
Landmark Extraction via Planning Graph Propagation

Lin Zhu and Robert Givan
�

Electrical and Computer Engineering, Purdue Univeristy, West Lafayette, IN 47907-1285�
lzhu, givan � @purdue.edu

Abstract

The planner GRAPHPLAN is based on an efficient propaga-
tion of reachability information which then effectively guides
a search for a valid plan. We propose a framework in which
a broader class of information, including the original reach-
ability information, can be propagated in the plan graph in
polynomial time. As an example, we exhibit an algorithm
for propagating “landmark” information, where a landmark
is a proposition or action that must occur in any correct plan.
This algorithm computes in polynomial-time a set of plan-
ning landmarks significantly larger than previously published
landmark computation algorithms. We show how to lever-
age this algorithm to extract an incrementally computable
planning heuristic. We present results showing that enforced
hill-climbing using this heuristic is significantly more ro-
bust than FFPLAN in three very different planning domains
(Sokoban, Blocks-world, and Logistics)—somewhat slower
than FFPLAN when FFPLAN performs well, but much faster
when FFPLAN performs badly. We include a discussion of
our ongoing work improving the resulting heuristic search as
well as other directions for utilizing the landmarks extracted.

Planning
We generally follow (Koehler & Hoffmann 2000) and (Blum
& Furst 1997) for notation regarding STRIPS planning
graphs, varying somewhat for our purposes.

STRIPS Planning. Let � be a finite set of propo-
sitions. A state � is a finite subset of � . An ac-
tion � is a triple ���	� PRE �
���� ADD ������ DEL ������� where
PRE �
��� are the preconditions, ADD ����� is the add list and
DEL ����� is the delete list, each being a set of proposi-
tions. The result RESULT �������������������������� of applying
an action sequence �
� � ��������� � � to a state � is given
by RESULT � RESULT ������������������������ �����!��
���"��� , where for #
equals $ the result is undefined unless PRE �
�%�!�'&(� , and
���') ADD ��� � ����* DEL ��� � � otherwise.

A planning task + is a set of actions containing actions
START and FINISH, where the action START has no precon-
ditions and the action FINISH has no add or delete effects.
We say that the preconditions of the FINISH action are the

,
We are grateful to Alan Fern and Matthew Greig for useful

discussions and editorial suggestions.
Copyright c

-
2003, American Association for Artificial Intelli-

gence (www.aaai.org). All rights reserved.

goal. The corresponding relaxed planning task +/. (which
ignores delete effects) is +0.1� � � PRE �
���! ADD �
���!�2���3
� PRE �
���� ADD ������ DEL �������546+7� . A sequential plan, or
plan for short, for a task + is an ordered action sequence8� from 90: , beginning with START such that RESULT ��2; 8���
is defined. We call the plan successful if it also ends with
FINISH. We say that a plan achieves the last action of the
plan and any proposition in the resulting state. We say that
propositions and actions achieved by plan prefixes occur
during the plan at the “time” given by the length of the pre-
fix.

A parallel plan is an ordered sequence
8< of action sets<>= &(9 of independent parallel actions. The actions in a

set < are independent if, for any state � and any ordering8� of the actions in < , the state RESULT ���� 8��� is the same.
We say two actions interfere if one deletes a precondition or
an add-effect of the other, i.e., if � DEL �������@? ADD ����AB���C)
� DEL ��� A �D? ADD �
� A ��� is non-empty.

Plangraph Propagation. We assume that the action set
9 contains a “no-op action” � ��E �� ��E ���2�� for each proposi-
tion

E
in � . The planning graph is a directed graph ��FC�G/�

where the nodes F can be partitioned into disjoint levels 9 � ,
� � , 9 A , � A , . . . , 9IH for some J , where each � = is a sepa-
rate copy of the proposition set � and each 9 = is a copy of
the action set 9 . Every edge in G connects an action � in
some level 9 = with either a precondition in PRE �
��� in the
preceding level � = or an effect in ADD �
��� in the following
level � =LK � , and every such precondition or effect edge is
present1.

We consider propagation methods that attach labels to ev-
ery node in the planning graph, representing information of
interest. Node labels are computed from the labels on adja-
cent nodes at the previous level and any information needed
from the node being labeled (in forward propagation). To
specify a propagation method, we specify the syntax and se-
mantics of the labels, the method for initializing the labels
on the first level, and the labeling method for computing a
node label from its adjacent predecessors.

