
A View Integration Approach to Dynamic Composition of Web Services

Snehal Thakkar

University of Southern California/ Information Sciences Institute
4676 Admiralty Way,

Marina Del Rey, California 90292
thakkar@isi.edu

Abstract
Web services enable the user to integrate and manipulate
data from distributed data sources without worrying about
the underlying syntactical details. We describe extensions
to the view integration approach to support dynamic
integration of data from web services and support dynamic
composition of web services from existing web services. In
particular, we describe techniques to extend the “inverse
rules” query reformulation algorithm to generate a universal
integration plan to answer template user queries. To
demonstrate the effectiveness of these techniques we
describe a mediator-based system that dynamically
composes various web services in response to a user query
and provides an integrated web service that can handle a
range of user requests.

1. Introduction
The emergence of web services standards has opened the
doors for exciting new applications on the web that
integrate and manipulate information from different web
services and web sources. Several vendors have provided
different tools to easily build and deploy web services.
The XML-based standards for information interchange,
such as WSDL, and web-based transport protocols such as
SOAP, address syntactical issues involved in integrating
information from different web services. The true
potential of web services can only be achieved if web
services are used to dynamically compose new web
services that provide additional functionality.

In the context of dynamically composing new web
services from existing web services, the existing web
services can be viewed as data sources. In recent years
various mediator systems, such as the Information
Manifold [10], InfoMaster [5], InfoSleuth [3], and Ariadne
[7], have been developed to provide a unified query
interface to distributed data sources. At the same time the
theoretical fundamentals of data integration were
developed and are now well understood [6, 9]. The
traditional mediator systems accept a specific user query
and reformulate the query into a combination of source
queries that can answer the user query.

This research focuses on developing an extensible
information integration framework that can support
accurate and efficient integration of a wide variety of data.
The goal of the research is to produce an information
integration framework that can (a) model web services as
data sources, (b) dynamically compose new web services
to answer template user queries by generating different
query plans that integrate information from various data
sources, (c) automatically model the dynamically
composed web services as new data sources, and (d)
provide extensible set of predicates to support accurate and
efficient integration of heterogeneous data. The research
on dynamically composing web services to answer
template queries and automatically modelling newly
generated web services as data sources is described in this
paper. Several research projects that I am working on are
related to the design of predicates that can be used by the
mediator. The Proteus project describes work on
designing new set of predicates such as, conflation, for
geo-spatial data integration [8]. I am also working with
other students on developing object consolidation
predicate using the record linkage techniques described in
[12].

In this paper, we describe an extension to the mediator
based approach to support the dynamic composition of
web services. In particular we propose an extension to the
Inverse Rules query reformulation algorithm [4] that
produces a generalized service composition in response to
a user request. Instead of generating a plan limited to the
specific user request, our system produces an integrated
web service that can answer a much larger range of
requests, in a sense it produces a universal integration plan
[11].

The remainder of this paper is organized as follows.
Section 2 describes an example scenario that will be used
throughout the paper to explain the different concepts
more clearly. Section 3 discusses relevant previous work
in information integration. Section 4 describes a novel
approach to dynamically compose web services from the
existing web services. Finally, Section 5 discusses the
contributions of this research and outlines the plans for
future work.

2. Motivating Example
Consider a real estate domain scenario in which the user
wants to find out the values of the properties that a given
company owns in a given city. Assume that the available
web services for this domain are:

CitytoCounty(cityb, countyf)
LAProperty(addressb, valuef, countyf)
SFProperty(addressb, valuef, countyf)
OrangeProperty(addressb, valuef, countyf)
YellowPages(nameb, cityb, addressf, phonef)

Each web service is described as a predicate with binding
patterns, as it is common in describing web sources. The
superscript ‘b’ indicates that the attribute is a required
input of the service. The superscript ‘f’ indicates that there
is no restriction on the attribute. The CitytoCounty web
service requires a city as an input and outputs the county in
which the city is located. The LAProperty service accepts
an address in Los Angeles County and provides the value
of the property located at that address. Similarly, the
SFProperty and the OrangeProperty web services provide
property values for addresses in San Francisco county and
Orange county, respectively. The YellowPages web
service accepts a business name and a city and provides the
addresses for all the locations of the given business in the
given city.

