) J ′

2 = (m3, 7)

where the ! indicates that m1 must be scheduled immediately (we assume no preemption). For this
problem the optimal solution will be to start m3 of J2. Likewise if m2 terminates at 8 we have

J ′
1 = (m1, 2, !) ≺ (m3, 4) ≺ (m4, 5) J ′

2 = (m3, 7)

and the optimal schedule consists of waiting for the termination of m1 and then starting m3 of J1. The
property of the schedules obtained this way, is that at any moment in the execution they are optimal with
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respect to the nominal assumption concerning the future.2

This approach involves a lot of online computation, namely solving a new scheduling problem each
time a task terminates. The alternative approach that we propose in this chapter is based on expressing the
scheduling problem using timed automata and synthesizing a control strategy off-line. In this framework
[AMPS98, AM99, AGP99] a strategy is a function from states and clock valuations to controller actions
(in this case, starting tasks). After computing such a strategy and representing it properly, the execution
of the schedule may proceed while keeping track of the state of the corresponding automaton. Whenever
a task terminates, the optimal action is quickly computed from the strategy look-up table and the results
are identical to those obtained via online re-scheduling.

We will use notations similar to the partial-order precedence used in Chapter 7 although our examples
consist of linearly ordered jobs.

Definition 27 (Uncertain Job-Shop Specification)
An uncertain job-shop specification is J = (P,M,≺, µ,D,U) where P is a finite number of tasks, M
is a finite set of machines, ≺ is a partial-order precedence relation on tasks, µ : P → M assigns tasks
to machines, D : P → N × N assigns an integer-bounded interval to each task and U is a subset of
immediate tasks consisting of some ≺-minimal elements.

The set U is typically empty in the initial definition of the problem and we need it to define residual
problems. We use Dl and Du to denote the projection of D on the lower- and upper-bounds of the
interval, respectively. The set Π(p) = {p′ : p′ ≺ p} denotes all the predecessors of p, namely the tasks
that need to terminate before p starts. In the standard job-shop scheduling problem, ≺ decomposes into
a disjoint union of chains (linear orders) called jobs.

An instance of the environment is any function d : P → R+, such that d(p) ∈ D(p) for every p ∈ P .
The set of instances admits a natural partial-order relation: d ≤ d′ if d(p) ≤ d′(p) for every p ∈ P .
Any environment instance induces naturally a deterministic instance of J , denoted by J (d), which is a
classical job-shop scheduling problem. The worst-case is defined by the maximal instance d(p) = Du(p)
for every p.

Definition 28 (Schedule) Let J = (P,M,≺, µ,D,U) be an uncertain job-shop specification and let
J (d) be a deterministic instance. A feasible schedule for J (d) is a function s : P → R+, where s(p)
defines the start time of task p, satisfying:

1. Precedence: For every p, s(p) ≥ maxp′∈Π(p)(s(p
′) + d(p′)).

2. Mutual exclusion: For every p, p′ such that µ(p) = µ(p′)

[s(p), s(p) + d(p)] ∩ [s(p′), s(p′) + d(p′)] = ∅.

3. Immediacy: For every p ∈ U , s(p) = 0.

In order to be adaptive we need a scheduling strategy, i.e. a rule that may induce a different schedule
for every d. However, this definition is not simple because we need to restrict ourselves to causal strate-
gies, strategies that can base their decisions only on information available at the time they are made. In
our case, the value of d(p) is revealed only when p terminates.

Definition 29 (State of Schedule) A state of a schedule is S = (P f , P a, c, P e) such that P f is a
downward-closed subset of (P,≺) indicating the tasks that have terminated, P a is a set of active tasks
currently being executed, c : P a → R+ is a function such that c(p) indicates the time elapsed since the
activation of p and P e is the set of enabled tasks consisting of those whose predecessors are in P f . The
set of all possible states is denoted by S .

2A similar idea is used in model-predictive control where at each time actions at the current “real” state are re-optimized
while assuming some “nominal” prediction of the future.
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Definition 30 (Scheduling Strategy) A (state-based) scheduling strategy is a function σ : S → P∪{⊥}
such that for every S = (P f , P a, c, P e), σ(S) = p ∈ (P e ∪ {⊥}) and for every p′ ∈ P a, µ(p) 6= µ(p′).

