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Introduction
While the Internet Softbots project (Etzioni & Weld 1994)
investigated the use of planning algorithms to control soft-
ware agents (Weld 1996), until recently the area has seen
little activity. However, the excitement surrounding the Se-
mantic Web, has led to renewed interest in software agents,
web service composition, and related topics. With the de-
velopment of DAML-S (Burstein et al. 2002; Ankolenkar
et al. 2001), a DAML+OIL ontology for describing prop-
erties and capabilities of Web services in the form of in-
puts (similar to preconditions) and outputs (effects), an in-
frastructure has been created where agents can automati-
cally discover Web Services that are modeled as actions, and
then create and execute plans (McIlraith, Son, & Zeng 2001;
McDermott 2002).

The major challenge confronting a planning agent op-
erating in an environment such as the Internet is uncer-
tainty about the world-state. But most prior work on
planning under uncertainty (e.g., (Peot & Smith 1992;
Kushmerick, Hanks, & Weld 1995; Pryor & Collins 1996;
Weld, Anderson, & Smith 1998; Bonet & Geffner 2000;
Bertoli, Cimatti, & Roveri 2001)) is inadequate because of
scalability issues. When a single world-state is as com-
plex as a UNIX file system or the Internet, representing be-
lief states explicitly is out of the question. Furthermore,
one requires a sophisticated language simply to represent
sensing actions, which like UNIX ls, can return an un-
bounded amount of information at execution time.1 Clearly
the closed world assumption (Reiter 1978) is no longer
valid, yet the open-world assumption leads to paralysis. In
this case the agent must execute sensing actions to dis-
cover objects and relations while it plans. Furthermore, the
agent must maintain a record of where it has local closed
world (LCW) information (Etzioni, Golden, & Weld 1994;
1997).

Background
The XII and Puccini planners (Golden, Etzioni, & Weld
1994; Golden 1998) controlled an agent that could construct
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1Hence our phrase in the title unbounded incomplete informa-
tion.

and execute plans to achieve simple goals such as “Print
the file, color-picture, to a research printer, making sure
that the printout will be color, and report the status of the
print job,” but domain-specific search control rules were re-
quired (Golden 1997). More recently Petrick and Bacchus
have looked at new ways to represent what an agent knows
(Bacchus & Petrick 1998), and have developed a contingent
planner that can reason about what it will come to learn from
its actions (Petrick & Bacchus 2002). Although both of
these planners have been able to solve new kinds of prob-
lems, neither one uses sophisticated, general-purpose do-
main analysis to guide its search for effective plans, and
hence they don’t scale as well as one would desire.

Fortunately, recent years have seen rapid progress in the
speed and quality of plans generated by the newest classi-
cal and temporal planners. Many of these advances have
resulted from clever ways of developing heuristics to guide
the selection of actions, and search through state-space. For
example, HSPr does a search through the regression space
and calculates a heuristic for each state based on the relaxed
step count to reach each subgoal from the start state (Bonet
& Geffner 1999; 2001). RePOP uses a planning graph to
estimate the cost of achieving a set of subgoals in a partial
plan (Nguyen & Kambhampati 2001). Sapa constructs a re-
laxed temporal planning graph which provides many heuris-
tics based on temporal reachability of goals as well as re-
source constraints (Do & Kambhampati 2001). LPG does a
local search on the planning graph using complicated heuris-
tics that include mutex and precondition counts as well as
difficulty in achieving certain propositions when choosing
actions to add and remove from an action graph (Gerevini
& Serina 2002). Each of these four planners either uses a
planning graph directly or computes an estimated step count
which is similar to reachability analysis in a planning graph.
Heuristic generation by planning-graph analysis has been
discussed in (Nguyen, Kambhampati, & Nigenda 2002;
Nguyen & Kambhampati 2000), and successfully imple-
mented in many recent planners.

Summary
In this paper, we propose new techniques for computing
heuristics that will allow agents to more efficiently plan with
unbounded incomplete information. We describe how to
adapt a planning graph to handle domains with incomplete



action ls( � )
precond: dir( � )
effect: LCW(inDir( � ����� )) �� �	� when inDir( �	���
� )

observe(inDir( �	���
� )) �
observe(type( �	� ))

Figure 1: A simplified representation of the Unix action, ls.

information and actions with unbounded sensing capability.
Then we consider how such a planning graph can be used to
guide the selection of actions when searching for plans, as
well as interleaving planning with execution.

