
Optimal Heuristic Planning using Search Space Splitting

Yacine Zemali and Patrick Fabiani
ONERA / DCSD - Centre de Toulouse

2 avenue Edouard Belin
BP 4025, 31055 Toulouse cedex 4 - FRANCE

{zemali, fabiani}@onera.fr

Abstract

Heuristic search has been widely applied to classical planning
and has proven its efficiency in finding a “good and feasi-
ble” plan as quickly as possible. Finding an optimal solution
remains an NP-hard problem for which even the computa-
tion of an informative admissible heuristic remains a chal-
lenge. Compared to already proposed approaches, the origi-
nality in this paper is to compute an admissible heuristic by
taking into account, via search space splitting, a controlled
amount of dependences between sub-sets of the reachable
space. Search space splitting consists in reintroducing a con-
trolled tree structure in a disjunctive plan graph. The split-
ting strategy, that selects which actions should split the search
space, is automatically determined in a pre-processing stage.
Experiments are presented and discussed.

Keywords : domain-independent classical planning, search
space splitting, heuristic planning, disjunctive planning.

Introduction
Heuristic search has been widely applied to classical plan-
ning and has proven its efficiency in finding a “good and
feasible” plan as quickly as possible. Finding the optimal
solution (either in terms of plan length or of other crite-
ria) remains an NP-hard problem (Bylander 1994). Com-
plete and optimal planners require an exponential compu-
tation time in the worst case, while a number of heuris-
tic planners propose efficient approximative schemes (Hoff-
mann 2002): those planners are often neither complete, nor
optimal. GraphPlan (Blum & Furst 1997) is complete and
optimal: it finds the shortest parallel plan in STRIPS prob-
lems. However, it can be interpreted as a heuristic planner
(Bonet & Geffner 1999): GraphPlan performs an approxi-
mate reachability analysis by neglecting some constraints,
except for the binary mutex relations. In terms of heuristic
search, the planning graph building phase allows to assess
a lower bound of the length of this shortest parallel plan.
The computed heuristic is admissible, but less informative
than the non-admissible heuristic used in (Hoffmann 2001).
Good heuristics can generally be computed by solving a re-
laxed problem, but it may be difficult to take into account
enough constraints with a quick computation method: the
relaxed problem should not make too strong assumptions
about the independence of subgoals. There seems to exist

a compromise to be achieved between computational effi-
ciency and quality, namely admissibility and accuracy, of
the heuristic. We propose and formalize search space split-
ting as a general framework allowing to neglect or take into
account a controlled part of the problem constraints (e.g.
negative interactions) (Zemali, Fabiani, & Ghallab 2001),
and use it in order to compute a variety of informative ad-
missible heuristics, then applicable in anA∗ informed search
algorithm for optimal planning.

We first present related recent developments in heuristic
planning. We formalize State space splitting as a flexible
planning scheme and present how to use it in order to com-
pute a range of informative admissible heuristics. Finally,
we compare splitting strategies in terms of the computa-
tional cost of obtaining an informative admissible heuris-
tic and also in terms of the benefit obtained from using that
heuristic at search stage with an A∗ algorithm.

Issues
A planning heuristic can be computed by considering a re-
laxed problem that is much quicker to solve. HSP (Bonet &
Geffner 1998) computes its heuristic by assuming that sub-
goals are independent: it does not take any interaction into
account. HSPr (Bonet & Geffner 1999) takes some negative
interactions into account while computing its heuristic and
uses a WA∗ algorithm performing a backward search from
the goal to find a valid plan. HSPr* (Haslum & Geffner
2000) computes an admissible heuristic using a shortest path
algorithm. It finds an optimal solution using an IDA* algo-
rithm to search the regression space. HSP 2.0 (Bonet &
Geffner 2001) is a planner that allows to switch between sev-
eral heuristics with aWA∗ search algorithm. FF (Hoffmann
2001) uses a relaxed GraphPlan (without mutex propagation
nor backtrack) to compute an approximation of the length
of the solution, i.e. the length of a solution to the relaxed
problem: this heuristic takes into account all positive inter-
actions, but no negative effects: therefore it is not a lower
bound and not an admissible heuristic. The search is per-
formed using an enforced hill-climbing algorithm, switching
to WA∗ in tougher problems.