In other words the strategy decides at each state whether to do nothing and let time pass (⊥) or to
choose an enabled task, not being in conflict with any active task, and start executing it. An operational
definition of the interaction between a strategy and an instance will be given later using timed automata,
but intuitively one can see that the evolution of the state of a schedule consists of two types of transitions:
uncontrolled transitions where an active task p terminates after d(p) time and moves from P a to P f ,
leading possibly to adding new tasks to P e, and a decision of the scheduler to start an enabled task. The
combination of a strategy and an instance yields a unique schedule s(d, σ) and we say that a state is
(d, σ)-reachable if it occurs in s(d, σ).

Next we formalize the notion of a residual problem, namely a specification of what remains to be
done in an intermediate state of the execution.

Definition 31 (Residual Problem) Let J = (P,M,≺, µ,D,U) and let S = (P f , P a, c, P e) be a state.
The residual problem starting from S is JS = (P −P f ,M,≺′, µ′,D′, P a) where ≺′ and µ′ are, respec-
tively, the restrictions of ≺ and µ, to P − P f and D′ is constructed from D by letting

D′(p) =

{

D(p) −. c(p) if p ∈ P a

D(p) otherwise

Definition 32 (d-Future-Optimal Strategies) Let d be an instance. A strategy σ is d-future optimal if
for every instance d and from every (σ, d)-reachable state S, it produces the optimal schedule for JS(d).

This is exactly the property of the online re-scheduling approach described informally in the previous
section.

8.4 Modeling with Timed Automata

For each task we construct a timed automaton AD that captures all instances of the task: this automaton
can stay in an active state p as long as c ≤ u and can leave p as soon as as c ≥ l. It represents the possible
behaviors of the task in isolation, i.e. ignoring precedence and resource constraints. The transition from
a waiting state p to p is triggered by a decision of the scheduler, while the time of the transition from p
to p depends on the instance. For a given instance d we have the automaton Ad of Figure 8.4-(b) where
this transition happens after exactly d time. The automaton AD,d of Figure 8.4-(c) will be used later for
computing d-future optimal strategies: it can terminate as soon as c ≥ d but can stay in p until c = u.
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/c := 0

c ≤ u
p

c ≥ d

AD,d

End

/c := 0

c ≤ d

c ≥ d

p

Ad

End

/c := 0

c ≤ u

c ≥ l

p

AD

End

p p p

ppp

StartStart Start

Figure 8.4: (a) The generic automaton AD for a task p such that D(p) = [l, u]. (b) The automaton Ad for
a deterministic instance d. (c) The automaton AD,d for computing d-future optimal strategies. Staying
conditions for p and p are true and omitted from the figure.

The timed automaton for the whole job-shop specification corresponding to the example appears in
Figure 8.5. The automaton can be viewed as specifying a game between the scheduler and the environ-
ment. The environment can decide whether or not to take an “end” transition and terminate an active
task and the scheduler can decide whether or not to take some enabled “start” transition. A strategy is
a function that maps any configuration of the automaton either into one of its transition successors or to
the waiting “action”. For example, at (m1,m3) there is a choice between moving to (m1,m3) by giving
m3 to J2 or waiting until J1 terminates m1 and letting the environment take the automaton to (m3,m3),
from where the conflict concerning m3 can be resolved in either of the two possible ways.

A strategy is d-future optimal if from every configuration reachable in AD,d it gives the shortest path
to the final state. In the next section we use a simplified form of the definitions and the algorithm of
[AM99] to find such strategies.
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Figure 8.5: The global automaton for the job-shop specification. The automata on the left and upper parts
of the figure are the partial compositions of the automata for the tasks of J 1 and J2, respectively.

8.5 Optimal Strategies for Timed Automata

Let J be a job-shop specification and let AD,d = (Q,C, s, f, I,∆) be the automaton corresponding
to an instance d, that is, “end” transitions are guarded by conditions of the form ci ≥ d(pi). Let h :
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Q×H → R+ be a function such that h(q, v) is the length of the minimal run from (q, v) to f , assuming
that all uncontrolled future transitions will be taken according to d. This function admits the following
recursive backward definition:

h(f, v) = 0

h(q, v) = min{t + h(q′, v′) : (q, v)
t

−→ (q, v + t1)
0

−→ (q′, v′)}.

In other words, h(q, v) is the minimum over all successors q ′ of q of the time it takes from (q, v) to satisfy
the transition guard to q′ plus the time to reach f from the resulting configuration (q ′, v′). In [AM99] it
has been shown that h ranges over a class of “nice” functions, closely related to zones, and that this class
is well-founded and hence the computation of h terminates even for automata with cycles, a fact that we
do not need here as h is computed in one sweep through all paths from the final to the initial state.