For example, the relaxed reachability analysis for
FFPLAN in (Hoffmann & Nebel 2001) is a propagation

1We assume that the number of graph levels, M , is chosen large
enough that the edges in the final levels would repeat if the graph
were further extended. In practice, graphs with fewer levels may
be used, effectively.

method on the planning graph for the relaxed planning prob-
lem. In that case, the node labels are Boolean values seman-
tically representing (necessary but not sufficient) claims of
action applicability at action levels and proposition achiev-
ability at proposition levels. Only START is labeled true on
the first level, and every action (proposition) node is then la-
beled with the conjunction (disjunction) of the labels at the
previous level. As is typical for propagation methods, nodes
labeled false can be omitted from the planning graph.

Quadratic planning graph. The quadratic planning
graph is a directed graph ��F����G���� , where F�� contains the
nodes F � � �) 9 �) �����%) � H from the standard plan-
ning graph, but also contains all pairs of nodes appearing
the same level in the standard planning graph, i.e.

F � � F) ��9 H�� 9 H �D)
H � ��
� ��9 = � 9 = �D) � � = � � = �!�

The edges G�� contain those in G as well as edges into
�
� � �� A � from each node in PRE �
� � ��) PRE �
� A ��)/� PRE �
� � � �
PRE �
��A ��� and edges out of �
�������A�� to each node in
ADD �������D) ADD �
��A��D) � ADD �
���!� � ADD ����AB��� .

The first phase of GRAPHPLAN can be viewed as a propa-
gation method on the quadratic planning graph. In this case,
boolean values are propagated, representing (necessary but
not sufficient) claims that the labeled proposition/action/pair
is reachable at the given level (where a pair of actions or
propositions is reachable iff the pair elements can be si-
multaneously reached). In the initial level, only the START
action is labeled true. At subsequent action levels, pairs
of interfering actions are labeled false and other action
and action-pair nodes are labeled with the conjunction of
adjacent-previous-node labels. Proposition and proposition-
pair nodes are labeled with the disjunction of adjacent-
previous-node labels. Again, any node labeled false can typ-
ically be omitted from the graph.

We note that other kinds of propagation can easily be de-
signed. Each propagation will compute labels based on the
labels of adjacent previous nodes along with some informa-
tion local to the node to be labeled. That local informa-
tion could include labels left by previous propagations or
the number of the level being labeled, for example.

Landmark Extraction via Planning Graph
Propagation

Planning graph propagations can be used to compute vari-
ous kinds of planning landmarks. A landmark for a planning
problem is a proposition or an action must be occur during
any successful plan2. We are interested in action landmarks
in addition to proposition landmarks because an action land-
mark can represent an important conjunction of propositions
(the preconditions of the action).

2When the planning graph propagation algorithms are used with
graphs that are not fully extended to quiescence, the “landmarks”
found are only guaranteed to be present in successful plans of the
shorter parallel length. This can be an asset, as the algorithm may
find “landmarks” that occur on all short plans, directing the planner
towards a shorter plan.

Proposition landmarks were introduced in (Porteous, Se-
bastia, & Hoffmann 2001), where the problem of finding
landmarks for a planning task was shown to be PSPACE-
hard and incomplete methods for finding landmarks were
given. The resulting landmarks were shown to be useful in
accelerating the FFPLAN and IPP planners.

Once a candidate proposition landmark is identified, a
simple planning graph propagation can (soundly but not
completely) verify that the candidate is, in fact, a landmark
by simply checking that the FINISH action can never be taken
in the relaxed problem (delete effects removed), but with all
actions adding the candidate landmark removed. We call
this simple propagation landmark verification. The method
shown in (Porteous, Sebastia, & Hoffmann 2001) finds land-
marks by heuristically identifying candidates and then ap-
plying this propagation to verify which candidates are land-
marks.

We next give a planning-graph propagation that computes
the set of causal landmarks that will survive the landmark
verification process. We define “causal” below, and claim
that all desired landmarks are causal. Thus, this algorithm
eliminates the need for heuristic candidate generation, and
in fact finds many more landmarks in our example domains
than those found by the heuristic-candidate-generation ap-
proach. The algorithm finds landmarks in a single propaga-
tion that is analogous to, but somewhat more expensive than,
a single landmark verification propagation (that is, substan-
tially less expensive than a large number of landmark verifi-
cations).