Inferring state invariants can help reducing the planning
complexity: invariants are properties that hold in all the
states that are reachable from an initial state. (Rintanen
1998) propose a polynomial iterative fix-point algorithm to

infer 2-literals invariants, such as permanent mutex rela-
tions. TIM (Fox & Long 1998) computes GraphPlan’s per-
manent mutex relations as a pre-processor for STAN (Long
& Fox 1999) : it generates finite state machines for all the
possible transitions for each single object in the domain.
Yet, the benefit of pre-computing permanent mutex rela-
tions appears as not significative enough in GraphPlan-like
approaches, such as in (Fox & Long 2000) or (Meiller &
Fabiani 2001). A generalization to other invariants is pro-
posed in (Rintanen 2000) and in the DISCOPLAN package
(Gerevini & Schubert 2000) which uses syntactic proper-
ties of the operators to verify whether the truth of an in-
variant is preserved. Such invariants or properties of the
domains can rather be used in order to speed up heuristic
computation. “Hybrid” planners efficiently combine both
approaches : AltAlt (Nigenda, Nguyen, & Kambhampati
2000) computes its heuristic using the planning graph pro-
duced by STAN, and searches from the goal with HSPr’s
regression algorithm.

States and facts
The duality between state-based and fact-based representa-
tions is classical: a planning problem can be described either
with a model based on enumerated states or with a model
based on facts that can be true of false. Both representations
characterize the same state space: enumerating all the possi-
ble combinations of truth values for the facts gives the set of
all possible states. Each fact corresponds to the set of states
in which it is true. Each list of facts corresponds to the set of
states in which all the facts are true (the intersection of the
sets of states corresponding to each individual fact).

State-based model
In a state-based model, actions are defined as transitions be-
tween individual states: in each state, an action can either be
executable, leading to another state ω −→a ω′, or not. The
state-based model of a planning problem is defined by:

• a finite possible states set Ω: Ω = {ω1, ω2, . . . , ωn}
• a finite possible actions set A: A = {a1, a2, . . . , am}
• a transition function Ts : ΩxA −→ Ω ∪ {?} associating

to each couple (state, action) (ω, a):

– either an impossibility symbol ? if the action a is not
executable in the state ω: Ts(ω, a) = ?

– either the state ω′ ∈ Ω resulting from the execution of
action a in state ω : Ts(ω, a) = ω′.

Fact-based model
In a fact-based model, actions are defined as operators that
make some fact true and other fact false, provided a number
of facts that have to be true for the action to be executable.
Each action is defined by :

• a list of preconditions, that is to say the facts that have to
be true for the action to be applicable ;

• a list of deletion, that is to say the facts that are made false
by the application of the action ;

• a list of creation, that is to say the facts that are made true
by the application of the action .

An operator defines a macro-transition from a list of facts (a
set of states) to another list of facts (another set of states):
{f0

0 , f
0
1 , . . . , f

0
f } −→a {f1

0 , f
1
1 , . . . , f

1
f ′}.

The fact-based model of a planning problem is defined by:

• a finite set of facts describing the properties of the possi-
ble states F = {f1, f2, . . . , fk}

• a finite possible actions set A: A = {a1, a2, . . . , am}
• a transition function Tf : 2FxA −→ 2F ∪{?} associating

each couple (facts list, action) ({f 0
0 , f

0
1 , . . . , f

0
f }, a):

– either to an impossibility symbol ?
if a’s preconditions do not hold in
{f0

0 , f
0
1 , . . . , f

0
f }: Tf ({f0

0 , f
0
1 , . . . , f

0
f }, a) = ?

– either to the list of facts resulting from the execution of
action a in the states where facts {f 0

0 , f
0
1 , . . . , f

0
f } are

true : Tf ({f0
0 , f

0
1 , . . . , f

0
f }, a) = {f1

0 , f
1
1 , . . . , f

1
f ′}.

Search space
The planning can either be done from the problem defini-
tion or after an exploration phase that builds the graph of the
search space. Depending on how it handles facts or states
and how it develops the transition relation between them, a
planner will not build the same search space nor explore it
in the same way. The classical duality between facts and
states is the basis of our formalization of a variable state
space splitting in the building and exploration of the reach-
able states at planning time.