Let us illustrate the computation of h on our example. We write the function in the form h(q1, q2, c1, c2)
and use ⊥ to denote cases where the value of the corresponding clock is irrelevant (its task is not active).
We start with

h(f, f,⊥,⊥) = 0
h(m4, f, c1,⊥) = 5 −. c1

h(f,m3,⊥, c2) = 7 −. c2

This is because the time to reach (f, f) from (m4, f) is the time it takes to satisfy the guard c1 = 5, etc.
The value of h at (m4,m3) depends on the values of both clocks which determine what will terminate
before, m4 or m3 and whether the shorter path goes via (m4, f) or (f,m3).

h(m4,m3, c1, c2) = min

{

7 −. c2 + h(m4, f, c1 + (7 −. c2),⊥),
5 −. c1 + h(f,m3,⊥, c2 + (5 −. c1))

}

= min{5 −. c1, 7 −. c2}

=

{

5 −. c1 if c2 −
. c1 ≥ 2

7 −. c2 if c2 −
. c1 ≤ 2

Note that in this state the outgoing transitions are both uncontrolled “end” transition and no decision of
the scheduler is required.

This procedure goes higher and higher in the graph, computing h for the whole state-space Q ×H.
In particular, for state (m1,m3) where we need to decide whether to start m3 of J2 or to wait, we obtain:

h(m1,m3, c1,⊥) = min{16, 21 −. c1}

=

{

16 if c1 ≤ 5
21 −. c1 if c1 ≥ 5

The extraction of a strategy from h is straightforward: if the optimum of h at (q, v) is obtained via a
controlled transition to q′ we let σ(q, v) = q′ otherwise if it is obtained via an uncontrolled transition we
let σ(q, v) = ⊥. For (m1,m3) the optimal strategy is

σ(m1,m3, c1,⊥) =

{

(m1,m3) if c1 ≤ 5
⊥ if c1 ≥ 5

meaning that if m1 is used for less than 5 time units we give m3 to J2 and if it has been used for more
than 5 time units we wait until it terminates and give machine m2 to J1. Note that if we assume that
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J1 and J2 started their first tasks simultaneously, the value of c1 upon entering (m1,m3) is exactly the
duration of m2 in the instance.

The results of Chapter ?? concerning “non-lazy” schedules imply that optimal strategies have the
additional property that if σ(q, v) = ⊥ then σ(q, v′) = ⊥ for every v′ ≥ v. In other words, if an enabled
controlled transition gives the optimum it should be taken as soon as possible. This fact will be used later
in the implementation of the strategy.

Theorem 13 (Computability of Optimal Strategies)
Given an uncertain job-shop specification and an instance d it is possible to compute a d-future optimal
scheduling strategy.

This result is a special case of the result of [AM99].

8.5.1 Implementation

Existing algorithms for timed automata work on sets, not on functions, and in order to apply them to the
computation of h we use the following construction. Let A′ be an auxiliary automaton augmented with a
clock representing absolute time. Clearly, if (q, v, t) is reachable in A′ from the initial state (s, 0, 0) then
(q, v) is reachable in A in time t.

Let Θ be a positive integer larger then the longest path in the automaton. Starting from (f,⊥,Θ) and
doing backward reachability we can construct a relational representation of h. More precisely, if (q, v, t)
is backward reachable in the extended timed automaton A′ from (f, {⊥},Θ) then f is forward reachable
in A from (q, v) within Θ − t time.

Applying the standard backward reachability algorithm for timed automata we compute the set R of
all backward-reachable symbolic states. In order to be able to extract strategies we store tuples of the
form (q, Z, q′) such that Z is a zone of A′ and q′ is the successor of q from which (q, Z) was reached
backwards.

The set R gives sufficient information for implementing the strategy. Whenever a transition to (q, v)
is done during the execution we look at all the symbolic states with discrete state q and find

h(q, v) = min{Θ − t : (v, t) ∈ Z ∧ (q, Z, q′) ∈ R}.

If q′ is a successor via a controlled transition, we move to q′, otherwise we wait until a task terminates
and an uncontrolled transition is taken. Non-laziness guarantees that we need not revise a decision to
wait until the next transition.