We call a propositional landmark causal when every suc-
cessful plan contains an action that requires the landmark
as a pre-condition. We call every action landmark causal.
Non-causal landmarks are in some sense “accidental” ef-
fects of actions required for other purposes. Non-causal
landmarks can be misleading to the system3, and we con-
sider it a feature of our propagation that it rejects such land-
marks (whereas landmark verification alone accepts non-
causal landmarks).

In our propagation method for computing landmarks, the
propagated labels are actions or propositions. Action or
proposition � is labeled with label 	 at level
 in the plan-
ning graph4 to represent the claim that any
 -step parallel
plan achieving � must contain an occurrence of 	 . In the
initial graph level, an action level, every action is labeled
with itself and no other labels. Each proposition node in
the graph is labeled with the intersection of the labels on its
predecessor action nodes (because a landmark label applies

3Consider, for instance, a blocks-world domain where there are
both HANDEMPTY and HANDFULL propositions for some reason.
In such a domain, HANDFULL will typically be a non-causal land-
mark for most goals, but also typically misleading as a subgoal.
In general, when the problem representation contains propositions
at different levels of abstraction, more general propositions will
be (possibly misleading) landmarks whenever specialized proposi-
tions under them are landmarks. Here, HANDFULL is an abstract
landmark that does not guide the planner as to what block to pick
up.

4Here, we number the action and proposition levels separately,
so that there will be an action level 1 and a proposition level 1

#############
@# # = wall
$ # # $ = box
$ # R = robot
$ # # * = goal
...#
#############

Figure 1: A Sokoban Problem for Landmarks

to a proposition only if it applies to all actions that add that
proposition). Each action node in the graph, after the first
level, is labeled with the union of the labels on its predeces-
sor proposition nodes (because a landmark label applies to
an action if it applies to any of its predecessors). When the
propagation is complete, any label on a goal proposition in
the final level is a causal landmark for plans achieving the
goal.

We performed experiments of our landmark extraction al-
gorithm and the method ff-L described in (Porteous, Sebas-
tia, & Hoffmann 2001) on a set of domains. In most cases,
our algorithm computes a set of nontrivial5 landmarks sig-
nificantly larger than ff-L. We only show one example here.
On the Sokoban6 problem shown in Figure 1, while ff-L
finds out only trivial landmarks, our algorithm finds out all
the landmarks7.

In the following section, we introduce landmark counting
based on a new propagation. And in the final section, we
will discuss ideas of utilizing the landmarks computed by
methods of this section.

Landmark Counting and Heuristic Search
In this section, we first introduce a method for incorpo-
rating landmarks into a heuristic-search planner. We start
by naively counting the landmarks discussed in the previ-
ous section to construct a heuristic, discuss various ideas to
make the landmarks more accurate, and finally develop a
new propagation method for landmark counting that is used
to calculate an improved heuristic. Finally, we present a
preliminary empirical comparison of the landmark-counting
heuristic to FFPLAN’s heuristic and discuss future direc-
tions.

Our method is based on the heuristic-search planner
FFPLAN(Hoffmann & Nebel 2001). The success of
FFPLAN mainly comes from its efficient and accurate
heuristic, and its unique search strategy – enforced hill-
climbing, which is incomplete but often very fast8. Unlike

5A landmark is trivial if it is immediately suggested by the
START and FINISH actions.

6Sokoban is a puzzle involving pushing boxes on two-
dimensional boards consisting of “walls” and “corridors” in which
a robot must push all the blocks into goal positions through corri-
dors. With the lack of a “pulling” action, ill-chosen moves can lead
to deadlocked positions.

7All the landmarks are around the door essentially claiming that
the human must go through that door and push blocks back through
the door.

