
A Framework for Planning in Continuous-time Stochastic Domains
(extended abstract)

Håkan L. S. Younes
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213, U.S.A.

lorens@cs.cmu.edu

Abstract

We propose a framework for policy generation in continuous-
time stochastic domains with concurrent actions and events of
uncertain duration. We make no assumptions regarding the
complexity of the domain dynamics, and our planning algo-
rithm can be used to generate policies for any discrete event
system that can be simulated. We use the continuous stochas-
tic logic (CSL) as a formalism for expressing temporally ex-
tended probabilistic goals and have developed a probabilistic
anytime algorithm for verifying plans in our framework. We
also present an efficient procedure for comparing two plans
that can be used in a hill-climbing search for a goal-satisfying
plan.

Introduction
The problem of planning under uncertainty has been ad-
dressed by researchers in operations research, artificial in-
telligence (AI), and control theory, among others. Numer-
ous approaches have been proposed, but as Bresinaet al.
(2002) recently pointed out, current methods for planning
under uncertainty cannot adequately handle planning prob-
lems with either concurrent actions and events or uncertainty
in action durations and consumption of continuous resources
(e.g. power). In this paper we focus on domains with con-
current events and actions with uncertain duration/delay. We
present a framework for planning in such domains that falls
into the Generate, Test and Debug (GTD) paradigm pro-
posed by Simmons (1988).

We limit our attention to planning domains that can be
modeled asdiscrete event systems. The state of such sys-
tems changes only at discrete time instants, which could be
either at the occurrence of an event or the execution of an ac-
tion. Many man-made dynamic systems (e.g. production or
assembly lines, air traffic control systems, and robotic sys-
tems) can be realistically modeled as discrete event systems.
We present a general algorithm for generating (partial) sta-
tionary policies for discrete event systems, only requiring
that we can generate sample execution paths for the systems.
The sample execution paths can be generated through dis-
crete event simulation.

Drummond & Bresina (1990) recognize the need for
maintenance and prevention goals in realistic planning prob-
lems, in addition to the traditional planning goals of achieve-
ment. We embrace their view, and adopt thecontinuous

stochastic logic(CSL) (Aziz et al. 2000; Baier, Katoen,
& Hermanns 1999) as a formalism for expressingtempo-
rally extendedgoals in continuous-time domains. Recent
advances in probabilistic verification have resulted in effi-
cient algorithms for verifying CSL properties of continuous-
time stochastic systems (Baier, Katoen, & Hermanns 1999;
Infante Ĺopez, Hermanns, & Katoen 2001; Younes & Sim-
mons 2002), but these results have not, to our best knowl-
edge, been used to aid probabilistic plan generation. The
work by Younes & Simmons is based on statistical sam-
pling techniques, and therefore handles any model that can
be simulated—in particular discrete event systems. In this
paper, we present ananytime(Dean & Boddy 1988) ver-
sion of that algorithm for a relevant subset of CSL. We also
present an efficient sampling-based algorithm for compar-
ing two plans that can be used in a hill-climbing search for
a satisfactory plan. The simulation traces generated during
plan verification are used to guide plan repair. We recog-
nize the need for good search control in order to make the
planning algorithm practical. Initial work on heuristics for
guiding plan repair is described in the full-length version of
this paper presented at the main conference.

Planning Framework
We now present a general framework for probabilistic plan-
ning in stochastic domains with concurrent actions and
events. We will use a variation of the transportation domain
developed by Blythe (1994) as an illustrative example. The
objective of the example problem is to transport a package
from CMU in Pittsburgh to Honeywell in Minneapolis, and
with probability at least0.9 have the package arrive within
five hours without losing it on the way.

The package can be transported between the two cities by
airplane, and between two locations within the same city by
taxi. There is one taxi in each city. The Pittsburgh taxi is ini-
tially at CMU, while the Minneapolis taxi is at the airport.
There is one airplane available, and it is initially at the Pitts-
burgh airport. Given these initial conditions, Figure 1 gives
a sequence of actions that if executed can take the package
from CMU to Honeywell.