Planning Graph Review
Briefly, a planning graph is a leveled structure that begins
with the initial state of the world as a list of propositions, and
then alternates between action levels and state levels. Action
levels contain all actions whose preconditions are satisfied
by the previous state level (specified by links), while state
levels contain all past propositions plus new ones introduced
by effects of the most recent action level (also specified by
links). The addition of levels continues until two consec-
utive levels are identical. Mutexes can be added between
propositions and actions on the same level that are mutually
exclusive.

Unbounded Information Gathering
We adopt a simplified version of the language and operators
used by the first Internet Softbot (Golden & Weld 1996).
Specifically we will consider sensing actions with univers-
ally quantified effects that can introduce new objects and re-
lations and obtain local closed world information (Etzioni,
Golden, & Weld 1997).

Universally Quantified Sensing Actions
Consider the action ls(d) shown in figure 1. It has an
effect of adding LCW information indicating that the agent
will know all files that exist (and do not exist) in the given
directory. It will also discover any objects in the directory
and add them to its knowledge base. �	� acts as a run-time
variable and will be bound to each object, and observe will
add the facts to the database including the type (file( � � )
or dir( � � )), and relation that � � is in � .

Local Closed World Information
Local Closed World (LCW) information allows an agent to
have complete information about some part of the world
over some set of propositions. This makes it possible for
an agent to solve universally quanitifed goals and to avoid
repetitive actions that sense the same information. For ex-
ample, after executing ls(root), an agent knows exactly
which files are within root and the fact that all other files (in-
cluding objects not yet discovered) are not in root. Note that
there are practically an infinite number of facts explicitly
listing each file not in root. This information is compactly
represented by the statement, LCW(inDir(f, root)).

The idea is that if an agent does not explicitly know some
fact, it can check if the information can be inferred from an
LCW statement. Specifically any object o that binds with f
allows the agent to infer � inDir(o, root).

Knowledge Representation
The agent’s knowledge will be stored in two databases; �
will store facts (can include any literal and its negation), and

will contain LCW information. In general actions can
add and remove information from both of these databases.
A goal is satisfied when the agent can assert the facts by
querying both � and


. For example, consider the case

when the agent is in the directory, root, and would like to
know the value of inDir(core, root). It can begin by
executing ls(root). Then the agent can check if � con-
tains inDir(core, root). If neither inDir(core,
root) or its negation is in � , then the agent can query


,

which will contain LCW(inDir( � , root)). Since inDir( � ,
root) unifies with inDir(core, root), the agent can
infer that inDir(core, root) is false.

Developing Heuristics
There has been considerable work developing heuristics for
planners in bounded domains, but extending them to un-
bounded domains will add new problems that will change
and redirect the focus of some heuristics. The general prob-
lem will not be confined to an initial state, a goal state, and
a finite set of intermediate states, but rather the agent will be
in an interactive world where it can increase what it knows
about states through sensing actions, and move through in-
termediate states by executing actions, as it searches for a
goal state. We believe a planning graph can effectively cap-
ture the structure of such a problem domain.

Extending the Planning Graph
A planning graph will have to be extended to model a do-
main with unbounded information. Here is a set of issues to
consider:

1. How to represent LCW information in the graph
2. Sensing actions that introduce objects and relations
3. Propagating results of sensing actions
4. When to level off graph construction
5. Are there new types of mutexes (e.g., for LCW or sensing)
6. Limiting the graph to relevant information
7. Can the graph be used to derive heuristics to control exe-

cution as well as to control the search for a good plan.
8. Learning distributions over the results of sensing actions

and incorporating these statistics in the heuristic estima-
tor.

One can see that the facts in � correspond to the propo-
sitions in the state levels. A natural way to deal with


is to

add LCW information to the state levels as well. Note that
unlike propositions, LCW facts may not match directly with
preconditions of actions. Instead inference will need to be
performed on the LCW facts at a given state level in order



to conclude what information (including forall conditions)
is available, and which action’s preconditions are satisfied.

Sensing actions can vary from distinguishing between one
of two states (e.g., is the door open), to unlimited informa-
tion gathering (e.g., ls -R from the root directory). Mod-
eling this in a planning graph can be done by adding a spe-
cial proposition at the state level that can either represent
a set of possible literals, or represent a generic type. A
generic type can then be conditionally unified with precon-
ditions at the next level if some satisfying binding exists.
For example, the effects of ls(root) could possibly bind
to dir(homes), since the action may observe a directory
with that name.