8In case the enforced hill-climbing fails, which doesn’t happen

pure hill-climbing which iteratively selects single actions
with the best one-step-look-ahead heuristic value (which
may be worse than the heuristic value of the current state)
and often has difficulty with local minima and plateaus, en-
forced hill-climbing iteratively use breadth-first search to
find action sequences that lead to states with heuristic val-
ues that are strictly better than the current state. FFPLAN’s
heuristic is based on reachability analysis and provides an
upper bound on the optimal sequential plan length of the
relaxed planning task. Here we attempt to improve the
strength of FFPLAN’s heuristic by incorporating information
about landmarks.

Incorporating Landmarks into a Heuristic. Landmarks
provide information about important subgoals that must oc-
cur in any successful plan. Intuitively, counting the num-
ber of unachieved action landmarks from a state provides an
estimate of the number of critical steps ahead, which may
provide a “bigger-vision view” than heuristics that count all
actions.

Here we improve upon this naive counting heuristic by
combining the action and proposition landmark information
to obtain a count strictly more complete (i.e. closer to the
true plan length). The method is motivated by two observa-
tions.

First, there are situations where action landmarks are not
sufficient to represent “landmarks” that are naturally present
to human. For example, in the blocks world, if block �
is being held and the goal is to pick up � , then � must
be put somewhere to make the hand empty. The concept
of “remove � from the hand” consists of a set of actions
and can not be represented by any one of them. However,
we observe that actions in this set all contain the proposi-
tion HOLDING ��� � in their delete lists. We thus introduce
propositions as virtual actions and use them to either rep-
resent the set of actions achieving them or the set deleting
them.

Second, we can often infer that an action must be per-
formed a certain number of times in every successful plan or
that a proposition must change its truth value a certain num-
ber of times 9. We want these counts to be reflected in our
heuristic and we will do this by developing propagation al-
gorithms for the counts. One idea for propagating counts is
to replace the intersection and union operations (or similarly
AND and OR operations) from the previous propagation al-
gorithms with maximum or minimum operations on counts.
However, we can do more. For an action node, if all of its
preconditions claim counts on a proposition � such that 5
is the largest, and if � is in the action’s delete list, it is safe
to claim that � must change its truth value at least 6 times
after the action is taken. We now formalize this idea with the
following new propagation method. Space precludes giving
all of the details.

The propagated labels are counts on action occurrences or
proposition transitions. A node � is labeled with count �
on an action � at level
 in the plan graph to represent the

often, it resorts to an expensive but complete search.
9As an example, HANDEMPTY must change its truth value 7

times to solve the Sussman anomaly.

claim that any
 -step parallel plan achieving � must contain
at least � occurrences of � . Similarly, counts on proposi-
tions claim a lower bound on the number of corresponding
proposition transitions. In the initial graph level, an action
level, the START action gets a count of 1 and all other actions
and propositions get a count of 0. For each proposition node,
every action or proposition gets a count equal to the largest
of the counts of that action or proposition on the predeces-
sor action nodes, with the count on the proposition itself ad-
justed to true. To adjust a count to true, the count is replaced
with the smallest odd number that is greater than or equal
to it. (Adjusting a count to false is similarly defined.) On
each action node after the first level, each action or propo-
sition gets a count equal to the smallest of the counts on
the predecessor proposition nodes, with all propositions in
the node’s precondition set and add list adjusted to true, and
all the propositions in the node’s delete list adjusted to false.
When the propagation is complete, counts are extracted from
the FINISH action on the final level10.

Extracting the Heuristic. To use the counts on both ac-
tion occurrences and proposition transitions, we give a lower
bound of the number of actions to achieve those landmarks.
The virtual actions represented by proposition transitions
may overlap with each other and with the real actions. For
example, (stack A B) can achieve both of the virtual actions
“clear A from hand” and “stack something on B”. We cast
the heuristic computation as generalized bin-packing. We
view virtual and real actions as items, where each propo-
sition item has an achiever set representing the set of real
actions that can achieve the proposition and each real action
item has an achiever set consisting of itself. Two items can
be packed into the same bin only if the intersection of their
achiever sets is nonempty. The problem is to determine how
many bins are necessary to pack all of the items. We observe
that if we label bins with real actions, an item can only be
packed into the bins with labels in its achiever set.

We develop a set of sound simplification rules for the
problem motivated by (Korf 2002):

1. If an item can be packed into only one type of bin (i.e., it
has a singleton achiever set), then pick a new bin for that
item and pack as many other items into it as possible.