Tree search space at state level
In a tree search space, all the nodes n of the explored tree
correspond exactly to individual states n = nω. The nodes
are connected by the possible transitions between states. The
transition relation TRs between the explored nodes in an
tree search space is directly given by the transition function
Ts of the state-based model. nω′ is the successor of nω in
the search tree and in the transition relation TRs, if and only
if there exists an action that realizes a transition between
these two corresponding states. Developing such a transition
relation gives the tree of a Forward State Space search.

State-based transition relation

(nω, nω′) ∈ TRs ⇔ ∃a ∈ A/Ts(ω, a) = ω′

Disjunctive search space
In a disjunctive planning approach, the nodes of the search
space are the levels, which correspond to the notion of
depth in a tree: there is only one node by depth. The
successor node Lk+1 at level k + 1 is the list of facts
{fk+1

0 , fk+1
1 , . . . , fk+1

f ′ } built by developing all the transi-
tions that are applicable from the list of facts of its predeces-
sor nodeLk = {fk0 , fk1 , . . . , fkf } at level k (taking some mu-
texes into account). The transition relation TRf is deduced
from the transition function Tf of the fact-based model by
neglecting some constraints :

Disjunctive transition relation
(Lk,Lk+1) ∈ TRf ⇔ ∀fk+1

i′ ∈ Lk+1, ∃a ∈ A,
∃{fki0 , fki1 , .., fkif } ⊂ Lk

/
fk+1
i′ ∈ Tf ({fki0 , fki1 , .., fkif }, a)

Search space splitting
The idea of search space splitting is to reintroduce a tree
structure in a disjunctive search by grouping the facts at each
level k in different nodes instead of one undistinguished list
of facts Lk. For that purpose, it is necessary to split the level
into different nodes constitutive of the tree structure.

This can be done in many ways over the set 2Lk of subsets
of Lk, and in particular the splitting need not be a partition.
On the contrary, useful splitting strategies are more likely to
let each fact belong to a list of nodes, or classes:

Classes : at each level k, the facts of Lk are grouped into
a finite number of subsets that we call classes Cki ∈ 2Lk ,
with i ∈ I as indices. Each class Cki in a level k correspond
to a node nCki of depth k in the tree of the search space.

The set of all classes at a level k is denoted Ck =
{Cki }i∈I . Ck is a covering of Lk. A splitting function
Fksplit : Lk −→ 2C

k

describes how facts are grouped into
classes, associating each fact f ∈ Lk to the set of classes in
Ck it belongs to: Fksplit(f) = {Ck1,f , Ck2,f , . . . Ckl,f}
Such a definition is descriptive rather than constructive.

The splitting strategy defines the rules for creating, prop-
agating or merging classes, thus associating each class at a
given level with its successor classes at the following level.
In that sense, the splitting strategy is the “branching rule” of
the tree structure of the search space. The splitting strategy
can be defined either as k − dependent or not.

Classes are defined while building the search space as
a tree, necessarily combining the splitting strategy and the
transition relation Tf : as a matter of fact, the splitting also
depends on actions. Some classes of the level k are simply
propagated to the level k + 1 just in a similar way as facts
can be propagated by no-ops in GraphPlan.

Splitting strategy: ∀k, Sk
split : CkxA −→ 2C

k+1

∀(Cki , a), Sksplit(Cki , a) = {Ck+1,a
i,1 , Ck+1,a

i,2 , .., Ck+1,a
i,mi }

Once such subclasses have been created, it may be use-
ful to merge them according to some coherence-based, or
similarity-based merging strategy, e.g. merging Ck+1,a

i,ni ,

Ck+1,a′

i′,ni′
,.., Ck+1,al

il,nil
into a single new coherent class re-

named Ck+1
j in the resulting set of classes of level k +

1. All the images (Tf (Cki)) through Tf of the sets of
facts Cki at level k are by construction covered at level
k + 1 by Ck+1 =

{
Ck+1

1 , Ck+1
2 , . . . Ck+1

m

}
and thus:

∀i, Tf (Cki) ⊂ ⋃j={1,...,m} Ck+1
j .

