Simple Temporal Problemswith Preferences and Uncertainty

Kristen Brent Venable
Dept. of Pure and Applied Mathematics
University of Padova, Italy

Abstract

Simple Temporal Problems (STPs) are a restriction of the
framework of Temporal Constraint Satisfaction Problems,
tractable in polynomial time. Their expressiveness has been
extended independently in two ways. First, to account for un-
controllable events, to Simple Tempora Problems with Un-
certainty (STPUs). Second, more recently, to account for
soft temporal preferences, to Simple Temporal Problemswith
Preferences (STPPs). The motivation for both extensions is
from real-life problems; and indeed such problems may well
necessitate both preferences and uncertainty. Our research
proposes the study of Simple Temporal Problems with Pref-
erences and Uncertainty (STPPUSs), and puts forward two no-
tions of controllability for their resolution.

M otivation

Research on temporal reasoning, once exposed to the dif-
ficulties of real-life problems, can be found lacking both
expressiveness and flexibility. Planning and scheduling for
satellite observations, for example, involves not only quan-
titative temporal constraints between events and qualitative
temporal ordering of events, but also soft temporal prefer-
ences and contingent events over which the agent has no
control. For example, slewing and scanning activities should
not overlap, but may if necessary. On the other hand, the du-
ration of failure recovery procedures is not under the direct
control of the satellite executive.

To address the lack of expressiveness of hard constraints,
preferences can be added to the framework; to address the
lack of flexibility to contingency, handling of uncertainty
can be added. Some real-world problems, however, have
need for both. It is this requirement that motivates us here.

Background
Temporal Constraint Satisfaction Problems

In a temporal constraint problem, variables denote time-
points or intervals, and constraints represent the possible
temporal relations between them. Temporal constraints can
be quantitative (distance between timepoints) or qualitative
(relative position of temporal objects).

Dechter, Meiri, & Pearl (1991) introduced the quantitative
Temporal CSP (TCSP) and its restricted subclass, the Sim-
ple Temporal Problem (STP). Variables x; represent time-

Neil Yorke-Smith
IC—Parc
Imperial College London, U.K.

points (events) and constraints represent the relations be-
tween them. The restriction to at most one interval in
each temporal constraint — hence the constraints have form
lij < zj —x; < uy; — entails that a STP can be solved
in polynomial time. By solved, we mean that consistency
is decided and the minimal network obtained; applying path
consistency suffices for this. In contrast, the general TCSP
is NP-complete.

Simple Temporal Problemswith Preferences

To address the lack of expressiveness in standard STPs,
Khatib et al. (2001) introduced the Simple Temporal Prob-
lem with Preferences (STPP). The framework merges tem-
poral CSP with the standard semiring-based soft constraints
(Bistarelli, Montanari, & Rossi 1997). In addition to the
hard temporal constraints I;; < z; — z; < u;; of a STP, soft
temporal constraints are specified by means of a preference
function on an interval, f : I — A, where I = [l;;,ui;]
and A is a set of preference values, part of a semiring
(A, +,x,0,1). (A semiring is a tuple (A, +, x,0, 1) such
that: Aisasetand 0,1 € A; + is commutative, associative
and 0 is its unit element; x is associative, distributes over
+, 1 is its unit element and O is its absorbing element. A
c-semiring is a semiring in which + is idempotent, 1 is its
absorbing element and x is commutative.)

In general, solving a STPP is NP-complete. However, on
making three assumptions, notably one about the shape of
the preference functions, solving is polynomial in the num-
ber of timepoints: (1) the preference functions are semi-
convex, (2) the semiring multiplicative operator is idempo-
tent, and (3) the values of the semiring are totally ordered.

Rossi et al. (2002b) present two solvers for STPP. The
first, Path-solver, enforces path consistency in the constraint
network, then takes the sub-interval on each constraint cor-
responding to the best preference level. This gives a standard
STP, which is then solved for the first solution by back-free
search. The complexity is polynomial, but the performance
can be poor because a pointwise (discrete) representation
is used for the intervals and the preference functions. The
second solver, Chop-Solver, is less general but more effi-
cient. It finds the maximum level « at which the preferences
can be ‘chopped’, i.e. the intervals are reduced to the set
{z :z € I, f(z) > a} of values mapped to at least « by the
preference functions. This set is a simple interval for each

I, provided the three above assumptions hold. Hence we
obtain a standard STP, STP,,. By binary search, the solver
finds the maximal « for which STP,, is consistent. The so-
lutions of this STP are the solutions of the original STPP.