The plan in Figure 1 may fail, however, due to the ef-
fects of exogenous events and uncertainty in the outcome
of planned actions. The Minneapolis taxi may be used by
other customers while the package is being transported to

load-taxi(pgh-taxi, CMU)
drive(pgh-taxi, CMU, pgh-airport)
unload-taxi(pgh-taxi, pgh-airport)
load-airplane(plane, pgh-airport)

fly(plane, pgh-airport, msp-airport)
unload-airplane(plane, msp-airport)

load-taxi(msp-taxi, msp-airport)
drive(msp-taxi, msp-airport, Honeywell)

unload-taxi(msp-taxi, Honeywell)

Figure 1: Initial plan for transporting a package from CMU
to Honeywell.

Minneapolis, meaning that the taxi may not be at the airport
when the package arrives there. The package may be lost at
an airport if it remains there for too long without being se-
curely stored. The plane may already be full when we arrive
at the airport unless we have made a reservation. Finally,
there is uncertainty in the duration of actions (e.g. drive and
fly) and the timing of exogenous events.

Discrete Event Systems

The planning domain introduced above can be modeled as a
discrete event system. A discrete event system,M, consists
of a set of statesS and a set of eventsE. At any point in
time, the system occupies some states ∈ S. The system
remains in a states until the occurrence of an evente ∈ E,
at which point the system instantaneously transitions to a
states′ (possibly the same state ass). We divide the set
of events into two disjoint setsEa andEe, E = Ea ∪ Ee,
whereEa is the set of actions (or controllable events) andEe

is the set of exogenous events. We assume thatEa always
contains a null-actionε, representing idleness. A policy,π,
for a discrete event system is a mapping from situations to
actions.

Returning to the example problem, we can represent the
possibility of a taxi moving without us in it by two exoge-
nous events: move-taxi and return-taxi. Examples of actions
are given in the plan in Figure 1 (e.g. load-taxi and drive).

A discrete event system ,M, controlled by a policy,π, is
a stochastic process, denotedM[π]. The execution history
of M[π] is captured by asample execution path, which is a
sequence

σ = s0
t0,e0−→ s1

t1,e1−→ s2
t2,e2−→ . . .

with si ∈ S, ei ∈ E, andti > 0 being the time spent in
statesi before eventei triggered a transition to statesi+1.
We callti the holding time forsi.

Consider the example problem again. Say that the ac-
tion load-taxi(pgh-taxi, CMU) triggers in the initial state af-
ter 1 minute. The holding time for the initial state is1 in
this case. The triggering of the load-taxi action takes us
to a state where the package is in the Pittsburgh taxi. Say
that in this state, the event move-taxi(msp-taxi) triggers after
2.6 minutes. We are now in a state where the Minneapolis
taxi is moving, and the holding time for the previous state
is 2.6. This sequence of states and triggering events repre-

sents a possible sample execution path for the transportation
domain.

Sample execution paths come into play when verifying
and repairing plans. For now, we make no assumptions
about the underlying dynamical model of a discrete event
system other than that we can generate sample execution
paths for the system through discrete event simulation. In
particular, we do not assume that the system is Markovian.
We present a general algorithm for planning with discrete
event systems using only the information contained in sam-
ple execution paths.

Problem Specification
A planning problem for a given discrete event system is an
initial states0 (or possibly a distributionp0(s) over states)
and a goal conditionφ. We propose CSL as a formalism for
specifying goal conditions. CSL—inspired by CTL (Clarke,
Emerson, & Sistla 1986) and its extensions to continuous-
time systems (Alur, Courcoubetis, & Dill 1993)—adopts
probabilistic path quantification from PCTL (Hansson &
Jonsson 1994).