The resulting transition relation in the search space con-
nects two nodes, i.e. two classes of successive levels, if and
only if, for all facts in the arrival class:
• there exists an action whose preconditions are all in a

same departure class and that has this fact as an effect
in the arrival class;

pick(Ball2, left)
pick(Ball1, left)
pick(Ball2, right)
pick(Ball1, right)

 at−robby(roomA)
 free(left)
 free(right)
 at(Ball1, roomA)
 at(Ball2, roomA)

Class 1

 at(Ball1, roomA)
 at(Ball2, roomA)

 at−robby(roomB)
 free(left)

 free(right)

 at(Ball1, roomA)
 at(Ball2, roomA)
 carry(Ball1, right)
 carry(Ball2, right)
 carry(Ball1, left)
 carry(Ball2, left)

 at−robby(roomA)
 free(left)

 free(right)

move(roomA, roomB)

Class 2

Class 1

Figure 1: Splitting process for the gripper domain

• the application of this specific action in the departure class
effectively leads to the arrival class according to the split-
ting strategy.

This transition relation not only requires that the facts in
each class are connected by the fact-based transition relation
Tf , but also that this is coherent with the splitting strategy.
In practice, classes and facts are coherently managed by a
same algorithm.

Splitted transition relation:

(nCki , nCk+1

i′
) ∈ TSf ⇔ ∀fk+1

i′ ∈ nCk+1

i′
, ∃a ∈ A,

∃{fki0 , fki1 , .., fkif } ⊂ nCki
/
fk+1
i′ ∈ Tf ({fki0 , fki1 , .., fkif }, a)

Getting informative admissible heuristics
In GraphPlan, the number of levels of the planning graph
(when the goals are first reached) may be a very poor esti-
mation of the exact length of the solution: in this building
phase, GraphPlan relaxes a number of constraints. It groups
together incompatible facts into sets (levels) that contains a
number of incoherences.

On the contrary, a full splitting approach (a tree explo-
ration) will separate each individual state during the graph
construction. The depth of the planning tree when the goals
are first reached, will give the exact length of an optimal so-
lution. GraphPlan’s approximation is too coarse (too short).
A tree exploration will compute a perfect heuristic, but in an
exponential time.

We use state space splitting in order to achieve a com-
promise between those two extremes: our heuristic is clas-
sically computed by solving a relaxed problem, i.e. having
neglected some constraints, but uses the number of levels of
the splitted planning graph.

Splitting the planning graph allows us to better approxi-
mate the real plan length (see also (Kambhampati, Parker, &
Lambrecht 1997)), taking more negative effects into account
in a controlled way : a number of incoherent sets of states
can be splitted, and more constraints of the problem can be
taken into account. As a consequence, some operators will
not be introduced as early as in a GraphPlan-like building
phase. Therefore, the length of the planning graph (when it
first reaches the goals) is increased getting closer to the real
optimal plan length. Yet, we are still underestimating the ex-
act plan length because not all the constraints are taken into

consideration. The length of the splitted planning graph is a
more informative admissible heuristic.

Splitting on the number of permanent mutexes
Our splitting strategy is based on mutual incoherence, or in-
teractivity, between facts. At each level, facts are grouped
according to their level of mutual coherence with respect to
the problem constraints: facts created by operators that are
not mutex with each other can be grouped in a same class. In
practice, operators with a big interaction degree (this is the
number of instantiated operators with which the current op-
erator is permanently mutex) are marked as “class creator”.

A number of algorithms allow to compute invariants fea-
tures such as permanent mutexes in a planning problem.
We designed an algorithm, devoted to the detection of per-
manent mutex relations, which considers facts as resources
(Meiller & Fabiani 2001): if two operators destroy the same
fact, they are mutex because they try to consume the same
resource, which is not possible. Our algorithm takes advan-
tage of this by coloring the facts. Two facts with a common
color are mutex because they result from the consumption
of a common resource. This marking allows to know if two
facts need competitive resources to be produced. The two
first steps of the algorithm are to determine the number of
colors per fact, and to create the initial colors which will be
used to create new color combinations. The creation of the
first (primary) colors is deduced from the “initial state” of
the problem. Thus, we can give a (or several) different color
to each fact of the initial state because those facts are not
permanent mutex between each other. Our algorithm then
propagate the primary colors until all facts are colored. We
do not detail the propagation process. From the mutex rela-
tions between facts, we deduce the mutex relations between
operators to compute the interaction degrees.