8.6 Experimental Results

We have implemented the algorithm using the zone library of Kronos [BDM+98], as well as the hole-
filling strategy and the algorithm for the exponential distribution. As a benchmark we took the following
problem with 4 jobs and 6 machines:

J1 : (m2, [ 4, 10]) ≺ (m4, [ 1, 7]) ≺ (m3, [28, 40]) ≺ (m1, [ 7, 15]) ≺ (m5, [ 6, 25]) ≺ (m6, [45, 63])
J2 : (m5, [14, 25]) ≺ (m1, [34, 46]) ≺ (m2, [ 2, 27]) ≺ (m4, [ 9, 14]) ≺ (m6, [14, 29]) ≺ (m3, [32, 48])
J3 : (m4, [47, 55]) ≺ (m6, [32, 46]) ≺ (m1, [ 4, 12]) ≺ (m5, [ 1, 14]) ≺ (m2, [ 5, 16]) ≺ (m3, [ 4, 9])
J4 : (m6, [54, 72]) ≺ (m2, [21, 36]) ≺ (m3, [ 1, 8]) ≺ (m4, [22, 37]) ≺ (m1, [ 7, 18]) ≺ (m5, [ 4, 18])

The static worst-case schedule for this problem is 210. We have applied Algorithm 1 to find d-future
optimal strategies based on three instances that correspond, respectively, to “optimistic”, “realistic” and
“pessimistic” predictions. For every p such that D(p) = [l, u] they are defined as

dmin(p) = l davg(p) = (l + u)/2 dmax(p) = u.
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We have generated random instances and compared the results of the abovementioned strategies with
an optimal clairvoyant scheduler3 that knows d in advance, and a static worst-case scheduler. The first
table compares the performance on 30 instances where durations are drawn uniformly from the [l, u]
intervals. As it turns out that the pessimistic adaptive strategy, based on dmax, is very good and robust.
It gives schedules that, on the average, are only 2.39% longer than those produced by a clairvoyant
scheduler. For comparison, the static worst-case strategy deviates from the optimum by an average of
16.18%. On the other hand the realistic and optimistic strategies are usually inferior to the pesimistic
one and in some instances they are even worse than the static schedule. This can be explained by the
fact that schedules that rely on the minimal prediction are almost always not executed as planned. The
hole-filling strategy based on worst-case prediction achieves good performance (3.73% longer than the
optimum) with a much more modest computational effort (the results of hole-filling based on optimisitc
and realistic predictions are bad and are not shown in the table).

Inst Opt Static % Max % Avg % Min % Hole %
1 172 204 18.60 172 0.00 186 8.13 205 19.18 174 1.16
2 193 210 8.80 193 0.00 193 0.00 193 0.00 210 8.81
3 157 203 29.29 172 9.55 178 13.37 189 20.38 157 0.00
4 175 208 16.00 181 3.43 181 3.42 194 10.85 175 0.00
5 177 199 12.42 177 0.00 198 11.86 196 10.73 192 8.47
6 186 209 12.36 189 1.16 192 3.22 189 1.61 186 0.00
7 176 203 15.34 177 0.57 180 2.27 197 11.93 184 4.55
8 176 203 15.34 186 5.68 209 18.75 204 15.90 186 5.68
9 180 206 14.44 180 0.00 186 3.33 195 8.33 181 0.56

10 167 204 22.15 171 2.40 170 1.79 183 9.58 167 0.00
11 202 206 1.98 202 0.00 202 0.00 203 0.49 202 0.00
12 166 202 6.87 166 0.00 172 3.61 197 18.67 175 5.42
13 189 202 6.87 189 0.00 189 0.00 221 16.93 199 5.29
14 176 199 13.06 176 0.00 184 4.54 192 9.09 185 5.11
15 180 204 13.33 180 0.00 185 2.77 192 6.66 189 5.00
16 167 204 22.15 171 2.40 175 4.79 178 6.58 177 5.99
17 178 204 14.60 180 1.12 187 5.05 201 12.92 188 5.62
18 175 202 15.42 182 4.00 184 5.14 204 17.24 182 4.00
19 174 202 16.09 174 0.00 181 4.02 191 9.77 175 0.57
20 176 201 14.20 180 2.27 183 9.97 192 9.09 190 5.68
21 170 199 17.05 170 0.00 187 10.00 182 70.5 171 0.59
22 167 202 20.95 168 0.60 174 4.19 183 9.58 180 1.80
23 185 210 13.51 185 0.00 185 0.00 200 8.10 189 2.16
24 170 204 20.00 191 12.35 177 4.11 176 3.52 187 10.00
25 158 203 28.48 163 3.16 168 6.32 185 17.08 165 4.43
26 171 204 19.29 193 12.87 193 12.86 200 11.73 171 0.00
27 179 199 11.17 179 0.00 193 7.82 210 17.31 179 0.00
28 174 203 16.66 180 3.45 182 4.59 202 16.09 174 0.00
29 162 201 24.07 170 4.94 171 5.55 183 12.96 172 6.16
30 172 200 16.27 179 4.07 193 12.02 183 6.39 184 6.98

