
NMRDPP: A System for Decision-Theoretic Planning
with Non-Markovian Rewards∗

Charles Gretton, David Price, and Sylvie Thiébaux
Computer Sciences Laboratory

The Australian National University
Canberra, ACT, Australia

{charlesg,davidp,thiebaux}@csl.anu.edu.au

Abstract

We present the NMRDPP system, which implements under a
common interface a range of methods for decision-theoretic
planning with Non-Markovian rewards. We have used NM-
RDPP to compare the various approaches and identify certain
problem features favouring one over the other.

Motivation
A decision process in which rewards depend on the sequence
of states passed through rather than merely on the current
state is called a decision process with non-Markovian re-
wards (NMRDP). Non-Markovian rewards are to decision-
theoretic planning what temporally extended goals are to
non-deterministic planning. They are particularly useful
since many desirable behaviours are more naturally ex-
pressed as properties of execution sequences rather than as
properties of states.

The more tractable solution methods developed for
Markov decision processes (MDPs) do not directly apply
to NMRDPs. However, a number of solution methods for
NMRDPs have been proposed in the literature (Bacchus et
al. 1996; 1997; Thiébaux et al. 2002). These all start with
a temporal logic specification of the non-Markovian reward
function, which they exploit to automatically translate the
NMRDP into an equivalent MDP whose states include ex-
tra information capturing enough history to make the reward
Markovian. This MDP can then be solved using efficient
MDP solution methods.

The above approaches differ in mainly 3 respects. Firstly,
they consider different representation and solution methods
for the equivalent MDP. Specifically PLTLSIM and PLTLMIN,
the approaches in (Bacchus et al. 1996), target state-based
representations and classical solution methods such as value
or policy iteration. FLTL, the approach in (Thiébaux et al.
2002), also considers state-based representation but targets
heuristic search methods such as LAO* or labelled RTDP.
Finally, PLTLSTR, the approach in (Bacchus et al. 1997)
considers structured representations and solution methods
such as structured policy iteration or SPUDD. Secondly,
these different targets lead the approaches to adopt very

∗This demonstration supports the technical paper (Gretton et.
al 2003) too be presented at the ICAPS-03 workshop on Planning
under Uncertainty and Incomplete Information.

different types of translation, as appropriate. For instance,
since state-based solution methods are very sensitive to the
size of the MDP, state-based approaches such as PLTLMIN
and FLTL require a sophisticated translation producing an
equivalent MDP as small as possible, without irrelevant his-
tory distinctions. On the other hand, for a structured ap-
proach like PLTLSTR, a very crude translation is enough be-
cause structured representation and solution methods have
their own ability to ignore irrelevant information. Thirdly,
the approaches consider different temporal logics to express
non-Markovian rewards, as suited to the type of transla-
tion chosen. For instance, PLTLSIM, PLTLMIN and PLTL-
STR use linear temporal logic with past operators (PLTL),
as this yields a straightforward semantics of non-Markovian
rewards. FLTL on the other hand, relies on a more complex
extension of LTL with future operators ($FLTL), as it nat-
urally leads to a style of translation suited to the needs of
heuristic search methods.

The literature lacks any report of implementation or com-
parison of these approaches. Our goal in developing NM-
RDPP (NMRDP planner) was therefore to provide a first
implementation of all of them, and to do this in a common
framework, within a single system and with a common input
language, so as to facilitate their experimental comparison.

System Description
NMRDPP’s input language enables specification of actions,
initial states, rewards, and control-knowledge. The format
for the action specification is essentially the same as in the
SPUDD system.1 When the input is parsed, the action speci-
fication trees are converted into algebraic decision diagrams
(ADDs) by the CUDD package.2 The reward specification
is one or more formulae, each associated with a real. These
formulae are in either PLTL or $FLTL and are stored as trees
by the system. Control knowledge is given in the same lan-
guage as that chosen for the reward. Control knowledge for-
mulae will have to be verified by any sequence of states fea-
sible under the generated policies. Initial states are simply
specified as part of the control knowledge or as explicit as-
signments to propositions.

For instance, consider a simple example consisting of a

1http://www.cs.ubc.ca/spider/staubin/Spudd/.
2http://vlsi.colorado.edu/ fabio/CUDD/cuddIntro.html

action flip
heads (0.5)

endaction
action tilt

heads (heads (0.9) (0.1))
endaction
heads = ff
[first, 5.0]? heads and ˜prv (pdi heads)
[seq, 1.0]? (prvˆ2 heads) and (prv heads) and ˜heads

Figure 1: Input for the coin example

coin showing either heads or tails (¬heads). There are two
actions that can be performed. The flip action changes the
coin to show heads or tails with a 50% probability. The tilt
action changes it with 10% probability, otherwise leaving it
as it is. The initial state is tails. We get a reward of 5.0
for the very first head (this is written heads ∧ ¬ � ♦- heads
in PLTL) and a reward of 1.0 each time we achieve the se-
quence heads, heads, tails (�2heads ∧ �heads ∧ ¬heads in
PLTL). In our input language, this NMRDP is described as
shown in Figure 1.