Implementation details
In our planner, the user has to provide a splitting level. This
is a percentage which determines how many operators will
be class creators. Those operators are then determined by
the splitting strategy.

At each call of the heuristic function h, the algorithm
needs to assess sets of states. During the successive calls,
the algorithm may assess several times the same set. To
avoid this, we need to store intermediate valuations of sets
obtained during h computations. A set of states is described
by facts: if n is the number of facts of the problem, each
set is described by a vector v ∈ {0, 1}n, where v[i] gives
the truth value of the ith fact. The vectors are stored in a
decision tree (DT) where leaves contain the h intermediate
valuations. Formally, we have DT : {0, 1}n → N. Thus,
we can read and write intermediate values in a constant time
(n). This mechanism allows us not to recompute h from
scratch.

If during h computation, the algorithm reaches a branch
where it has to assess a set which is already being assessed
at a lower depth, the branch will be cut. To detect such
branches, we also use a method based on decision trees.

Thanks to those mechanisms, our planner behaves like a
dynamic programming algorithm when used with a full split-

0 10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

7000
gripper 6 problem

vi
si

te
d

st
at

es

splitting level

automatic strategy
hand coded strategy

Figure 2: visited states for the gripper problem: instance
with 6 balls

ting. This allows to study a continuum between the resolu-
tion with a relaxed GraphPlan heuristic (no splitting) and
with a dynamic programming approach. With the interme-
diate splitting levels, more or less constraints are taken into
account in the heuristic computation.

Results on the Gripper domain
We solved this problem with two splitting strategies: the au-
tomatic one, described above, and a hand coded one, in or-
der to study the impact of the strategy. We tried a range
of splitting percentages from 0% (then the heuristic compu-
tation is equivalent to a relaxed GraphPlan) to 100%. As
expected, the number of visited states decreases when the
splitting level increases. Figure 2 shows the relation between
the splitting level and the number of visited states for both
strategies. The automatic splitting strategy (dashed edge) is
deduced from the pre-computed permanent mutexes. The
operators with the greatest interaction level are the “move”
operators. As a result, they are preferentially “class cre-
ators” (fig 1). Our hand-coded strategy does exactly the op-
posite: “pick” and “drop” operators are preferentially re-
sponsible for splitting. The automatically deduced strategy
visits the search space in a more efficient way. This is due
to the fact that when we do not split on move operators, we
propagate a lot of incoherence, because move operators are
very interactive and generate numerous mutex relations.

Results on the Blocks World domain
This time, the automatic strategy is equivalent to a random
splitting because each operator has the same interaction de-
gree. As a result, there is no preferentially chosen operator
to be responsible for splitting. By hand, we privileged the
“pick” operators to be responsible for splitting. The hand
coded strategy is here the best one. This is because this strat-
egy manages to capture l-literals constraints between facts
with l ≥ 2 (mutex only correspond to l = 2).

Concerning overall CPU time, on a five blocks instance,
we can see that the two extremes (relaxed GraphPlan and dy-
namic programming) give the best results (fig 3). For a split-
ting level between 0% and 50%, the number of visited states
decreases, but the heuristic computation time increases: we
do not have any benefit from the splitting. From 50%, the
overall CPU time starts to decrease. This is due to our inter-
mediate results storage. With such splitting levels (50% to

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

5 blocks problem

C
P

U
 (s

)

splitting level

Figure 3: CPU time for the 5 blocks problem

100%), the heuristic becomes very informative. The search
algorithm then focuses in one direction. Therefore, previous
stored results will be reused. With too small splitting levels,
there are too much changes of direction for the intermedi-
ate storage to be used efficiently. We verified this intuition
empirically by studying the ratio number of elements stored
in the DT / number of elements read in the DT. This ratio
reflects the utility of our storage. For the 5 blocks problem,
it remains lower than 1 up to 50%, it then slowly increases
from 1 to 3 for a 100% splitting.

