
Domain Analysis and Domain Knowledge: Generation, Representation, and
Implementation

Ulrich Scholz
Intellectics Group

Darmstadt University of Technology
scholz@thispla.net

Abstract

Domain analysis is the inference of knowledge, termed do-
main knowledge, which is implicit in the description of plan-
ning problems. For many planning techniques, the use of do-
main knowledge yields substantial improvements of perfor-
mance. This paper is concerned with domain analysis in three
different ways. Firstly, we propose the domain knowledge
exchange language DKEL as a mean to represent domain
knowledge and to connect different planning techniques. We
then present path reduction, a domain analysis technique, and
lastly, we describe a novel approach to implement domain
analysis techniques and demonstrate it by its use for path re-
duction.

Planning and Domain Analysis
One characteristic of planning is that planning problems can
encode instances of several problem domains at the same
time, e.g. a logistics problem and a TSP. Hereby, the diffi-
culty of such problems lies in their combination rather than
in the hardness of the respective partial problems. As a
consequence, the design of general planning systems is not
aimed at a specialization on a specific problem type.

Nevertheless, adaption to a considered planning domain
and problem yields significant improvements of perfor-
mance. The base for such an adaption is an examination
of the problem prior to the actual search for a plan, a pro-
cess we term domain analysis. The knowledge inferred by
domain analysis is then used to adopt the planner, i.e., to
choose an appropriate planning technique and to transform
the initial problem in a suitable representation.

Domain analysis techniques, and therefore the adoption of
the planner, show a high variation. They can vary between
a low level problem reduction, where the adaption needs or
reveals almost no structure of the problem, and a high level
decomposition, where subproblems are identified and solved
by special purpose techniques. All these techniques have in
common that they produce (and use) knowledge about the
considered problem, hence it is of interest to study domain
analysis independent of planning.

The work outlined in this paper is concerned with domain
analysis in three different ways. Firstly, we propose the do-
main knowledge exchange language DKEL as mean to rep-
resent domain knowledge and to connect different planning

techniques. We then present path reduction, a domain analy-
sis technique which demonstrates the use of DKEL as input
and output language. Lastly, we describe our implementa-
tion of path reduction. The chosen approach is interesting
in its own right and can be applied to other preprocessing
techniques as well.

DKEL: A Language to Represent and
Exchange Domain Knowledge1

The knowledge input to a planning system may be divided in
two distinct classes: problem specification and advice. The
problem specification in turn typically consists of two parts:
(1) a description of the means at the planners disposal, such
as the possible actions that may be taken and resources that
may be consumed, and (2) the goals to be achieved, includ-
ing possibly a measure that should be optimized, constraints
that should never be violated, and so on. Advice we term
knowledge, of all kinds, intended to help the planner find a
better solution, find it more quickly or even to find a solution
at all.

In between specification and advice, a third class of
knowledge, commonly called domain knowledge, may be
distinguished. Briefly, it consists of statements about a plan-
ning problem that are logically implied by the problem spec-
ification, but that is not part of the specification. We would
like to amend this definition with the requirement that do-
main knowledge is “planner independent”, i.e. not closely
tied to the internal workings of any particular planning sys-
tem, but such a requirement is difficult to formulate pre-
cisely.

There are several good reasons for making this distinc-
tion. First of all, domain knowledge is implied by the prob-
lem specification, so it can be derived from same, and in
many cases derived automatically. In this way it is different
from advice, which must be provided by a domain expert, or
learned from experience over many similar problems. There
is a large, and growing, body of work on automatic domain
analysis of this kind.

Furthermore, good planner advice tends to depend on
knowledge both about properties of the problem and the
planner used to solve it. For a given planner, there is of-
ten a fairly direct mapping from certain classes of domain

1DKEL is joint work with Patrik Halsum.