The user can send different requests to the mediator
system. As a running example, we will use the query “find
the property values for all ‘Burger King’ locations in ‘Los
Angeles’”. When the mediator system receives such a
query from the user, it generates a query plan that invokes
the relevant web services, combines their outputs, and
composes the answer. The next section describes an
information integration system that we have developed in
past to answer the user queries similar to the query above.

3. Previous Work
In recent past, there has been a lot of work on information
integration frameworks. We combined a popular query
reformulation algorithm called the Inverse Rules [4], with
a streaming, dataflow style execution engine termed
Theseus [2] to generate a new mediator system. The key
advantages of the new mediator system are the ability to
provide maximally complete answers to the user queries,
support for recursion and binding patterns, and a streaming
dataflow style execution system. This section briefly
describes this mediator system. Section 3.1 describes the
Inverse Rules algorithm to reformulate user queries into a
datalog program representing a set of queries on various

sources.
Section 3.2
describes the
execution of
the datalog

programs generated by the Inverse Rules algorithm.

3.1 Inverse Rules
The Inverse Rules algorithm was utilized by the
InfoMaster information integration system [4]. The key
advantages of the Inverse Rules algorithm are the ability to
handle recursive user queries, the ability to handle
functional dependencies, and the ability to handle access
pattern limitations. The mediator systems that use the
Inverse Rules algorithm utilize the Local-as-view model
[9], i.e. they define the source relations as a view over the
global relations. For this paper, the mediator system has
access to the data sources described in Section 2 and the
mediator has the following global relations in its domain
model.

FindCounty(cityb, countyf)
Propertytax(addressb, valuef)
FindLocations(nameb, cityb, addressf, phonef)

The mediator system describes the data sources as

views over the global relations as follows:

CitytoCounty(cityb, countyf):- FindCounty(city, county)
 LAProperty(addressb, valuef, countyf):-

PropertyTax(address, value, ‘LA’)
SFProperty(addressb, valuef, countyf):-

PropertyTax(address, value, ‘SF’)
OrangeProperty(addressb, valuef, countyb) :-

PropertyTax(address, value, ‘Orange’)
YellowPages(nameb, cityb, addressf, phonef) :-

FindLocations(name, city, address, phone)

The first step of the Inverse Rules algorithm is to invert

the view definitions to obtain definitions for all global
relations as views over the source relations. In order to
generate the inverse view definitions, the Inverse Rules
algorithm analyzes all local as view definitions. For every
view definition, V(X) :- S1(X1),…,Sn(Xn), where X, Xi
refer to set of attributes in the corresponding view or
relation, the Inverse Rules algorithm generates n inverse
rules, for i = 1,..,n, Si(X’i) :- V(X), where if Xi ε X, X’i is
the same as Xi else Xi is replaced by a function symbol [4].

When a user sends a query to the system, the Inverse
Rules algorithm unions the inverse rules with the user
query to produce a set of datalog rules to answer the user
query. The datalog rules and the schema information are
passed to the query execution engine to execute the query
plan. In our example, the system generates the following
set of datalog rules & queries:

Rules:
PropertyTax(address, value, county) :-

LAProperty(address, value, ‘LA’)
PropertyTax(address, value, county) :-

SFProperty(address, value, ‘SF’)
PropertyTax(address, value, county) :-

Extended version of this paper was submitted to the
ICAPS 2003 workshop on Planning for Web
Services.

OrangeProperty(address, value, ‘Orange’)
FindLocations(name, city, address, phone) :-

YellowPages(name, city, address, phone)
Query1(name, city, address, value) :-

FindLocations(name, address, phone)^
PropertyTax(address, value, county)

Queries:
Query1(‘Burger King’, ‘Los Angeles’, address, value)

 The first three rules describe that the PropertyTax
global relation can be obtained by performing union on the
LAProperty, SFProperty, and OrangeProperty data
sources. The next rule describes that the FindLocations
virtual source which can be obtained by querying the
YellowPages data source. Finally, the user query specifies
that first the mediator system should query the
FindLocations virtual source to find all ‘Burger King’
locations in the city of ‘Los Angeles’. Next, the mediator
system should query the PropertyTax virtual source to find
the property values of the locations retrieved from the
FindLocations virtual source.