Conclusion and Perspectives

We proposed and formalized search space splitting. We pre-
sented its application to compute admissible heuristics for
optimal planning. The search space splitting aims at increas-
ing the quality of the heuristic. The more we split, the more
the heuristic gives a length close to the reality. One of our
future work is to optimize the splitting level in order to min-
imize the global complexity of the planning process: this
level is a parameter given by the user, and we are working
on how to deduce it automatically.

We presented an automatic splitting strategy which ap-
pears to be efficient (in terms of reducing the size of the
search space) in the general case. However, the blocks-
world example proves us the existence of better strategies
in certain cases. We are working on a way to automatically
adapt the splitting strategy to the domain.

Our method is efficient with extreme splitting levels (close
to 0 or 100) on small dimension problems. With bigger di-
mensions, too small splitting levels give a poor estimation,
thus leading the search algorithm to make a too vast explo-
ration. Our first experiments show that problems with high
dimensions should be tackled with a high splitting level. Of
course, we can not handle those problems with a full split-
ting, because it would be equivalent to solve them with a dy-
namic programming algorithm, which is not applicable with
huge dimensions. Quite high splitting levels (60 to 90) could
relax the problem enough to break the complexity while giv-
ing an informative heuristic. The search algorithm would
then concentrate its exploration on a few privileged direc-
tions, because it is well informed. But, this leads to storage
problems: there are too much intermediate results to store
in the DT. To handle this, we envision using tree reduction

methods issued from the MTBDD1 domain.
We expect those methods to help us dealing with tougher

problems: the splitting provides a mean to control the ac-
curacy of the heuristic which could help to explore greater
search spaces in an efficient manner, or to deal with opti-
mization criteria richer than the plan length (PDDL 2.1).

References
Blum, A., and Furst, M. 1997. Fast planning through plan-
ning graph analysis. Artificial Intelligence 90(1–2):281–
300.
Bonet, B., and Geffner, H. 1998. Hsp: Heuristic search
planner. In Planning Competition of AIPS-98.
Bonet, B., and Geffner, H. 1999. Planning as heuristic
search: New results. In ECP-99, 360–372.
Bonet, B., and Geffner, H. 2001. Heuristic search planner
2.0. AI Magazine 22(3):77–80.
Bylander, T. 1994. The computational complexity of
propositional STRIPS planning. Artificial Intelligence
69(1-2):165–204.
Fox, M., and Long, D. 1998. The automatic inference of
state invariants in tim. In JAIR, 367–421.
Fox, M., and Long, D. 2000. Utilizing automatically in-
ferred invariants in graph construction and search. In AIPS-
00, 102–111.
Gerevini, A., and Schubert, L. K. 2000. Discovering
state constraints in DISCOPLAN: Some new results. In
AAAI/IAAI, 761–767.
Haslum, P., and Geffner, H. 2000. Admissible heuristics
for optimal planning. In AIPS-00, 140–149.
Hoffmann, J. 2001. FF: The fast-forward planning system.
AI Magazine 22(3):57–62.
Hoffmann, J. 2002. Local search topology in planning
benchmarks: A theoretical analysis. In AIPS-02.
Kambhampati, S.; Parker, E.; and Lambrecht, E. 1997.
Understanding and extending graphplan. In ECP-97, 260–
272.
Long, D., and Fox, M. 1999. Efficient implementation of
the plan graph in STAN. JAIR 10:87–115.
Meiller, Y., and Fabiani, P. 2001. Tokenplan ; a planner for
both satisfaction and optimization problems. AI Magazine
22(3):85–87.
Nigenda, R.; Nguyen, X.; and Kambhampati, S. 2000. Al-
talt: Combining the advantages of graphplan and heuristic
state search. In KBCS-00.
Rintanen, J. 1998. A planning algorithm not based on
directional search. In KR-98. 617–624.
Rintanen, J. 2000. An iterative algorithm for synthesizing
invariants. In AAAI/IAAI, 806–811.
Zemali, Y.; Fabiani, P.; and Ghallab, M. 2001. Using
state space splitting to compute heuristic in planning. In
PLANSIG-01.

1Multi Terminal Binary Decision Diagram