1



knowledge to useful advice for that planner. To take a sim-
ple example, in a regression planner an obvious use of state
invariants is to cut branches of the search tree that violate an
invariant. This is a sound principle, since a state that violates
an invariant can never be reached and thus a goal set that vi-
olates the invariant is unreachable. The principle is founded
on knowledge of how the planner works, but depends also on
the existence of a certain kind of domain knowledge, namely
state invariants.

On the other hand, domain knowledge in itself does not
determine its use for advice. To continue the example,
state invariants have many more uses: the MIPS planner
uses them to find efficient state encodings (Edelkamp &
Helmert 1999) and to find abstractions for generating heuris-
tics (Edelkamp 2001), while in GRT (Refanidis & Vlahavas
2001) they are used to split the problem into parts and to im-
prove the heuristic. In principle, the same planner can use
the same domain knowledge in different, mutually exclusive
ways.

In order to separate the generation and use of domain
knowledge, we need some means of exchanging this knowl-
edge between producer and consumer. What we propose is
to “standardize” the expression of domain knowledge, using
a language that builds on PDDL (McDermott et al. 1998),
to make this exchange as natural and easy as the passing of
a problem specification to a planner. In short, what PDDL
has done for planning problem specification, we wish to do
for domain knowledge. To this end, we have created the
Domain Knowledge Exchange Language. The main goal of
DKEL is to enable the kind of quick and easy prototyping
of integrated planning systems outlined above. At the same
time, it provides a limited taxonomy of different kinds of
domain knowledge, with an attempt at a rigorous definition
of the semantics for each kind.

DKEL augments the original domain or problem descrip-
tion with domain knowledge rather than altering or reducing
it right away. Preserving the original structure of the domain
and problem specification has several advantages: First of
all, it is a prerequisite for the “chaining” of several anal-
ysis techniques described above. In addition, it leaves the
choice of what knowledge to apply, and how to apply it, up
to the planner. As mentioned earlier, turning domain knowl-
edge into effective advice for a specific planner depends on
knowledge of the workings of that planner, and including
this in the exchange language would blur the separation be-
tween the generation and use of knowledge that it is meant to
help achieve. Likewise, the decision what knowledge gen-
erating components to couple to a specific planner belongs
with the user and not in the language that provides the cou-
pling.

The explicit representation of domain knowledge also has
other uses than simply connecting different parts of a plan-
ner. For example, it opens up the possibility of reasoning
about the planning process. This use is demonstrated by
the planner HAP (Vrakas, Tsoumakas, & Vlahavas 2002),
whose planning strategy is adjusted according to the exis-
tence and characteristic of domain properties. Statements
of domain knowledge, e.g. a state invariant, are regarded as
property of the corresponding domain, similar to details like

the number of goal facts.
There are also problems related to the use of domain

knowledge in general and to the use of an explicit represen-
tation of it in particular: Not all knowledge is useful to all
planners, and may even be detrimental if incorrectly used.
Even if a particular item of knowledge is useful, the com-
putational cost of inferring it may be higher than the benefit
incurred by its use. But these problems are not intrinsic to
explicit representations of domain knowledge, but only more
prominent for them.

Problems related to the explicit representation of domain
knowledge are the separation of domain analysis from its
use in planning, which means that the planner component
loses control over how knowledge is generated. Knowledge
expressed in an interchange format may be incorrect due to
a flawed analysis, differences in the interpretation of knowl-
edge statements, or even sheer malice. However, adopting
an explicit representation for domain knowledge, such as
DKEL, may also help in avoiding such problems by offering
a human-readable intermediate format with a well-defined
semantics and by encouraging empirical evaluation of plan-
ning tools.

