
Optop Demo: Dealing with Autonomous Processes

Drew V. McDermott
Yale University

Computer Science Department
drew.mcdermott@yale.edu

Optop is an evolving planning system based on es-
timated regression, a technique for guiding best-first
search through situation space using estimates of the
difficulty of completing a plan with a given prefix. The
estimates are obtained by searching backward from the
goal using a relaxed search space in which literals are
treated in isolation and deletion effects of actions are
ignored.

In this demo, I will show Optop solving problems that
involve autonomous processes, defined as processes that
occur and have continuous effects whenever a condition
is satisfied, independently of what actions are taken by
the target agent of the planner. The changes to a clas-
sical planner to get it to reason about processes are
described in my paper presented at ICAPS 03, “Rea-
soning about Autonomous Processes in an Estimated-
Regression Planner.” In the demo, I will show how
processes are specified, and how well the planner works
when it has to reason about processes.

I will use two sample domains: a very simple ex-
ample involving filling a tub, and a more complex one
involving convoys traveling over a road network. The
tub domain is shown in figure 1. We use an extension
of the PDDL notation, in which :process definitions
are allowed by analogy with :action definitions. The
:process construct differs from the familiar :action def-
inition in two ways:

1. The :precondition field has become the :condition

field. The process is active whenever the condition is
true.

2. The :effect field has split into three fields, :effect,
:start-effect, and :stop-effect. The :effect is
true whenever the process is active. Such continuous
effects can include derivative assertions, which state
the rates of change of fluents. The :start-effect

field states effects that become true whenever the pro-
cess switches from inactive status to active. Similarly,
the :stop-effect field states effects that become true
when the process switches from active to inactive.
Like traditional effects, these stay true until altered
by subsequent actions or process switches.

Copyright c© 2003, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

Note that the agent’s actions have no direct impact on
the status of a process. Of course, the agent can make
a process active or inactive by altering the status of its
condition.

A problem in the “tub” domain might involve the
goal of floating your boat. A solution would require
one to turn the tub on, wait for it to fill, then put the
boat in. If there are multiple tubs, the optimal plan is
the one that uses the tub that fills up the fastest, assum-
ing that one wants to minimize time. One might want
to minimize some other metric, such as the weighted
difference of time and tub surface area.

A solution to a one-boat problem in this domain will
look like

(turn-on u); (wait); (floatit the-boat)

where u is the chosen tub, and the-boat is the given
boat. If we want to require that no overflow occur, the
plan will also have a turn-off step.

The demo will show the following points:
• How fast the planner runs as problems scale up.
• With various debugging switches turned on, exactly

what the planner is doing at various points.
• How processes are simulated; how the system decides

what point to advance time to.
• The role of the “plausible projector” in predicting

what will happen when a plan is executed in the
presence of autonomous processes, and, in particu-
lar, what the value of an objective function will be at
the end of execution.

• Some open problems whose resolution will guide the
evolution of the planner.



(define (domain tub)
(:requirements :fluents :processes)

(:types Boat Tub - Obj)

(:functions (volume ?tub - Tub)
(faucet-rate ?tub - Tub) - Float
(water-in ?tub - Tub) - (Fluent Float))

(:predicates (floating ?b - Boat ?tub - Tub)
(faucet-on ?tub - Tub)
(overflowing ?tub - Tub))

(:action (floatit ?b - Boat ?tub - Tub)
:precondition (=~ (water-in ?tub) (volume ?tub))
:effect (floating ?b ?tub))

(:action (turn-on ?tub - Tub)
:effect (faucet-on ?tub))

(:action (turn-off ?tub - Tub)
:effect (not (faucet-on ?tub)))

(:process (filling ?tub - Tub)
:condition (faucet-on ?tub)
:effect

(and (when (< (water-in ?tub) (volume ?tub))
(derivative (water-in ?tub)

(faucet-rate ?tub)))
(when (>= (water-in ?tub) (volume ?tub))

(and (derivative (water-in ?tub) 0.0)
(overflowing ?tub))))))

(define (problem tub-prob-1)
(:domain tub)
(:objects tub1 - Tub my-boat - Boat)
(:facts (= (faucet-rate tub1) 1.0)

(= (volume tub1) 10.0))
(:init (current-value (water-in tub1) 0.0))
(:goal (exists (tub - Tub)

(and (floating my-boat tub)
(not (overflowing tub)))))

(:metric minimize (total-time)))

Figure 1: Simple domain involving processes