The mediator system must execute the query plan to
answer the user query. The next section describes how the
generated datalog program is executed to generate the
results of the user query.

3.2 Query Execution
Any datalog execution engine can execute the datalog
program generated by the Inverse Rules algorithm.
However, the datalog execution engines do not have ability
to execute multiple operations in parallel and cannot
stream data between the operations. We have developed a
technique [13] to map datalog programs to integration
plans that can be executed by a streaming, highly parallel
execution engine called Theseus [2].

The Theseus has a wide variety of operators to perform
various data management tasks, access different data
sources, and communication operators such as e-mail.
Among the streaming, highly parallel execution engines,
Theseus is unique in its support for recursion. Theseus can
execute the integration plans more efficiently compared to
the traditional datalog execution engines. The key
advantage of utilizing the Theseus execution engine over

traditional datalog execution engine is the fact, that the
datalog execution engines cannot perform several
operations in parallel or stream data between operations.
For example, Theseus can query all the property tax web
services in parallel, while the datalog execution engines
would query property tax web sites sequentially. Next, we
describe how this mediator system can be extended to
support web services.

4. Mediator as a Composer of Web Services
This section describes an extension to the mediator system
described in Section 3. The mediator system described in
Section 3 is extended in two ways. First, the mediator
system is modified to answer not a specific user query, but
a template user query. For example, instead of answering
the user query “find property values for all ‘Burger King’
location in the city of ‘Los Angeles’”, the mediator should
generate a plan to answer a template query “find property
values for all location of the given business in a given
city”. The template query is obtained by just making the
constants in the user query input variables.

Second, the mediator is modified to return the URL of
the dynamically composed web service that can answer the
template user query instead of returning the query results.
Figure 1 shows the architecture of the extended mediator
system. The key difference between the new mediator
system compared to the traditional mediator system, is that
the mediator system dynamically composes new web
service to answer the template user query.

Tuple level filtering technique described in [14] is used
to modify the mediator to generate a universal plan [11]
that can answer the template query instead of the specific
user query. Section 4.1 describes how the Inverse Rules
algorithm is modified to generate an integration plan to
answer template query. Section 4.2 describes how the
generated datalog program is mapped to Theseus
integration plan.

4.1 Modified Inverse Rules Algorithm
The modified Inverse Rules algorithm differs from the
original algorithm in two ways. First, the constants in the
query are treated as variables. In our example, the query
“find property values for all ‘Burger King’ locations in the
city of ‘Los Angeles’” has two constants ‘Burger King’
and ‘Los Angeles’. Both constants are replaced with name
and city input parameters. One direct impact of this
change is the fact that the modified Inverse Rules
algorithm now generates a universal integration plan [11]
that obtains the maximally complete answers to the
template user query given the set of sources.

Second, the constraints from the source definitions are
used to filter the inputs to the sources. For all the source
definitions, attributes involved in the constant constraint
are changed to binding attributes and a filter is added to
make sure that the attribute satisfies the constraint. For
example, the model of the LAProperty tax web service has

Figure 1 Mediator As a Composer of Web Services

a constraint that the web service can only find property
values for the properties located in ‘Los Angeles’ county.
Therefore, before querying a property value for any
address from LAProperty tax web service, the algorithm
needs to verify that the address is in Los Angeles County.
The algorithm changes the county attribute to a bound
variable and adds a filter to ensure that the county attribute
is ‘Los Angeles’. One of the key problems with the
universal integration plan is the fact that generated plan
may send a large number of queries to the available web
services. The second modification allows us to make sure
that the generated plan does not send a large number of
queries to any web services with incorrect parameter
values. This technique is similar to the technique
described in [1] to query some external data sources to
reduce the number of queries to a given web service.

The modified data model and modified queries are then
passed to the Inverse Rules algorithm to generate a datalog
program that can answer the modified query. We will
further clarify this modification by examining the datalog
plan that is generated by the modified Inverse Rules
algorithm.