The syntax of CSL is defined as

φ ::= a
∣
∣
∣ ¬φ

∣
∣
∣ φ ∧ φ

∣
∣
∣ Pr≥θ(φ U≤t φ)

wherep ∈ [0, 1], t > 0, anda is an atomic proposition.
The standard logic operators have the usual semantics. A
probabilistic formula,Pr≥θ(φ1 U≤t φ2) holds in a states
iff the probability of the set of paths starting ins and sat-
isfying φ1 U≤t φ2 is at leastθ. The formulaφ1 U≤t φ2

holds overσ iff φ2 becomes true in some statesi alongσ
before more thant time units have passed andφ1 is true
in all states prior tosi alongσ. In this paper we will con-
centrate on CSL formulas of the formφ = Pr≥θ(ρ) whereρ
does not contain any probabilistic statements. While the ver-
ification algorithm presented by Younes & Simmons (2002)
can handle nested probabilistic quantification and conjunc-
tive probabilistic statements, it is not immediately obvious
how to compare plans if we allow such constructs in goal
conditions.

We can express the goal condition of the example problem
as the CSL formula

φ = Pr≥0.9(¬lost(pkg) U≤300 at(pkg, Honeywell)).

The problem is then to find a plan such thatφ holds in the
initial states0. The solution is a policy mapping situations
to actions. Next, we present techniques for generating and
repairing stationary policies,π : S → Ea.

Planning Algorithm
Algorithm 1 shows a generic procedure, FIND-PLAN, for
probabilistic planning based on the GTD paradigm. The pro-
cedure takes a discrete event systemM, an initial states0,
a CSL goal conditionφ, and an initial planπ0. The initial
plan can be generated by an efficient deterministic planner,
ignoring any uncertainty, or it can be a null-plan mapping
all states to the null-actionε. If the initial plan is given as a
sequence of events (as in Figure 1), then we derive a station-
ary policy by simulating the execution of the event sequence

and mappings to actiona whenevera is executed ins. In
the latter case we have a pure transformational planner (cf.
Simmons 1988). The planning algorithm is specified as an
anytime algorithm that can be stopped at any time to return
the currently best plan found.

Algorithm 1 Generic planning algorithm for probabilistic
planning based on the GTD paradigm.

FIND-PLAN (M, s0, φ, π0)
if VERIFY-PLAN (M, s0, φ, π0) then

return π0

else
π ⇐ π0

loop � returnπ on break
repeat

π′ ⇐ REPAIR-PLAN (π)
if VERIFY-PLAN (M, s0, φ, π′) then

return π′
else

π′ ⇐ BETTER-PLAN (π, π′)
until π′ 6= π
π ⇐ π′

The procedure VERIFY-PLAN returns true iffφ is satis-
fied in s0 by the stochastic processM[π]. BETTER-PLAN
returns the better of two plans. In the next two sections, we
describe how to efficiently implement these two procedures
using acceptance sampling. In the third section we show
how the information gathered during plan verification can
be used to guide plan repair.

Anytime Plan Verification
Younes & Simmons (2002) propose an algorithm for verify-
ing probabilistic real-time properties using acceptance sam-
pling. Their work shows how to verify CSL properties given
error boundsα andβ, whereα is the maximum probabil-
ity of incorrectly verifying a true property (false negative)
andβ is the maximum probability of incorrectly verifying
a false property (false positive). We adopt this approach,
but develop a true anytime algorithm for verification of CSL
properties of the formφ = Pr≥θ(ρ) that can be stopped at
any time to return a decision with a confidence level whether
φ holds or not. The more time the algorithm is given, the
higher the confidence in the decision will be.

Assume we are using the sequential probability ratio test
(Wald 1945) to verify a probabilistic propertyφ = Pr≥θ(ρ)
with an indifference region of width2δ centered aroundθ.
Typically we fix the error boundsα andβ and, givenn sam-
ples of whichd are positive samples, compute the fraction

f =
pd
1(1 − p1)n−d

pd
0(1 − p0)n−d

with p0 = θ + δ andp1 = θ − δ. We acceptφ as true if
f ≤ β

1−α , rejectφ as false iff ≥ 1−β
α , and generate an

additional sample otherwise.
For an anytime approach to verification, we instead want

to derive error boundsα andβ that can be guaranteed if the

sequential probability ratio test were to be terminated after
n samples andd positive samples have been seen.

