
Heracles: Hierarchical Dynamic Constraint Networks for Interactive Planning

Jośe Luis Ambite, Craig A. Knoblock & Maria Muslea
Information Sciences Institute

University of Southern California
4676 Admiralty Way, Marina del Rey, CA 90292

fambite,knoblock,mariamg@isi.edu

Steven Minton
Fetch Technologies

4676 Admiralty Way, Marina del Rey, CA 90292
minton@fetch.com

For any human activity there is a wealth of information
available in the Internet and in corporate intranets. Unfor-
tunately, such information is distributed among many sites,
with different data formats, schemas, and semantics. More-
over, information access per se is of limited value. What is
needed is a system that integrates and structures diverse in-
formation in support of the user tasks and goals. The system
must focus on the relevant information, evaluate tradeoffs,
and suggest courses of action to the user. In this demo, we
we present Heracles, a constraint-based framework to easily
develop such systems.

As an example consider travel planning. There are numer-
ous sites with relevant travel information: flight schedules
and fares (e.g., www.orbitz.com), hotel locations and rates
(e.g., www.itn.com), car rental sites (e.g., www.hertz.com),
weather information (e.g., weather.yahoo.com), maps and
route planning (e.g., www.mapquest.com), airport parking
rates (e.g., www.airwise.com), etc. This public information
needs to be integrated with user preferences, such as pre-
ferred airlines or flying times (e.g. avoid red-eye flights),
cost constraints, and company policies, such as allowable
airlines, expenses caps, per-diem or mileage reimbursement
rates. Although the user could visit these sites and take into
accounts all the constraints and preferences, it is extremely
tedious, error-prone, and time-consuming. A system that
queries these the remote sites, access local information, and
enforces the constraints and preferences is much more desir-
able.

Heracles models each piece of information as a variable
in a constraint network. The different pieces of information
are integrated using constraints. The resulting constraint net-
work provides a coherent view of the user activities and cap-
tures the relevant information and user preferences.

For any non-trivial user activity the number of variables
and constraints is very large. So we do not propose a
monolythic constraint network, but we partition the network
hierarchically. This hierarchy corresponds to the task struc-
ture of the application domain, in a manner similar to Hierar-
chical Task Network planning (Erol, Hendler, & Nau 1994).
The application designer groups variables and constraint re-
lated to a distinct task into a package that we call atemplate.
For example, in travel planning we would have a top-level
template that contains the most important information, such
as who is traveling, the dates of travel, and the origin and

destination. The next layer of decisions include the alterna-
tive means of transportation, such as flying, taking a train,
renting a car, driving the user’s own car, or taking a taxi; and
choices of accommodation at the destination. The variables
and constraint related to flying would constitute a template.
Task/Templates are further decomposed into smaller units.
For example, once that the user decides to fly, the system
suggests how to get to the airport: by taxi, driving one’s car
and leaving it parked at the airport, etc, so there are subtem-
plates for each of these alternatives.

Figure 1 shows the Heracles user interface with top-level
template of the travel planning application. There is a
set of boxes showing values, which we callslots, which
show the value of a variable in the constraint network. For
example, the street, city, and state of the departing ad-
dress is2700 University Park, Los Angeles,
CA. The hierarchical task structure of the domain appears
on the left pane in the user interface. The system has sug-
gested to fly and taking a taxi from and to the airports. The
fly and taxi subtemplates are also shown.

This hierarchical decomposition allows to manage the
complexity of the application in three ways: (1) it enables
a more efficient evaluation of the constraint network, (2) it
gives the user a clear understanding of the domain tasks, and
(3) it helps to manage the complexity of application devel-
opment.

Heracles is implemented as a dynamic constraint network
(Mittal & Falkenhainer 1990). From the planning perspec-
tive, a template is equivalent to a task. Once the system
selects a given course of action, only one of the alternative
templates should be active. That is, the system only needs
to evaluate constraints from that template. The active con-
straint network corresponds to the currently selected plan,
which is comprised of the set of selected templates/tasks.
Our use of dynamic constraints networks is analogous to
their use in configuration. In a sense, Heracles “configures”
a plan that satisfies the user goals.

In many domains, such as travel planning, evaluating a
constraint can be expensive. The focused evaluation im-
posed by the task structure of the dynamic constraint net-
work yields significant savings. For example, in travel plan-
ning the system may evaluate a constraint that retrieves
maps and directions of travel from a web site such as
mapquest.com. Such retrieval takes on the order of seconds,



Figure 1: Travel planning: top-level, Fly, and Taxi templates

so the number of evaluations of the constraint must be mini-
mized. Such request will not be evaluated unless the driving
template is active.

Since we cannot assure that all information, constraints,
and preferences are ever captured by the system, the plan-
ning process should be conducted in a mixed-initiative fash-
ion where the user can explore different alternatives and
override the system suggestions if needed. Allowing the user
such control over the system presents significant challenges.
First and foremost, the system must behave in a way com-
prehensible to the user. The usability of the system would be
seriously diminished if when the user selected a new value,
suddenly all values shown in the interface changed. The
user would get lost. For this reason, Heracles does not per-
form full constraint satisfaction, but onlydirected constraint
propagation. When the user inputs a value, downstream
variables acquire consistent values if possible, but they do
not affect the values of variables upstream in the network.
This is analogous to doing a beam search of the constraint
network, where the user guides the exploration of certain
paths in the space of solutions. If a dead end is reached
the user is informed by showing no values for downstream
variables in the interface. The user can then backtrack on
a previous choice, but always maintains control and under-
standing of the system behavior. Second, since Heracles al-
lows the user to input values for some of the variables in
the constraint network and override the system suggestions,
some constraints may not be satisfied (precisely those that
compute the suggested value). Heracles allows such local
inconsistencies when they cause no confusion in task plan-
ning. For example, the system may suggest to drive one’s car
to the airport because it’s cheaper, but the user can always
choose to take a taxi. Heracles will disregard the constraint
that selects driving and propagates values such a taxi cost
from the selected task/template. Finally, since the directed
constraint network can be cyclic, the system ensures (1) that
the user interaction does not produce infinite cycles in the
constraint propagation, (2) that the latest user inputs are fully
propagated, and (3) the results from obsolete constraint eval-
uations are disregarded (since calls to external sources return
the result asynchronously).

In the demo session we will demonstrate mixed-initiative
planning in Heracles. We will show the declarative specifi-
cation of the template hierarchy, including constraints that
access local sources as well as local computation.

References
Erol, K.; Hendler, J.; and Nau, D. S. 1994. HTN planning:
Complexity and expressivity. InProceedings of the Twelfth
National Conference on Artificial Intelligence (AAAI-94),
volume 2, 1123–1128. Seattle, Washington, USA: AAAI
Press/MIT Press.
Mittal, S., and Falkenhainer, B. 1990. Dynamic constraint
satisfaction problems. InProceedings of the Eighth Na-
tional Conference on Artificial Intelligence, 25–32.