Rules:
FindCounty(city, county):- CitytoCounty(city, county)
PropertyTax(address, value, ‘LA’):-

LAProperty(address, value, ‘LA’)
PropertyTax(address, value, ‘SF’):-

SFProperty(address, value, ‘SF’)
PropertyTax(address, value, ‘Orange’):-

OrangeProperty(address, value, ‘Orange’)
FindLocations(name, city, address, phone) :-

YellowPages(name, city, address, phone)
Query1(name, city, address, value) :-

FindLocations(name, city, address, phone)^
FindCounty(city, county)^
PropertyTax(address, value, county)

Queries:
Query1(nameb, cityb, address, value)

Listing 1 New Datalog Rules

The modifications to the original datalog plan form
Section 3 are shown in bold. In the modified datalog
program the query Query1 has no constants instead; the
name and the city parameters are bound, i.e. the values for
these parameters must be specified by the user. This
change is due to the first modification of the Inverse Rules
algorithm that replaces the constants in the user query with
input parameters.

The Inverse Rules algorithm also ensures that the
binding patterns for all sources are satisfied. In the
modified data model the LAProperty, the SFProperty, and
the OrangeProperty sources require an address attribute
and a county attribute. The Inverse Rules algorithm adds a
query to FindLocations source to obtain the county
information before querying the PropertyTax virtual

source. Finally, filters are added to ensure that for the
tuples passed to the LAProperty source have value ‘Los
Angeles’ for the county attribute, the tuples passed to the
SFProperty source have value ‘San Francisco’ for the
county attribute, and the tuples passed to the
OrangeProperty source have value ‘Orange’ for the county
attribute. This step ensures that the generated plan does
not send irrelevant queries to various data sources.

4.2 Query Execution
The mediator system maps the generated datalog program
to an integration plan that can be executed by the Theseus
execution engine. The datalog program generated in
Section 4.1 is translated to a Theseus plan shown in Figure
2. The first operations in the Theseus plan are to query
YellowPages and CitytoCounty web services using the
input parameters. The Theseus execution engine queries
both web services in parallel and streams the data between
the two services to the join operator that joins the
information from both web services. Based on the county
attribute of the joined data, the joined data is routed to
LAProperty web service, SFProperty web service, or
OrangeProperty web service. One major difference
between this plan and the plan shown in Section 3.2 is the
fact that only one of the property tax web services is
queried for a given specific query. Moreover, which
property tax service to query for a given specific query is
based on the information queried from the CitytoCounty
web service. This idea is very similar to the idea of
interleaving plan execution and plan generation. However,
the key difference here is the fact that the plan is generated
before the execution begins and the conditions to decide
which property tax web service to query is encoded in the
plan based on the model of difference property tax web
services.

FROM: YellowPages
INPUT: name,city
ATTRs: name, city, address,
phone
OUT: FindLocations

Retrieve (1a)

FROM: Citytocounty
INPUT: city
ATTRs: city, county
OUT: FindCounty

Retrieve (1b)

FROM: LAProperty
INPUT: address
ATTRs: address,value,
county
OUT: PropertyTax1

Retrieve (4a)
FROM: SFProperty
INPUT: address
ATTRs: address,value,
county
OUT: PropertyTax2

Retrieve (4b)
FROM: OrangeProperty
INPUT: address
ATTRs: address,value,
county
OUT: PropertyTax3

Retrieve (4c)

county = ‘LA’
OUT: LAInput

Select (3a)
county = ‘SF’
OUT: SFInput

Select (3b)
county = ‘Orange’
OUT: OrangeInput

Select (3c)

Join attribute = city
OUT: LocationCounty

Join (2)

OUT: Query Result

Union (5)
Query Result

Input: city, name

Figure 2 Modified Theseus Plan

The mediator system utilizes the template integration
plan to generate a new web service that can answer the
template user query. For our example, the mediator
generates a new web service that accepts city and a name
of business as input and returns the property values of the
all the locations of the business in a given city. The
mediator returns URL of the new web service to the user.

5. Conclusions & Future Work
This paper describes techniques to extend the Inverse
Rules [4] algorithm to generate a universal integration plan
to answer the template user query. The modified Inverse
Rules algorithm was used to develop a mediator web
service that dynamically integrates data from various web
services and dynamically composes new web services from
the existing web services. The mediator web service
accepts user queries and returns a URL of dynamically
composed web service that can answer not only the
specific user query, but also the all user queries that fit the
template query.