Simple Temporal Problemsunder Uncertainty

To address the lack of flexibility in execution of standard
STPs, Vidal & Fargier (1999) introduced the Simple Tempo-
ral Problem under Uncertainty (STPU).

Here, as in a STP, the activities have durations specified
by intervals. The start times of all activities are assumed
controlled by the agent (this brings no loss of generality).
The end times, however, fall into two classes: requirement
and contingent. The former, as in a STP, are decided by the
agent, but the latter are decided by ‘Nature’ — the agent has
no control over when the task will end; he observes rather
than executes. The only information known prior to obser-
vation is that nature will respect the interval on the duration.
Durations of contingent links are assumed independent.

Consistency is not enough to ensure temporal feasibility
in the presence of contingent events. Rather, the stronger no-
tion of controllability of a STPU is the analogue of consis-
tency of a STP. Controllable means the agent has a strategy
to execute the timepoints under his control, subject to all
constraints, in all situations involving the contingent time-
points. Three levels of controllability are proposed:

e A STPU is strongly controllable if there is a fixed execu-
tion strategy that works in all realisations. (A realisation
is a possible outcome of the world, i.e. in this case, an
observation of all contingent timepoints.)

e A STPU is dynamically controllable if there is a online
execution strategy that depends only on observed time-
points in the past and that can always be extended to a
complete schedule whatever may happen in the future.

e A STPU is weakly controllable if there is a viable global
execution strategy: there exists at least one schedule for
every realisation.

The three notions are ordered by their strength: strong =
dynamic = weak. The first requires no knowledge of the
realisation, and is in P. The second, surprisingly, is also in P
(Morris, Muscettola, & Vidal 2001). It is seen as the most re-
alistic knowledge assumption in many practical cases, since
it interleaves scheduling, observation and execution. The
third requires a prior knowledge of the realisation, and is
co-NP complete.

In this paper we formally define a class of temporal con-
straint satisfaction problems that feature both preferences
and uncertainty. For this class of problems we consider the
equivalent of Strong and Weak Controllability. In particular
we extend both notions of controllability and we give algo-
rithms to check whether a problem satisfies their definition.
We show that adding preferences does not impact on the
complexity of checking these two types of controllability. In
fact, the algorithms we propose for checking strong control-
lability of STPPUs with preferences are polynomial, while
those for checking weak controllability are co-NP complete.

Simple Tempor al Problemswith Preferences
and Uncertainty

Consider a temporal problem that we would model naturally
with preferences, in addition to hard constraints, but that also
features uncertainty. Neither a STPP nor a STPU is ade-
quate. Therefore we propose what we call Simple Temporal
Problems with Preferences and Uncertainty, or STPPUSs.

An informal definition of a STPPU is a STPP for which
the (end) timepoints are partitioned into two classes, require-
ment and contingent, just as in a STPU. Since some time-
points are not controllable by the agent, the notion of con-
sistency of a STP(P) is replaced by controllability, just as in
a STPU. Every solution to the STPPU has a global prefer-
ence value, just as in a STPP, and we seek a solution which
maximises this value.

More precisely, we can extend some definitions given for
STPPs and STPUs to fit STPPUs in the following way:

Definition 1 e executable timepoints are those points, b;,
whose date is assigned by the agent;

e contingent timepoints are those points, e;, whose uncon-
trollable date is assigned by the external world;

e generic timepoint ¢; is either an executable or a contin-
gent timepoint;

o decision §(b;) is a value assigned to an executable time-
point;

e observation w(e;) is a value assigned (by Nature) to a
contingent timepoint;

e assignment «(t;) is a value assigned by either a decision
to an executable timepoint or by an observation to a con-
tingent timepoint;

e a soft requirement constraint r;;, on generic timepoints
t; and t;, is a pair (I;;, fi;), where I;; = [l;;,u;;] such
that I;; < y(t;) —v(t:) < ug, and fi; = Iy — Ais
a requirement preference function mapping each element
of the interval into an element of the preference set of the
semiring S = (4, +, x,0,1);

e a soft contingent constraint g;;, on executable point b;
and contingent point e;, is a pair (I;;, f;;) where I;; =
[lij,aij] such that lz'j < w(ej) — 5([),) < ﬂij and
fij « I — A'is a contingent preference function that
maps each element of the interval into an element of the
preference set.