By now, DKEL has been subjected to relatively little in
the way of evaluation. How does one evaluate a language,
especially a language targeted at the role we have in mind
for DKEL? While expressivity can be formally analyzed
and compared, the most important metric of the value of
DKEL is acceptance. Currently, there are three domain anal-
ysis tools that use DKEL as output language: Discoplan,
TIM dkel, a reimplementation of TIM, and RedOp. Fur-
thermore, Varrentrapp et al. (2002) demonstrate the useful-
ness of DKEL with an on-line testbed for planning systems.
DKEL is joint work with Patrik Haslum. A throughout dis-
cussion of the current development of DKEL has been pre-
sented at the ICAPS’03 workshop on PDDL (Haslum &
Scholz 2003).

Path Reduction
Path reduction is a preprocessing technique aimed at reduc-
ing planning problems via the analysis of specific state in-
variants. In short, these state invariants can be seen as au-
tomata, and if a planning domain exhibits such invariants, a
solution to a planning problem in that domain corresponds
to a path for every automaton of its domain. In other words,
every automaton accepts if it receives a solution as input.
This allows to consider a solution of a planning problem as
composition of separate solutions to the automata of the cor-
responding domain.

The view of planning domains as collection of automata
suggests a planning strategy via divide and conquer: For
each automata find a path that reaches its accepting state.
Then combine these separate paths into one solution plan.
Unfortunately, automata are not amenable to such a sim-
ple idea: The execution of a path in one automaton has
side-effects on the other automata. Such side-effects com-
plicate the composition or arbitrary paths to a conflict-free
sequence. In fact, finding a path through an automaton that
is part of a solution is at least as hard as planning itself. In-

2



stead of using automata for planning directly, we propose
their use in a reduction technique.

The core idea of path reduction is to relate paths according
to their replaceability in plans. If we consider the set of
solutions to a given planning problem in respect to a single
automation, the paths in that automaton are related across all
these solutions. One similarity is, for example, that they all
begin and end with the same facts, which are given by the
initial state and the goal of the problem, respectively. We
want to use this similarity to find and exclude paths that are
unnecessary for solving the problem. A path P is obviously
unnecessary if for every plan that uses P there is another
plan that differs from the first solely by its use of another
path instead of P . We call such paths P replaceable. We
now examine paths regarding their replaceability and accept
paths as relevant that cannot be replaced. We then exclude
paths from solutions that are not identified as relevant.

What do we expect from path replaceability? In short, we
want (1) that many paths are replaceable, (2) that replaceable
paths can be exchanged in many plans, and (3) that we can
easily test whether the exchange of a replaceable path is pos-
sible. These design goals are contradictory to some extend
and they cannot be meet simultaneously in full. The first
point states that the number of replaceable paths should be
large, thus we have a large potential of reduction. The more
similar we require replaceable paths to be, the less paths can
be replaced. Therefore, we want to pose as few conditions
on similarity as possible, e.g. we want to abstract from the
middle parts of a path and only consider its beginning and
end. The ideal of applicability, the second point, means that
if we call two paths replaceable, we want the replacement to
be valid in any plan, i.e. regardless of the context. Clearly,
the less restrictions we pose on the definition of replaceabil-
ity, the more likely it is that we need to test whether a re-
placement is valid or not. Point three states that this test
should be easy.

Some properties of planning problems complicate the def-
inition of path replaceability, especially properties that do
not match the view of planning domains as collection of au-
tomata. Such properties include the deletion of all facts of a
state invariant, which corresponds to an automaton without
active state, and the existence of facts that are not element of
any state invariant.

With a function to decide path replacement, we can build
a constructive technique, whose application results in a set
of paths that is guaranteed to suffice for a solution: path re-
duction. Commencing with an attempt to find a path from
the initial state to the goal and by using the knowledge of the
corresponding facts, we accept any path as relevant that con-
nects these two facts and that is not replaceable by another
path. We then identify fact pairs that have to be connected in
order to execute these paths and identify relevant paths that
connect these facts. We repeat this step until we find a fixed
point. This algorithm, with some enhancements, guarantees
that the fixed point is found quickly and that the paths in a
fixed point suffice to find an optimal solution to the problem
under examination.