Givenn samples andd positive samples, we would accept
φ as true if we had chosenα = α0 andβ = β0 such that

f ≤ β0

1 − α0
(1)

holds. If, instead, we had chosenα = α1 and β = β1

satisfying the inequality

f ≥ 1 − β1

α1
, (2)

then we would rejectφ as false at the current stage. What
decision should be returned if the test procedure was termi-
nated at this point, and what is the confidence in this decision
in terms of error probability?

We will from here on assume thatβi can be expressed as
a fraction ofαi; βi = γαi. We can think ofγ as being the
fraction β

α , with α andβ being the target error bounds for
the verification ofφ if enough time is given the algorithm.
We can acceptφ as true with probability of error at mostβ0

if (1) is satisfied. We have

f ≤ γα0

1 − α0
=⇒ 1 − α0 ≤ γα0

f
=⇒ α0 ≥ 1

1 + γ
f

.

From this follows that if we had aimed for error boundsα =
1

1+γ/f andβ = γ
1+γ/f , then we would have acceptedφ as

true at this stage.
If (2) is satisfied, then we can rejectφ as false with prob-

ability of error at mostα1. In this case we have

f ≥ 1 − γα1

α1
=⇒ fα1 ≥ 1 − γα1 =⇒ α1 ≥ 1

γ + f
.

It now follows that if we had aimed for error boundsα =
1

γ+f andβ = γ
γ+f , then we would have rejectedφ as false

at this stage.
For the moment ignoring any decisions derived prior to

the current sample, if we need to choose between accepting
φ as true and rejectingφ as false at this stage, then we should
choose the decision that can be made with the lowest error
bounds (highest confidence). We choose to acceptφ as true
if

1
1 + γ

f

<
1

γ + f
, (3)

we choose to rejectφ as false if

1
1 + γ

f

>
1

γ + f
, (4)

and we choose a decision with equal probability otherwise.
Note that because we have assumed thatβi = γαi, if
αi < αj then alsoβi < βj , so it is sufficient to compare
theαi’s. If condition (3) holds, then the probability of error
for the chosen decision is at mostγ1+γ/f , while if condition

(4) holds the probability of error is at most1γ+f . We denote
the minimum of theαi’s at the current stage,min(α0, α1),
by α̌.

Algorithm 2 Procedure for anytime verification ofφ =
Pr≥θ(ρ) with an indifference region of width2δ.

VERIFY-PLAN (M, s, φ, π)
α(0) ⇐ 1

2 , d(0) ⇐ either, n ⇐ 0
f ⇐ 1, p0 ⇐ θ + δ, p1 ⇐ θ − δ
loop � returnd(n) on break

generate sample execution pathσ starting ins
if M[π], σ |= ρ then

f ⇐ f · p1
p0

else
f ⇐ f · 1−p1

1−p0

α0 ⇐ 1
1+γ/f , α1 ⇐ 1

γ+f

if α0 < α1 then
d ⇐ true

else ifα1 < α0 then
d ⇐ false

else
d ⇐ either

α̌ = min(α0, α1)
if max(α̌, γα̌) < 1

2 then
if α̌ < α(n) then

α(n+1) ⇐ α̌, d(n+1) ⇐ d
else ifα̌ = α(n) andd 6= d(n) then

α(n+1) ⇐ α(n), d(n+1) ⇐ either
else

α(n+1) ⇐ α(n), d(n+1) ⇐ d(n)

else
α(n+1) ⇐ α(n), d(n+1) ⇐ d(n)

n ⇐ n + 1

Now, let us take into account decisions that could have
been made prior to seeing the current sample. Letα(n) de-
note the lowest error bound achieved up to and including
thenth sample. Ifα̌ < α(n), assuming the current stage is
n + 1, then the decision chosen at the current stage with-
out considering prior decisions is better than any decisions
made at earlier stages, and should therefore be the decision
returned if the algorithm is terminated at this point. Other-
wise, a prior decision is better than the current, so we re-
tain that decision as our choice. We set the lowest error
bounds for stagen + 1 in agreement with the selected de-
cision:α(n+1) = min(α̌, α(n)).