We can now state formally the definition of a STPPU,
which combines preferences from the definition of a STPP
with contingency from the definition of a STPU. Note that
we consider links that are hard constraints to be soft con-
straints with maximal preference.

Definition 2 (STPPU) A Simple Temporal Problem with
Preferences and Uncertainty (STPPU) is a tuple P =
(Ne, N, L, L., S) where:

e N, is the set of executable timepoints;

e N is the set of contingent timepoints;

e [, isthe set of soft requirement constraints over S;

e [is the set of soft contingent constraints over S;

e S=(A,+,x,0,1) is a c-semiring.

In order to analyse the solutions to a STPPU, we need
some further preliminary definitions:

Definition 3 e requirement duration +;; is any point in in-
terval I;; of requirement constraint ry;, i.e. v;; = v(t;) —
v(t:);

o contingent duration w;; is any point in interval fij of con-
tingent constraint g;;, i.e. w;; = w(e;) — 6(b;);

e control sequence § of the STPPU an assignment of the
executable time points 6 = {§(b1),...,0(b,)}; if itis an
assignment to all the executable timepoints, the control
sequence is said to be complete, otherwise partial; every
control sequence is associated with a preference value,
pref(8) = I1,.;1350:),600;) fii (8(b3) — 6(bs)), where]
represents the multiplicative operator of the semiring;

e space of complete situations of the STPPU is the Carte-
sian product of all contingent interval 2 = [fl,ﬁl] X...X
lla,iG];

e situation (or realisation) w = ws,...,wg IS an element
of €2; just like for a control sequence it can be complete
or partial; every situatiqn is associated with a preference
pref(w) = [T jjw,; ew fii (Wis);

o for all w € (2, the projection P,, of STPPU P is the STPP
obtained replacing in all soft contingent constraints gy,
fk with [wk,wk].

We say a schedule T" is a complete assignment to the time-
points; every schedule has a preference value, pref(T):

Definition 4 (Schedule) Aschedule T is a complete assign-
ment to all the timepoints of STPPU P; a schedule identifies
an assignment vz or, more precisely, a control sequence ér
and asituation wy = {w;|w]; = wr(e;)—dr(b;)} (we will
write T' = (1, wr)). Hence a schedule identifies a unique
set of requirement durations {v};|v/; = vr(t;) — vr(t:)}
and it is said to be consistent if Vr,-j,f,-j(yg) > 0 and
Vgij, f,-j (wZ;-) > 0. Every schedule is associated with a pref-
erence, simply pref(T') = (IT;;/5,.,, fii (7)) x pref(wr).

We can now give two different types of controllability
which take into account both contingency and preferences.

Definition 5 (Optimal Strong Controllability) A STPPU
is Optimally Strongly Controllable iff there exists a control
sequence ¢ such that for all w € Q, T = (§,w) is a con-
sistent schedule for P,,, and pref(T') is optimal (i.e. there is
no other schedule T consistent with projection P,, such that
pref(T") > pref(T)).

Definition 6 (a-Strong Controllability) A STPPU is a-
Strongly Controllable, with a € A, iff there exists a con-
trol sequence ¢ such that for allw € Q, T = (§,w) is a
consistent schedule for projection P,,, and pref(T) > a.

Definition 7 (Optimal Weak Controllability) A STPPU is
Optimally Weakly Controllable iff for all w € €2 there exists
a control sequence 4, such that T = (d,,,w) is a consistent
schedule for projection P,,, and pref(T") is optimal for P,,.

Definition 8 (a-Weak Controllability) A STPPU is a-
Weakly Controllable, with a € A, iff for all w € Q there
exists a control sequence 4, such that T' = (4,,,w) is a con-
sistent schedule for projection P,,, and pref(T") > a.

Checking Optimal Strong Controllability and
a-Strong Controllability

In this section we describe an algorithm that checks, in poly-
nomial time, whether a STPPU P is Optimally Strongly
Controllable. The algorithm we propose relies on two
known algorithms. The first is Path-Solver (Rossi et al.
2002a) which enforces path consistency on a STPP. The sec-
ond is Strong-Controllability (Vidal & Ghallab 1996), which
checks if a STPU is Strongly Controllable. The main idea is
to apply Strong-Controllability to a special STPU, which we
will call P, that is constructed from the STPP P’ obtained
by first applying Path-Solver to STPPU P.