The common framework underlying NMRDPP takes ad-
vantage of the fact that NMRDP solution methods can, in
general, be divided into the distinct phases of preprocess-
ing, expansion, and solving. The first two are optional. For
instance, for PLTLSTR, preprocessing involves computing a
set of temporal variables to be included in the states of the
equivalent MDP, as well as the ADDs describing (1) their
dynamics and (2) the rewards. Expansion is the optional
generation of the entire equivalent MDP prior to solving.
Whether or not off-line expansion is sensible depends on
the MDP solution method used. If state-based value or pol-
icy iteration is used, as in PLTLMIN, then the MDP needs
to be expanded anyway. If, on the other hand, a heuristic
search algorithm or structured method is used, as in FLTL
or PLTLSTR, it is definitely a bad idea. In our experiments,
we often used expansion solely for the purpose of measur-
ing the size of the equivalent MDP. Solving the equivalent
MDP can be done with a number a methods. Currently,
NMRDPP provides implementations of classical dynamic
programming methods, namely state-based value and pol-
icy iteration, of heuristic search methods: state-based LAO*
using either value or policy iteration as a subroutine, and of
structured methods based on SPUDD. Altogether, the vari-
ous types of preprocessing, the choice of whether to expand,
and the MDP solution methods, give rise to quite a number
of NMRDP approaches, including, but not limited to those
previously mentioned.

NMRDPP is controlled by a command language, which
is read either from a file or interactively. The command lan-
guage provides commands for different phases of the dif-
ferent algorithms, commands to inspect the resulting policy
and value functions, e.g. with rendering via DOT3 as well
as supporting commands for timing and memory usage. A
sample session4 may be as in Figure 2.

3http://www.research.att.com/sw/tools/graphviz/.
4Oval ADD nodes represent a dependence on a particular vari-

able. Solid lines leaving an oval represent the corresponding vari-
able being true, dashed lines represent it being false. The rectangu-
lar boxes at the leaves represent the value of the path followed (or,
for a policy, the action associated to it).

> loadWorld(’coin.world’) load coin NMRDP
> preprocess(’sPLTL’) PLTLSTR preprocessing
> startCPUtimer
> spudd(0.99, 0.0001) solve MDP with SPUDD(β, ε)
converged after 1277 iterations with delta= 5.00e-07
> stopCPUtimer
> readCPUtimer report solving time
1.22000
> displayDot(spuddValueToDot) display ADD of value function

Expected value heads

(prv heads) (prv heads)

(prv (prv pdi heads)) (prv (prv pdi heads)) (prv^2 heads)

(prv pdi heads)18.87 23.87 18.62 23.62 (prv pdi heads)

18.25 23.15 19.25 24.15

> displayDot(spuddPolicyToDot) display policy

Optimal policy heads

(prv heads)

flip tilt

Figure 2: Sample session

NMRDPP is implemented in C++, and makes use of a
number of supporting libraries. In particular, the struc-
tured algorithms rely heavily on the CUDD library for repre-
senting ADDs. The non-structured algorithms make use of
the MTL—Matrix Template Library for matrix operations.
MTL takes advantage of modern processor features such as
MMX and SSE and provides efficient sparse matrix opera-
tions. We believe that our implementations of MDP solution
methods are comparable with the state of the art.

Results
NMRDPP proved a useful tool in the experimental analysis
of approaches for decision processes with Non-Markovian
rewards. In (Gretton et al. 2003), we use it to compare
their behaviours under the influence of various factors such
as the structure and degree of uncertainty in the dynamics,
the class of rewards and the syntax used to describe them,
reachability, and relevance of rewards to the optimal policy.
We were able to identify a number of general trends in the
behaviours of the methods and to provide advice as to which
are the best suited to certain circumstances. In the future, we
will use NMRDPP to see what form these results take in the
context of domains of more practical interest.

References
Bacchus, F.; Boutilier, C.; and Grove, A. 1996. Rewarding be-
haviors. In Proc. AAAI-96, 1160–1167.
Bacchus, F.; Boutilier, C.; and Grove, A. 1997. Structured so-
lution methods for non-markovian decision processes. In Proc.
AAAI-97, 112–117.

Gretton, C.; Price, D.; and Thiébaux, S. 2003. NMRDPP: A Sys-
tem for Decision-Theoretic Planning with Non-Markovian Re-
wards. In Proc. ICAPS-03 Workshop on Planning under Uncer-
tainty and Incomplete Information.
Thiébaux, S.; Kabanza, F.; and Slaney, J. 2002. Anytime
state-based solution methods for decision processes with non-
markovian rewards. In Proc. UAI-02, 501–510.