For the sequential probability ratio test to be well defined,
it is required that the error boundsα andβ are less than12 .
It is possible that eitheřα or γα̌ violates this constraint if
γ 6= 1. If that is the case, we simply ignore the current de-
cision and make a random decision. This finalizes the algo-
rithm, summarized in pseudo-code as Algorithm 2, for any-
time verification of probabilistic properties. The result of the
algorithm, if terminated aftern samples, is the decisiond(n)

with a probability of error at mostβ = γα(n) if d(n) = true
andα = α(n) otherwise.

Figure 2 plots the error probability over time as the plan in
Figure 1 is verified for the example problem usingδ = 0.01
andγ = 1. The decision for all confidence levels, except a
few in the very beginning, is that the plan does not satisfy

the goal condition. The confidence in the decision increases
rapidly initially, and exceeds0.99 within 0.08 seconds after
199 samples have been generated.

Plan Comparison
We need to compare two plans in order to perform hill-
climbing search for a satisfactory plan. In this section
we show how to use a sequential test, developed by Wald
(1945), to determine which of two plans is better.

LetM be a discrete event system, and letπ andπ′ be two
plans. Given a planning problem with an initial states0 and
a CSL goal conditionφ = Pr≥θ(ρ), let p be the probability
thatρ is satisfied by sample execution paths ofM[π] starting
in s0 and letp′ be the probability thatρ is satisfied by paths
of M[π′]. We then say thatπ is better thanπ′ for the given
planning problem iffp > p′.

The Wald test is carried out by pairing samples for the
two processesM[π] andM[π′]. We now consider samples
of the form〈b, b′〉, whereb is the result of verifyingρ over
a sample execution path forM[π] (similarly for b′ andπ′).
We count samples only whenb 6= b′. A sample〈true, false〉
is counted as a positive sample because, in this case,π is per-
forming better thanπ′, while a sample〈false, true〉 counts
as a negative sample. Letp̃ be the probability of observing
a positive sample. It is easy to verify that ifπ andπ′ are
equally good, theñp = 1

2 . We should preferπ if p̃ > 1
2 . The

situation is similar to when we are verifying a probabilistic
propertyPr≥θ(ρ), so we can use the sequential probability
ratio test with probability threshold̃θ = 1

2 to compareπ and
π′.

Algorithm 3 shows the procedure for doing the plan com-
parison. Note that this algorithm assumes that we reuse sam-
ples generated in verifying each plan (Algorithm 2).

Algorithm 3 Procedure returning the better of two plans.

BETTER-PLAN (π, π′)
n ⇐ min(|bbb|, |bbb′|)
f ⇐ 1, p0 ⇐ 1

2 + δ, p1 ⇐ 1
2 − δ

for all i ∈ [1, n] do
if bi ∧ ¬b′i then

f ⇐ f · p1
p0

else if¬bi ∧ b′i then
f ⇐ f · 1−p1

1−p0

α0 ⇐ 1
1+1/f , α1 ⇐ 1

1+f

if α0 ≤ α1 then
return π � confidence1 − α0

else
return π′ � confidence1 − α1

Domain Independent Plan Repair
During plan verification, we generate a set of sample ex-
ecution pathsσσσ = {σ1, . . . , σn}. Given a goal condition
φ = Pr≥θ(ρ), we verify the path formulaρ over each sam-
ple pathσi. We denote the set of sample paths over which
ρ holdsσσσ+, and the set of paths over whichρ does not hold
σσσ−. The sample paths inσσσ− provide information on how

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.02 0.04 0.06 0.08 0.1 0.12

Pr
ob

ab
ili

ty
 o

f
E

rr
or

t (s)

Figure 2: Probability of error over time, usingδ = 0.01
andγ = 1, for the verification of the initial plan. The deci-
sion in—except in the very beginning for some error bounds
above0.4—is that the goal condition is not satisfied.

a plan can fail. We can use this information to guide plan
repair without relying on specific domain knowledge.