In order to able to use the former algorithms we need to
impose a restriction on the shape of the preference func-
tions, namely semi-convexity (Rossi et al. 2002a). (Re-
call that a function f : I — A is semi-convex if Ya € A
the set of elements {# € I|f(z) > a} forms a unique
interval.) We will also assume that the semiring underly-
ing our constraint problems is the fuzzy semiring Srcsp =
{[0, 1], maz, min, 0, 1).

Any STPPU can be treated as a STPP ignoring the fact
that some constraints are contingent. In particular we can
consider function IU (‘lgnore Uncertainty’) that maps a
STPPU P = (N.,N.,L,,L.,S) into STPP IU(P) =
{I, f) (Rossi et al. 2002a) where the set of intervals I is
the set of all the intervals of soft constraints in L,. and L.,
and preference function f : I — A acts on each interval as
the preference function of the soft constraint in P.

Now for checking Strong Controllability, since we are not
interested in retrieving an actual solution, we only need to
apply the first part of Path-Solver. We will call this sub-
algorithm Soft-PC-2. Soft-PC-2 takes as input a STPP and
enforces path consistency. As a result, it squeezes some in-
tervals and lowers some preference functions. At the end,
all the preference functions reach the same maximum pref-
erence level, which we will call opt, which corresponds to
some sub-intervals of I.

Soft-PC-2 returns a STPP that has interesting features.
First, the intervals consist of a minimal STP (i.e. a problem
containing only points that appear in at least one solution).
Second, the sub-STP consisting of the sub-intervals mapped
by the preference functions into opt is minimal as well, and
all its solutions are optimal solutions of the original STPP.

We will call P,,; the STPU obtained considering the sub-
intervals mapped into opt on all the requirement constraints
after Soft-PC-2, and the original intervals on all the contin-
gent constraints. Notice that the semi-convexity of the pref-
erence functions guarantees that P,,; is a STPU and not a
TCSPU. The procedure that, given as input a path consis-
tent STPP, returns a STPU, with the structure we have just
described will be referred to as OPT.

Of course, if any contingent constraint is squeezed during
the enforcement of path consistency, we can conclude that

the problem is not pseudo-controllable (Morris & Muscet-
tola 2000) and hence not Strongly Controllable. Further-
more, the following theorem allows us to conclude that it
cannot be Optimally Strongly Controllable.

Theorem 1 If a STPPU P is Optimally Strongly Control-
lable (OSC) then the STPU @, obtained simply ignoring
preference functions on all the constraints, is Strongly Con-
trollable (SC). However the converse does not hold.

All proofs have been omitted for lack of space.
It can be shown that a STPPU P, with semi-convex func-
tions, is OSC iff P, is SC, as the following theorem states:

Theorem 2 STPPU P, with semi-convex preference func-
tions, is Optimally Strongly Controllable iff the correspond-
ing STPU P, is Strongly Controllable.

To summarise, the algorithm we propose for checking
Optimal Strong consistency of a STPPU P first applies
Soft-PC-2 to IU (P). If any contingent interval is squeezed
during the process then the algorithm stops since the prob-
lem cannot be OSC. Otherwise it extracts P,,; from path
consistent IU (P), and runs Strong-Controllability on Ppp.
The algorithm is shown in Figure 1.

Pseudocode for Path-OSC

. input STPPU P;

. STPPJ + IU(P);

. STPP K « Soft-PC-2 (J);

. if any contingent is squeezed: return FAL SE;

. else:

STPU P, + OPT(K);

if Strong-Controllability (Pop¢): return TRUE;
elsereturn FALSE;

ONOUAWNE

Figure 1: Checking OSC using Soft-PC-2.

Another possibility is to combine Strong-Controllability
with Chop-Solver (Rossi et al. 2002a). Again, we are not
interested in a actual solution so we will consider an algo-
rithm very similar to Chop-Solver, Chop-PC-2. Recall that
Chop-Solver performs a binary search of preference levels.
At each level the STPP is ‘chopped’, meaning that only sub-
intervals mapped into preferences equal or higher than the
chopping level are kept and form a STP. At each level the
consistency of the STP obtained by chopping is considered.
Soft-PC-2 returns the consistent STP, STP,,;, correspond-
ing to the highest level at which chopping leads to a consis-

tent problem. At this point a procedure OPT, very sim-
ilar to OPT, takes as input STP,,: and replaces all the
intervals that originally belonged to contingent constraints
with their original intervals, returning a STPU P,,. Finally,
Strong-Controllability is given P,,, as input. If P,,; is SC
then P is OSC, otherwise P is not OSC. Figure 2 shows the
pseudocode for this algorithm.

