
A Planning-based Decision-support Tool for Software Project Management

Biplav Srivastava
IBM India Research Laboratory

Block 1, IIT Campus, Hauz Khas
New Delhi 110016, India

sbiplav@in.ibm.com

EXTENDED ABSTRACT

Problem: In software engineering, a piece of software
is assembled from components or modules and these com-
ponents in turn can be recursively made up from smaller
sub-components. The management of a software project in-
volves tracking the development and maintenance of the in-
dividual components. Though tools exist to track component
dependencies and historical changes, the key software man-
agement hurdle is the manual evaluation of the trade-offs in
leveraging current components v/s investing in new software
development.

Consider a typical software project management scenario.
The requirement specification is acquired from the customer
and then, the solution architects devise the Work Breakdown
Structure (WBS)(Moder & Phillips 1964) of the problem to
identify the different tasks at some granularity. This infor-
mation is input to a project management tool like Microsoft
Project along with estimates on time and resources for each
task. The tool may have elaborate guidelines on how to rea-
son about a project - find the critical path in the project,
compute slack time for individual tasks, evaluate tasks to
identify over-allocated resources, etc. It is not hard to see
that the user, who may be a project manager or software
architect, has to evaluate the relevance of existing compo-
nentsmanuallybased on the project objectives like expected
software functionality, performance and development time.
This analysis also helps the user scope out new development
in the project and estimate the overall integration effort in-
volved.

Now consider the case when a software has been released
and is now being maintained. If any updates/patches are
available for the software components that were reused in
the project, their impact ismanuallyevaluated to decide if
a new build of the software is necessitated. Though there
are some tools to track component dependencies and record
history of component releases, the key software manage-
ment hurdle still remains that the trade-off choices have to be
manually evaluated. Our contribution relates to this general
area of software project management.

Solution Approach: We propose a framework called
PlanSP to analyze different project management choicesau-
tomaticallyas following reasoning problems and thereby as-
sist the user make informed decisions.

Copyright c© 2003, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Software
Component

Model User Objective

Reasoning Problem
[Reuse, Reduce,
Detect, Upgrade]

Solution
[Plan, Components]

PlanSP Framework

Formulate

Solve

Figure 1:PlanSP approach of decision support in software
project management.

• Scenario 1: When creating a new piece of softwareSnew,
help the user:
[Problem 1]Reuse : Find existing componentsBi that
can accomplish part of the functionality needed inSnew.
Hence, find components that are candidates for reuse in
the project.
[Problem 2]Reduce : Identify existing componentsBi

that reduce scope and complexity of any new development
onSnew without sacrificing onSnew ’s functionality.

• Scenario 2: While an existing softwareSnew is being
maintained, help the user:
[Problem 3] Aware : Identify (sub-)componentsBi

whose newly released enhancements can affect the func-
tionality of Snew.
[Problem 4]Upgrade : Evaluate and incorporate new en-
hancements of (sub-)componentsBi that are necessary
for enhancing the objective ofSnew.

Our solution approach is to build a formal model about
the capabilities of software components and consider listed
project management problems as reasoning problems related
to planning (see Figure 1). We castReuse as the problem



of finding components (actions) relevant to the goals of the
software to be built whileReduce is formulated as a (cost-
based) plan generation problem.Advise is seen as the enu-
meration of components (actions) in a project implementa-
tion (i.e., plan) whileUpgrade is solved by a combination
of solutions for theReuse andAdvise problems. Due to
space limitations, the details are omitted(Srivastava 2003).

The insight in posing a software project as a planning
problem is that the initial stateI can be seen as the input
data specification while the goal stateG is the functionality
desired from the software. Each component present in the
software library is an actionAi with its inputs being the pre-
conditions and its outputs being the effects. The plan for re-
alizing the goal(s) is the Work Breakdown Structure (WBS)
of the application. Therefore, during software development,
we reason about how best to arrive at a cost-effective WBS
while during software maintenance, a WBS is given and we
reason about any impact on it due to internal events (upgrade
of existing components) or external opportunities (new com-
ponents being released).