In order to repair a plan for goal conditionφ = Pr≥θ(ρ),
we need to lower the probability of paths not satisfyingρ. A
negative sample execution path

σ−
i = si0

ti0,ei0−→ si1
ti1,ei1−→ . . .

ti,m−1,ei,m−1−→ sim

is evidence showing how a plan can fail to achieve the goal
condition. We could, conceivably, improve a plan by mod-
ifying it so that it breaks the sequence of states and events
along a negative sample path. A generic repair procedure
could non-deterministically select a state occurring along
some negative sample path, and for the selected state assign
an alternative action. The sample paths help us focus on the
relevant parts of the state space when considering a repair
for a plan.

Discussion
We have presented a framework for policy generation in
continuous-time stochastic domains. Our planning algo-
rithm makes practically no assumptions regarding the com-
plexity of the domain dynamics, and we can use it to gener-
ate stationary policies for any discrete event system that we
can generate sample execution paths for. While most pre-
vious approaches to probabilistic planning requires time to
be discretized, we work with time as a continuous quantity.
To efficiently handle continuous time, we rely on sampling-
based techniques. We use CSL as a formalism for specify-
ing goal conditions, and we have presented an anytime algo-
rithm based on sequential acceptance sampling for verify-
ing whether a plan satisfies a given goal condition. Our ap-
proach to plan verification differs from previous simulation-
based algorithms for probabilistic plan verification (Blythe
1994; Lesh, Martin, & Allen 1998) in that we avoid ever
calculating any probability estimates. Instead we use ef-
ficient statistical hypothesis testing techniques specifically

designed to determine whether the probability of some prop-
erty holding is above a target threshold. We believe that the
verification algorithm in itself is a significant contribution to
the field of probabilistic planning.

Our planning algorithm utilizes information from the ver-
ification phase to guide plan repair. In particular, we are us-
ing negative sample execution paths to determine what can
go wrong, and then try to modify the current plan so that
the negative behavior is avoided. Our planning framework
is not tied to any particular plan repair technique, however,
and our work on plan repair presented in this paper is only
preliminary. As with any planning, the key to focused search
is good search control heuristics. Information from simula-
tion traces helps us focus the repair effort on relevant parts
of the state space.

References
Alur, R.; Courcoubetis, C.; and Dill, D. 1993. Model-
checking in dense real-time.Information and Computation
104.
Aziz, A.; Sanwal, K.; Singhal, V.; and Brayton, R. 2000.
Model-checking continuous-time Markov chains.ACM
Transactions on Computational Logic1.
Baier, C.; Katoen, J.-P.; and Hermanns, H. 1999. Approxi-
mate symbolic model checking of continuous-time Markov
chains. InProc. CONCUR’99.
Blythe, J. 1994. Planning with external events. InProc.
UAI’94.
Bresina, J.; Dearden, R.; Meuleau, N.; Ramakrishnan, S.;
Smith, D. E.; and Washington, R. 2002. Planning under
continuous time and resource uncertainty: A challenge for
AI. In Proc. UAI’02.
Clarke, E. M.; Emerson, E. A.; and Sistla, A. P. 1986. Au-
tomatic verification of finite-state concurrent systems using
temporal logic specifications.ACM Transactions on Pro-
gramming Languages and Systems8.
Dean, T., and Boddy, M. S. 1988. An analysis of time-
dependent planning. InProc. AAAI’88.
Drummond, M., and Bresina, J. 1990. Anytime synthetic
projection: Maximizing the probability of goal satisfaction.
In Proc. AAAI’90.
Hansson, H., and Jonsson, B. 1994. A logic for reasoning
about time and reliability.Formal Aspects of Computing6.
Infante Ĺopez, G. G.; Hermanns, H.; and Katoen, J.-P.
2001. Beyond memoryless distributions: Model checking
semi-Markov chains. InProc. PAPM-PROBMIV’01.
Lesh, N.; Martin, N.; and Allen, J. 1998. Improving big
plans. InProc. AAAI’98.
Simmons, R. G. 1988. A theory of debugging plans and
interpretations. InProc. AAAI’88.
Wald, A. 1945. Sequential tests of statistical hypotheses.
Annals of Mathematical Statistics16.
Younes, H. L. S., and Simmons, R. G. 2002. Probabilis-
tic verification of discrete event systems using acceptance
sampling. InProc. CAV’02.