2. If one label � dominates label � , i.e., every achiever set
containing � also contains � , then � is discarded from
all the achiever sets.

We iteratively apply these sound rules and when no rule
applies we greedily select a bin in which as many items as
possible are packed. The resulting number of bins is our
heuristic value. Alternatively, we can apply these sound
rules as a preprocessing and view the rest problem as an
integer programming instance for which we can use linear
programming to efficiently compute a lower bound.

Empirical Results. We call our implementation of the
heuristic-search planner LC, and compare it with the state-
of-the-art planner FFPLAN 2.3. FFPLAN has a highly opti-
mized C implementation and LC is a preliminary prototype

10As an example, for the Sussman anomaly, our algorithm will
compute a count of 5 for HANDEMPTY

FFPLAN (in C) LC (in Scheme)
States Time Len States Time Len

g1 60 0.02 19 140 11 17
g2 1,560 0.17 123 576 146 53
g3 7,959 1.34 243 1,219 831 103
g4 2,962 0.78 217 1,935 2,592 161
g5 - - - 2,698 6,503 227
g6 - - - 3,559 15,544 301

bw8-0 25 0.02 18 79 3 20
bw8-1 101,430 4.53 32 117 5 26
bw8-2 23 0.02 16 68 3 16
bw9-0 146,624 7.29 30 305 15 34
bw9-1 189 0.01 28 125 7 30
bw9-2 34 0.01 26 126 7 26

bw10-0 63 0.02 34 667 45 34
bw10-1 8,726 0.38 38 1,324 91 34
bw10-2 313 0.02 34 950 68 36
bw11-0 83 0.02 34 431 40 40
bw11-1 4,859,941 4,008.54 46 347 34 30
bw11-2 44 0.02 34 410 37 34
bw12-0 1,743 0.09 44 177 32 36
bw12-1 54 0.01 34 914 111 38
bw13-0 75 0.03 42 1,216 203 42
bw13-1 85,942 6.14 46 1,148 179 44
bw14-0 99 0.03 40 313 71 50
bw14-1 733 0.05 42 477 99 38
bw15-0 - - - 2,439 640 40
bw15-1 153 0.03 52 31,249 8,901 54

log6-0 36 0.02 25 323 3 25
log6-1 18 0.02 14 158 2 14
log8-0 48 0.02 31 563 21 32
log8-1 76 0.02 44 926 30 48

log10-0 90 0.04 46 1390 89 50
log10-1 72 0.03 42 988 65 43
log12-0 82 0.04 42 1281 87 46
log12-1 161 0.03 73 2359 162 79

Table 1: Comparing FFPLAN 2.3 to LC on three domains.
The first 6 rows correspond to Sokoban problems, the next
20 rows to Blocks-world problems, and the remaining 8
rows to Logistics. The three columns for each planner show
the number of states that were evaluated, the time cost in
seconds for search and the plan length respectively. Missing
elements indicate that the planner didn’t finish in 24 hours.

written in Scheme. We tested the programs on machines
running Red Hat 7.2 Linux with dual 1.6GHz Athlon CPUs
and 3.5G main memory, giving each problem instance a 24
hours time bound.

We tested both methods on three domains. The upper part
of Table 1 (problems g1 to g6) shows the results for Sokoban
domain. Our tests are based on a series of problems similar
to that shown in Figure 2 with the number in the problem
name representing the number of blocks.

To achieve the goal, the robot must push the blocks in se-
quence through the door on the middle wall, and not allow
any block to touch any wall except the middle ones. Our
landmark extraction can successfully find all the landmarks
(which are mainly near the door and along the middle line
of the upper room), and intuitively, those landmarks repre-
sents the important subgoals. Thus, the landmark counts can

##################
#
* * * * * * # # = wall
$ = block
##############R# # R = robot
* = goal
$ $ $ $ $ $
#
##################

Figure 2: A Sample Sokoban Problem

efficiently guide the search. As shown in Table 1, the num-
ber of evaluated states grows almost linearly with the plan
lengths, which indicates that the heuristics are very infor-
mative. The time cost grows more dramatical because as
the number of proposition and actions grows, the time cost
of each heuristic calculation also grows. As a comparison,
FFPLAN’s search space explodes much more quickly.