Both algorithms we propose are polynomial. The
complexity of Soft-PC-2 and Chop-PC-2 is the same as
Path-Solver and Chop-Solver (since finding an actual solu-
tion was not relevant in terms of complexity): O(n® x R x1),
where n. = |N,| + |N.|, R is the maximum range of an

Pseudocodefor Chop-OSC

1. input STPPU P;

2. STPP J « IU(P);

3. STP STP,pt + Chop-PC-2 (J);

4. STPU Popy « OPT(STPopt);

5. if Strong-Controllability (Pop¢): return TRUE;
6. elsereturn FALSE;

Figure 2: Checking OSC using Chop-Solver.

interval, and [is the number of preference levels. Proce-

dures IU, OPT and OPT are linear in the total number
of constraints, which in turn is O(n?). The complexity of
Strong-Controllability is the same as the complexity of PC-2,
i.e. O(n® x R). We can conclude that both Path-OSC and
Chop-OSC have a total complexity of O(n® x R x 1). Note
that this is in line with results on STPUs (Vidal & Ghallab
1996). In fact, just like SC for STPUs, the complexity of
checking OSC of a STPPU has the same complexity of en-
forcing path consistency.

a-Strong Controllability. We now tackle the problem of
verifying whether a STPPU P is «-SC or not. First of all,
let us point out the main difference between a-SC and OSC.

It is tempting to think that OSC is equivalent to opt-SC
(i.e. @-SC with a = opt, where opt is the maximum pref-
erence level at which Chop-Solver finds a consistent STP).
However this is not the case. Both properties, OSC and a-
SC, entail restrictions on the global preference associated
with a schedule. OSC entails the existence of a control se-
guence that, when completed with a situation, is optimal for
the projection corresponding to that situation. a-SC, how-
ever, imposes that the completed control sequence must have
a preference at least « on all the projections.

For example, no STPPU can ever be a-consistent for any
a > a* = mingeceg fr(wr). Indeed, suppose w is a situ-
ation for which some constraint has preference smaller than
«. Then a projection corresponding to w has only solutions
with preference strictly less than c.

Having said this, we will always consider o < a*. The
following theorem, similar to the one given for OSC, relates
a-SC to SC.

Theorem 3 If a STPPU P is a-Strongly Controllable (a-
SC) then the STPU (), obtained simply ignoring preference
functions on all the constraints, is Strongly Controllable
(SC). However the converse does not hold.

Itis possible to put a-SC of a STPPU P in one-to-one cor-
respondence to SC of a related STPU P“. P is the problem
obtained chopping P at level «, as described in the previ-
ous section. Note that since a < «*, contingent constraints
maintain their intervals after the chop.

Theorem 4 A STPPU P is a-Strongly Controllable, with
a < o, iff the corresponding STPU P is Strongly Con-
trollable.

Figure 3 shows an algorithm to check «-SC. Procedure
Chop(STPP, pref) takes as input a STPP and a preference
level, e.g. a, and returns the STP obtained considering only

intervals mapped by the preference functions to at least pref .
Procedure Add-U(STP) adds the information of which con-
straints and points of the STP are to be considered contin-
gent, hence transforming it in STPU.

Pseudocode for a-SC

1. input STPPU P,

2. STPPJ « IU(P);

3. STP J< « Chop(J,);

4. P® « Add-U(J?);

5. if Strong-Controllability (P,): return TRUE;
6. elsereturn FALSE;

Figure 3: Checking a-Strong Controllability.

Another query one might want to answer is: what is the
highest level « at which P is a-SC? We propose an algo-
rithm that is very similar to Chop-Solver in the sense that
the only modification is to replace, at every chop level, PC-2
with Strong-Controllability. Specifically, it is possible to de-
fine an algorithm Max-a-SC that performs a binary search
for the highest level a at which the problem is a-SC. Af-
ter chopping at level I the STP J! obtained is transformed
by function Add-U(STP) into STPU P! and then passed to
Strong-Controllability. Note that in general o < opt.