Insight from incomplete plans: If no complete sequence
of components (plan) is possible from the library for a given
requirement, planning can still help the user scope down the
requirement of any new development that must be done to
attain all the functionalities. To get estimate of new de-
velopment, the planner has to sort the search space of non-
solutions based on heuristic distance to goal. The plan with
the lowest such heuristic gives us the candidate plan requir-
ing new development.

The software model is based both on the structured infor-
mation that is available about a software at its release time
(like dependency information used byMake), represented
as predicates, and optionally, measurements such as perfor-
mance/ cost metric and expected integration effort (time).
The latter will be used to automatically reason with usage
tradeoffs and hence, it makes sense for the user to lever-
age any historical information gained in this regard. Pred-
icates are essentially attribute-value representation which a
comprehensive study of software representation techniques
in software reuse libraries found not statistically different
from other alternative representations studied(Frakes & Pole
1994). The formal model for software components is stored
and appropriately referenced by PlanSP.

The novelty of our work is in how the reasoning problems
are created for tackling the specific decision-support issues
and the adaptation of planning algorithms to solve them.
The goal is not only to support the functionality of the soft-
ware but also to respect the user’s effort and performance
objectives. We demonstrate that the PlanSP framework is
both useful and practical for software project management.

PlanSP is ideally suited for software applications com-
plying with Service-Oriented Architecture (SOA) principles,
e.g. web services. In SOA, the description of a software
component’s inputs and outputs (functionality, dependen-
cies, types and metrics) is published to a service directory
(e.g., UDDI) in a description language like WSDL while
services are themselves deployed on a server. An applica-
tion finds about the published services from the directory,
chooses a set of interest, and invokes them using the ser-

vice specification. The tool is useful for general software
projects as well, as long as the description of the software
components can be explicated.

Related work: There is no available method that can ad-
dress all the identified project management scenarios. Dur-
ing software development, tools likeMicrosoft Projectshow
timelines/ deadlines for tasks and their dependency as en-
tered by the user. Later, the user herself has to figure out
the choices among software components so that the project
can be brought to timely completion. Build tools likeMake
provide a simple way to detect changes in dependent com-
ponents based on timestamps. However,Makecan force un-
necessary builds of components that may not affect the soft-
ware functionality.

There has not been much use of automated reasoning
techniques in software reuse and maintenance. Previously,
(Huff & Lesser 1988) had proposed using planning tech-
niques to automate the software development process. How-
ever, their main focus was on automating the compile/ build,
test and release cycles rather than software reuse. Existing
separation of concerns techniques like Mixin layers, Aspect-
oriented Programming and Hyperspaces build artifacts (as-
pect, layer, etc.) around the core software components so
that the components could be selectively reused but the se-
lection process is user-driven.

Current status: We have implemented PlanSP using
two AI planners, ParamC for pure STRIPS domain and
ParamM for metric domains and it has been tested for soft-
ware components in the Natural Language Understanding
domain containing software components in multiple human
languages (a total of 20-odd components) with various met-
rics(Srivastava 2003). As noted earlier, PlanSP is ideally
suited for software applications in the Service-Oriented Ar-
chitecture where component specification are readily avail-
able but it is also useful for general software projects as
long as the description of the software components can be
explicated. In future, we plan to conduct large scale real-
world evaluation of PlanSP in the context of web services
and/or java beans (IBM Websphere). However, even in the
small examples presented, it is evident that the alternatives
returned after automatic reasoning are non-obvious.

References
Frakes, W. B., and Pole, T. P. 1994. An empirical study of
representation methods for reusable software components.
IEEE Trans. on Software Engineering, 20(8):617–630, Au-
gust.
Huff, K. E. and Lesser, V. R. 1988. A Plan-Based Intelli-
gent Assistant That Supports the Process of Programming.
ACM SIGSOFT Software Engineering Notes, 13:97–106,
November.
Moder, J. J., and Phillips, C. R. 1964.Project Management
with CPM and PERT.Reinhold Publ., Chapman & Hall
Ltd., London.
Srivastava, B. 2003. PlanSP: A Framework to Automat-
ically Analyze Software Development and Maintenance
Choices. IBM Research Report RI02025. Available at
http://domino.watson.ibm.com/library/CyberDig.nsf/Home