In future, we plan to extend our mediator framework to
automatically model the newly generated web service as a
data source in the mediator’s domain model. This can be
done very easily as the template query can be used to
describe the new web service. We are also planning to
extend the operations supported by the mediator to
facilitate intelligent integration of data from different web
services. For example, one of the key issues when
integrating data from various web services is to consolidate
information extracted from various data sources. We plan
to incorporate object consolidation techniques from [12] as
an intelligent join operator in the mediator. The object
consolidation techniques allow “soft-matching” the records
extracted from various web services.

Acknowledgements
This work has been advised by Dr.Craig A. Knoblock,
Dr.Cyrus Shahabi, and Dr. Jose Luis Ambite. This
research is based upon work supported in part by the
Defense Advanced Research Projects Agency (DARPA)
and Air Force Research Laboratory under
contract/agreement numbers F30602-01-C-0197 and
F30602-00-1-0504, in part by the Air Force Office of
Scientific Research under grant numbers F49620-01-1-
0053 and F49620-02-1-0270, in part by the United States
Air Force under contract number F49620-01-C-0042,in
part by the Integrated Media Systems Center, a National
Science Foundation Engineering Research Center, under
cooperative agreement number EEC-9529152, and in part
by a gift from the Microsoft Corporation.

References
[1] N. Ashish, C.A. Knoblock, and A. Levy. Information

Gathering Plans with Sensing Actions. European

Conference on Planning, ECP-97. 1997. Toulouse,
France.

[2] G. Barish, D. DiPasquo, C.A. Knoblock, and S.
Minton. A dataflow approach to agent-based
information management. Proceedings of the 2000
International Conference of on Artificial Intelligence.
2000. Las Vegas, NV.

[3] R.J. Bayardo Jr., W. Bohrer, R. Brice, A. Cichocki, J.
Flower, A. Helal, V. Kashyap, T. Ksiezyk, G. Martin,
M. Nodine, M. Rashid, M. Rusinkiewicz, R. Shea, C.
Unnikrishnan, A. Unruh, and D. Woelk. Infosleuth:
Agent-based semantic integration of information in
open and dynamic environments. In Proceedings of
ACM SIGMOD-97. 1997.

[4] O.M. Duschka, Query Planning and Optimization in
Information Integration, in Computer Science. 1997,
Stanford University. p. 92.

[5] M.R. Genesereth, A.M. Keller, and O.M. Duschka.
InfoMaster: An information integration system. In
Proceedings of ACM SIGMOD-97. 1997.

[6] A.Y. Halevy, Answering queries using views: A survey.
The VLDB Journal, 2001. 10(4): p. 270--294.

[7] C. Knoblock, S. Minton, J.L. Ambite, N. Ashish, I.
Muslea, A. Philpot, and S. Tejada, The ARIADNE
Approach to Web-Based Information Integration.
International Journal on Intelligent Cooperative
Information Systems (IJCIS), 2001. 10(1-2): p. 145-
169.

[8] C. Knoblock, C. Shahabi, J.L. Ambite, S. Thakkar, and
C.-c. Chen, Composing Web Sources with .NET. 2002,
University of Southern California.

[9] A. Levy, Logic-Based Techniques in Data Integration,
in Logic Based Artificial Intelligence, J. Minker,
Editor. 2000, Kluwer Publishers.

[10] A.Y. Levy, A. Rajaraman, and J.J. Ordille, Query-
Answering Algorithms for Information Agents, in
Proceedings of the Thirteenth National Conference on
Artificial Intelligence. 1996: Portland, OR. p. 40--47.

[11] M. Shoppers. Universal plans for reactive robots in
unpredictable environments. Proceedings of the
InternationalConference on Artificial Intelligence,
IJCAI-87. 1987.

[12] S. Tejada, C.A. Knoblock, and S. Minton, Learning
Object Identification Rules for Information
Integration. Information Systems, 2001. 26(8).

[13] S. Thakkar and C.A. Knoblock. Efficient Execution of
Recursive Integration Plans. To Appear In Proceeding
of 2003 IJCAI Workshop on Information Integration
on the Web. 2003. Acapulco, Mexico.

[14] S. Thakkar, C.A. Knoblock, J.-L. Ambite, and C.
Shahabi. Dynamically Composing Web Services from
On-line Sources. In Proceeding of 2002 AAAI
Workshop on Intelligent Service Integration. 2002.
Edmonton, Alberta, Canada.