Path reduction is similar to the reduction techniques like
ROS (Scholz 1999) and RedOp (Haslum & Jonsson 2000),

which compare action sequences and exclude some of them,
too. Both ROS and RedOp on the one side and path reduc-
tion on the other side compare subsequences of plans. They
differ in the kind of sequences under investigation, the class
of candidate sequences, and how the results are used to re-
duce planning. In particular, ROS and RedOp operate on
subsequences of plans, i.e., conflict-free action sequences.
If such a sequence is part of a plan, it is not interleaved by
any other action of the plan. Their application results in a set
of sequences that can be excluded from the search. Only few
planning systems can use domain knowledge of this kind.

In contrast, path reduction operates on paths, which are
not necessarily conflict-free and which can be interleaved by
other actions in a plan. Thus, path reduction allows to com-
pare sequences that cannot be compared by the others. The
application of path reduction onto a planning problem yields
another planning problem, which then can be solved by any
planning system that could solve the initial one. After the
fixed point of relevant paths is found, all actions that are not
used by these paths are irrelevant. If a planning system uses
this reduced action set, it does never consider paths that use
these irrelevant actions. All actions of the reduced problem
are actions of the original one, so a solution to the reduced
problem is a solution to the original problem, too. One draw-
back of path reduction is its reliance on state invariants be-
cause it is not amenable to domains without. Fortunately,
among the planning domains currently under investigation
such domains are rare.

By now, we have examined several possible designs of
path replacement. The formalism of path reduction has been
worked out and a prototype of path reduction, based on a
ground representation, shows reasonable performance. The
final implementation is finished in parts and its completion
is underway.

Implementing Domain Analysis Techniques:
The General Case

PDDL allows to state planning problems with features
of first order logic, e.g. it allows parameterized operators
whose preconditions and effects are formulas. Even if these
formulas are restricted to conjunctions of literals, they can
still be rather complex to process. For example, the unifi-
cation of two parameters with the same object can result in
a formula that has several occurrences of the same ground
predicate. Statements about combinations of operators, e.g.
to infer statements of domain knowledge, further complicate
the situation.

There are two common strategies to evade this problem:
grounding and syntactic restrictions. After transforming a
planning problem in a grounded form, operators and state-
ments of domain knowledge can be represented by sets of
ground literals. Consequently, operations on such a repre-
sentation are basically set operations, which do not exhibit
the aforementioned problems. The drawback of this ap-
proach is a substantial increase in problem size and a loss
of explicit structure.

The second strategy is to restrict oneself to a syntactic
subclass of all planning problems. For example, the plan-

3



ner IPP (Koehler et al. 1997) does not consider actions that
result from unifying two parameters of an operator with the
same constant. Hereby, it looses completeness but it never
has to consider, e.g., the unification of two literals in a pre-
condition. Another example for such a syntactic restriction
is to solely consider literals that co-occur in the precondition
and effect of operators, i.e. the occurrence of a predicate in
the precondition and in the effect of an operator such that
both have the same parameter vector. This way, a planning
technique would not consider literals that unify otherwise,
even though these literal are part of a domain structure sim-
ilar to those that the technique is aimed at. An example for
a system that poses this kind of restriction is TIM (Fox &
Long 1998).

There is no doubt that current planners which are based on
grounding, like FF (Hoffmann & Nebel 2001), are capable
of solving huge planning problems. Nevertheless, if we want
to increase the size of problems further, we will eventually
have to evade grounding. Likewise, tools that use syntac-
tic restrictions yield excellent results, but these restrictions
are somehow unsatisfactory and are not suitable for all tech-
niques of interest. Consequently, we aim at a design of do-
main analysis tools that is as general as possible.

A likely consequence of implementing a domain analy-
sis technique for the most general case is that we have to
use theorem proving. Consider the (easy) question whether
or not a given operator of a planning domain can always
replace another in solution plans. This is true if for every
ground instance of the second operator there is a correspond-
ing ground instance of the first. Answering this question for
the general case basically corresponds to proving a theorem.