Avg 175 203.33 16.18 179.19 2.39 184.60 5.48 191.93 9.67 181.53 3.73

3In the domain called online algorithms it is common to compare the performance of algorithms that receive their inputs
progressively to a clairvoyant algorithm and the relation between their performances is called the competitive ratio.



Chapter 9

Conclusions

In this work we have laid the foundations for an automaton-based scheduling methodology. As a first step
we have attacked problems such as the job-shop problem that can be solved using existing techniques, in
order to see if the performance of timed automata technology is acceptable. As it turned out, the standard
zone-based algorithms for timed automata were too heavy and this led us to the discovery of non-lazy
schedules and runs. Using points instead of zones, we could compete with other techniques and this
insight may be useful also for standard verification of timed automata.

The next step was to consider preemption, where the cyclic nature of the automaton poses problems
also for other techniques. If the number of preemptions is not bounded, there is no bound on the number
of variables in the corresponding constrained optimization problem. This led us to the rediscovery of
“Jackson schedule” from the 50s, what we call “efficient”. With this result, a point based search algorithm
can be applied, leading to competetive performance. It also shows that the undecidability results for
stopwatch automata are not always relevant.

The generalization to the task graph problem was rather straightforward, the only significant new
feature was the decomposition of the partial order to form a chain cover, and the adaptation of the mutual
exclusion condition to identical machines. Again the performance of our algorithm was not worse than
the state-of-the-art in the domain.

The treatment of uncertainty in Chapter 8 was supposed to be the first domain where the advantages
of a state-based approach like ours become visible. And indeed, the definition and computation of adap-
tive strategies would be very hard to perform without the insight coming from the automaton model.
However we consider the results so far only as a partial success because the backward reachability al-
gorithm in its current form has to explore all the state-space (unlike a best-first search used in forward
reachability) and use the expensive zone technology. This implies that the size of problems that can be
treated is much smaller than for the deterministic case. Much more work is needed to extend the scope
of scheduling strategy synthesis. On the other hand, a less adaptive strategy such as hole filling can be
easily implemented on top of our solution of the deterministic problem.

For future work we envisage too major research directions, one concerned with improving the per-
formance and the other in extending the models to treat more complex scheduling situations. The first
direction include:

1. New search heuristics for deterministic problems.

2. New techniques for “compositional” scheduling. The basic idea is that jobs can be grouped into
subsets and an optimal schedule can be found for each subset. Then, each obtained schedule for
a subset can be seen as a job by itself, and the composition of these “super jobs” defines a new
scheduling problem. Clearly this technique is not guaranteed to give an optimal solution but it may
suggest a practical approach for treating a very large number of jobs..
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3. Combination of forward and backward reachability in strategy synthesis. The hardness of strategy
synthesis is that a-priori a strategy should be computed for every reachable configuration, but the
definition of a reachable configuration depends on the strategy. Consequently our current algorithm
computes the strategy for all reachable configuration under any strategy. Is is clear, however, that
some strategies (especially very lazy ones) will never be chosen. If, using forward analysis, we can
restrict the set of states for which we need to compute a strategy, we can restrict significantly the
computation time. Moreover, if we accept sub-optimal strategies, we can refrain from computing
the strategy even for some reachable states and use default actions if these states are reached in the
actual schedule.

Among the many possible extensions of the scheduling problems we mention the following::

1. Job-shop problems where some steps can be executed on different machines with different speeds.

2. Problems where the identity of the next step to be executed depends on the result of the current
step. Such situation occur, for example, in computer programs.

3. Problems where some of the structure of the tasks depends also on the previous choices of the
scheduler. For example, if machines are distributed geographically, different choices of machines
will imply different steps of transportation. Likewise, in task graph scheduling, communication
should be added between tasks that do not execute on the same machine.

4. Problems with more complex timing constraints for which the laziness results do not hold. For
example, problem with relative deadlines or synchronization constraints in task graph scheduling.

We believe that, regardless of the current applicability of our techniques to real-life industrial-size
problems, the framework developed here adds a new perspective from which scheduling problems can
be viewed, understood and solved.
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