The complexity of algorithm «-SC is clearly the same as
the complexity of Strong-Controllability. In fact, the pro-
cedures of lines 2—4 are linear in the total number of con-
straints. The complexity of Max-a-SC is also tied to the
complexity of Strong-Controllability. The algorithm itself
consist of applying Strong-Controllability a number of times,
at most polynomial in the number of nodes, as specified
by the parameter precision given as input. We can con-
clude that the complexity of a-SC is O(n?® x R), and that of
Max-a-SC is O(p x n® x R), where p is proportional to the
search precision required by the user.

Checking Optimal Weak Controllability and
a-Weak Controllability

We now consider the impact of adding preferences with re-
spect to the issue of Weak Controllability. The following
theorem states how OWC and WC are related.

Theorem 5 A STPPU P is Optimally Weakly Controllable
(OWC) if the STPU @, obtained simply ignoring prefer-
ence functions on all the constraints, is Weakly Controllable
(WC). However the converse does not hold.

The converse fails in general because the theorem takes
in account the possibility of mapping some elements of the
intervals into 0. However if all the elements are mapped
into strictly positive preferences, then the correspondence
becomes biuniform:

Theorem 6 A STPPU P, with strictly positive preference
functions, is Optimally Weakly Controllable (OWC) iff the
STPU (), obtained simply ignoring preference functions on
all the constraints, is Weakly Controllable (WC).

This allows us to conclude that to check OWC, it is
enough to apply algorithm Weak-Controllability proposed in

Vidal & Ghallab (1996). Notice that the condition on prefer-
ence functions in Theorem 6 is sufficient but not necessary.

Now to check a-WC we have two different approaches.
The first approach is to chop the STPPU at level « and then
to apply Weak-Controllability to the STPU obtained. The sec-
ond possibility is to use the fact that a STPU is WC iff all the
projections P, with w € {I1,1} X ... x {Ip, @n}, where h
is the number of contingent constraints, are consistent STPs
(Vidal & Ghallab 1996). Using this, the second approach
is to chop each projection P, at level « and then to check
the consistency of the derived STP. The complexity of both
algorithms is exponential in the number of contingent con-
straints h: O(2" x n® x R).

Future Work

We have introduced the Simple Temporal Problem with
Preferences and Uncertainty, and discussed Strong and
Weak Controllability, together with algorithms to verify
these properties. We would like to extend the concept of
Dynamic Controllability to STPPUs in the same way, and
develop methods to verify and execute a DC STPPU.

Acknowledgements. We would like to thank our supervi-
sors, Francesca Rossi (University of Padova) and Carmen
Gervet (Imperial College London), for collaborating with us
on this research.

References

Bistarelli, S.; Montanari, U.; and Rossi, F. 1997. Semiring-
based constraint solving and optimization. Journal of the
ACM 44(2):201-236.

Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49:61-95.

Khatib, L.; Morris, P.; Morris, R. A.; and Rossi, F. 2001.
Temporal constraint reasoning with preferences. In Proc.
of IJCAI’01, 322-327.

Morris, P., and Muscettola, N. 2000. Execution of temporal
plans with uncertainty. In Proc. of AAAI-2000, 491-496.

Morris, P.; Muscettola, N.; and Vidal, T. 2001. Dynamic
control of plans with temporal uncertainty. In Proc. of 13-
CAI’01, 494-502.

Rossi, F.; Sperduti, A.; Venable, K.; Khatib, L.; Morris, P.;
and Morris, R. 2002a. Learning and solving soft temporal
constraints: An experimental study. In Proc. of CP’02,
249-263.

Rossi, F.; Venable, K.; Khatib, L.; Morris, P.; and Morris,
R. 2002b. Two solvers for tractable temporal constraints
with preferences. In Proc. of AAAI-02 Workshop on Pref-
erence in Al and CP.

Vidal, T., and Fargier, H. 1999. Handling contingency
in temporal constraint networks: From consistency to con-
trollabilities. Journal of Experimental and Theoretical Ar-
tificial Intelligence 11(1):23-45.

Vidal, T., and Ghallab, M. 1996. Dealing with uncer-
tain durations in temporal constraint networks dedicated to
planning. In Proc. of ECAI-96, 48-52.