Of course, reducing planning to theorem proving is not
a practical approach. Instead, we use other computation-
ally advantageous techniques, like constraint programming,
to find candidate statements of domain knowledge. We then
employ a theorem prover as subsystem to accept or reject
these candidates. Hence, the considered theorems remain
rather simple compared to the ones that would be necessary
to find such candidates.

Currently, we use this approach for an implementation
of the domain analysis technique path reduction, which has
been described in the previous section. The implementation
is partially finished and shows good performance.

Conclusions
In our view, domain analysis plays an increasing role in
planning. The work described in this paper contributes to
this area in three ways: We proposed the domain knowledge
exchange language DKEL as a mean to represent domain
knowledge and to connect planning tools. Then we pre-
sented path reduction, a domain analysis technique. Finally,
we described a novel way to implement planning techniques
in a general way, i.e. not based on grounding and indepen-
dent of syntactic restrictions.

References
Edelkamp, S., and Helmert, M. 1999. Exhibiting knowl-
edge in planning problems to minimize state encoding

length. In Fox, M., and Biundo, S., eds., Proc. 5th Eu-
ropean Conference on Planning, volume 1809 of Lec-
ture Notes in Artificial Intelligence, 135–147. New York:
Springer.
Edelkamp, S. 2001. Planning with pattern databases. In
Cesta, A., and Borrajo, D., eds., Proc. 6th European Con-
ference on Planning, Lecture Notes in Artificial Intelli-
gence. New York: Springer.
Fox, M., and Long, D. 1998. The automatic inference of
state invariants in TIM. Journal of Artificial Intelligence
Research 9:367–421.
Haslum, P., and Jonsson, P. 2000. Planning with re-
duced operator sets. In Chien, S.; Kambhampati, S.; and
Knoblock, C. A., eds., Proc. 5th Conference on Artificial
Intelligence Planning & Scheduling, 150–158. Brecken-
ridge, USA: AAAI Press.
Haslum, P., and Scholz, U. 2003. Domain knowledge in
planning: Representation and use. ICAPS’03 Workshop on
PDDL. Trento, Italy.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. Journal
of Artificial Intelligence Research 14:253–302.
Koehler, J.; Nebel, B.; Hoffmann, J.; and Dimopoulos, Y.
1997. Extending planning graphs to an ADL subset. In
Steel, S., and Alami, R., eds., Proc. 4th European Confer-
ence on Planning, volume 1348 of Lecture Notes in Com-
puter Science. Toulouse, France: Springer.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C. A.;
Ram, A.; Veloso, M.; Weld, D.; and Wikins, D. 1998.
PDDL - the planning domain definition language. Tech-
nical Report CVC TR-98-003/DCS TR-1165, Yale Center
for Computational Vision and Control.
Refanidis, I., and Vlahavas, I. 2001. The GRT planning
system: Backward heuristic construction in forward state-
space planning. Journal of Artificial Intelligence Research
15:115–161.
Scholz, U. 1999. Action constraints for planning. In Bi-
undo, S., and Fox, M., eds., Proc. 5th European Conference
on Planning, volume 1809 of Lecture Notes in Artificial In-
telligence, 148–160. New York: Springer.
Varrentrapp, K.; Scholz, U.; and Duchstein, P. 2002. De-
sign of a testbed for planning systems. In McCluskey, L.,
ed., AIPS’02 Workshop on Knowledge Engeneering Tools
and Techniques for AI Planning, 51–58.
Vrakas, D.; Tsoumakas, G.; and Vlahavas, I. 2002. To-
wards adaptive heuristic planning through machine learn-
ing. In Grant, T., and Witteveen, C., eds., UK Planning and
Scheduling SIG Workshop, 12–21.

4