The middle part of Table 1 (problems bw8-0 to bw15-1)
shows Blocks-world domain results for all the problems with
8-15 blocks in the AIPS-2000 Planning Competition. In this
domain, FFPLAN does well in most problems, but performs
very badly on some of the problems. As a comparison, LC
searches more than 3,000 states only in one problem.

The lower part of Table 1 (problems log6-0 to log12-
1)shows Logistics domain results for problems from the
AIPS-2000 Planning Competition. LC performs somewhat
slower than FFPLAN in this domain, but remains compa-
rable, especially in comparison to the difference on the
Sokoban domain.

We do observe that LC’s heuristic calculation is much
slower than FFPLAN’s. The efficiency difference between
C and Scheme is one reason for this. In addition, although
our landmark counting and FFPLAN’s reachability analysis
share the structure of a linear graph, our method propagates
vectors of numbers while FFPLAN propagates only Boolean
values. To make our method more efficient, we are investi-
gating incremental computations of our heuristic.

Incremental Heuristic Computation. Making the
heuristic calculation more efficient is a critical issue for
heuristic planning.

In the earlier part of this paper, we presented a simplifi-
cation of the propagations we actually implement. In par-
ticular, there is no need to keep a copy of every level of
every action or proposition. We can repeatedly compute a
new level from the previous level, discarding old levels—
the resulting propagation becomes a fixed-point computa-
tion. In this view, we can leverage (but do not do so for
the results shown here) an incremental shortest path algo-
rithm, DynamicSWSF-FP, developed recently(Ramalingam
& Reps 1996)(Liu, Koenig, & Furcy 2002). While our
heuristic calculation does not exactly meet their require-
ments and thus does not get the theoretical guarantees of
their algorithm, we have preliminary experimental results
showing that our calculation gains the practical benefits of
DynamicSWSF-FP. We are currently exploring this direc-
tion.

Another future direction is to combine the heuristics of
FFPLAN and LC. Since landmark counting intuitively pro-
vides a “bigger-vision view” but has bigger plateaus, we
consider FFPLAN’s heuristic only when landmark counting
cannot distinguish.

Future Directions
In this section, we briefly discuss other ideas of utilizing
landmarks.

Extracted landmarks can to used as subgoals to guide plan
search. In this approach, it’s critical to decide correct order-
ing of the landmarks. In our propagation, since every propo-
sition and action gets a label of its own landmarks, the prop-
agation can thus get a sound partial ordering as side effect.
We are investigating ways to combine these orderings with
those introduced in (Koehler & Hoffmann 2000) and (Porte-
ous, Sebastia, & Hoffmann 2001), as well as other propaga-
tions that can possibly extract other ordering information.

The extracted landmarks and their ordering soundly con-
struct a partial plan that doesn’t need to be backtracked, thus
we are also interested in combining this with local-search
planners like LPG(Gerevini & Serina 2002).

References
Blum, A. L., and Furst, M. L. 1997. Fast planning through
planning graph analysis. Artificial Intelligence 90:281–
300.
Gerevini, A., and Serina, I. 2002. Lpg: a planner based
on local search for planning graphs. In Proceedings of
the Sixth Int. Conference on AI Planning and Scheduling
(AIPS’02).
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. Journal
of Artificial Intelligence Research 14:253–302.
Koehler, J., and Hoffmann, J. 2000. On reasonable and
forced goal orderings and their use in an agenda-driven
planning algorithm. Journal of Artificial Intelligence Re-
search 12:338–386.
Korf, R. E. 2002. A new algorithm for optimal bin pack-
ing. In Eighteenth National Conference on Artificial Intel-
ligence (AAAI-02), 731–736.
Liu, Y.; Koenig, S.; and Furcy, D. 2002. Speeding up
the calculation of heuristics for heuristic search-based plan-
ning. In Eighteenth National Conference on Artificial In-
telligence (AAAI-02), 484–491.
Porteous, J.; Sebastia, L.; and Hoffmann, J. 2001. On the
extraction, ordering, and usage of landmarks in planning.
In Recent Advances in AI Planning. 6th European Confer-
ence on Planning (ECP’01), 37–48.
Ramalingam, G., and Reps, T. W. 1996. An incremental
algorithm for a generalization of the shortest-path problem.
J. Algorithms 21(2):267–305.