As the graph grows, it is important to propagate links from
sensing actions. In this way the agent has an idea of which
goals are easier than others. Furthermore links (or propo-
sitions) can have weights that accumulate how much prior
sensing was needed to obtain a certain proposition.

Unlike normal planning graphs, adding generic types can
theoretically lead to an infinite amount of bindings and
therefore the graph will never level off. This means that
some heuristic will be needed to decide when to stop grow-
ing the graph, and when to add levels during plan construc-
tion. One possibility is to focus on plan construction and
execution if all goal conditions are present in a level, or if
new actions are all dependent on conditions of sensing ac-
tions. Then in some cases the problem may become more of
an agent-centered search (Koenig 2001).

Although the standard mutexes can be included, generic
types and LCW facts will need new mutex rules (including
the related actions). Since a generic type can bind to any
number of objects, it seems impractical to add conditional
mutexes for all cases. Dealing with LCW mutexes is more
reasonable since there are well-defined cases in which LCW
information is kept, lost, or modified. Nevertheless, LCW
information can get relatively complex so it may be best to
use a minimal number of mutexes since it is unclear how
useful they will be.

In a world where sensing can produce nearly infinite
amounts of knowledge, the agent has to be selective in what
to include in the planning graph to keep it tractable. For ex-
ample, executing ls in many directories can produce thou-
sands of files which can all be preconditions for many ac-
tions, most likely irrelevant to a given goal. This suggests
ideas of abstracting action representations in the graph, or
perhaps regressing from the goal to only include potentially
relevant actions.

One method to deal with the problem of infinite sensing
and interleaved planning with execution is to learn distribu-
tions about how likely a sensing action will lead to a goal.
This means that as the agent executes sensing actions, it can
learn to adjust weights of those actions depending on the
success of bindings. This can affect what to include in a
planning graph and the weights to links from sensing ac-
tions.

Example
To illustrate some of these ideas we consider a simple ex-
ample. Suppose an agent in the Unix domain starts in

dir(root) dir(root)

curDir(root)

file(*f)

dir(*d)ls(root)

curDir(root)

LCW(inDir(*f, root))

Figure 2: The agent starts with � = dir(root), curDir(root).
The only action the agent can execute is ls(root). Notice
how the links to file(*f) and dir(*d) are dashed lines
indicating the results of a sensing action.

the root directory with no other information (i.e., � =�
dir(root), curDir(root) � ). The goal is to find a

pdf file (i.e., a file named *.pdf). A planning graph in fig-
ure 2 illustrates this initial situation in the first state level.
Note the effects of the only action, ls(root). The agent
will certainly gain LCW information about what is in the
root directory, but it will not know until execution whether
it will discover any files or directories, and what their names
and types will be. Therefore *f represents any number of
files with potentially any name (*f is a generic type), and
is linked with a dashed line. This means that at the next
action level, it will be possible to add an action such as
mv(core, newfile.pdf) by binding core to *f, which
would achieve the goal. Even more direct would be to
bind *f to somefile.pdf immediately achieving the goal. Of
course a plan is not complete until successfully executed.

Suppose the agent executes ls(root) and discovers a
file, paper.tex, and a directory, papers, but no *.pdf file.
Then the agent’s knowledge increases to approximately
what is shown at the first level of figure 3. Note that
ls(root) is removed from the set of actions since it is ir-
relevant given the LCW information. Two new actions have
been added to the first action level. At the second state level,
the goal is not available, and there are no potential bindings
that will make it true. In the second level we see two ac-
tions, one that has the effect, file(paper.pdf), and the
other that has the effect, file(*f), both of which can sat-
isfy the goal. However, one requires an arbitrary binding,
while the other does not. Furthermore it is easy to see from
the planning graph that creating paper.pdf is unlikely to re-
quire any sensing actions, which might result in a partial
plan choosing to add the action, dvipdf(paper.dvi)
over ls(papers).

Extracting Heuristics
The extended planning graph will provide an agent with a
variety of heuristics to guide planning and control execution.
These include the following:

1. Reachability of goals

2. Estimate of sensing



dvipdf(paper.dvi)

dir(root)

dir(papers)

dir(root)

dir(papers)

cd(papers)

curDir(root)

~curDir(root)

dir(root)

dir(papers)

~curDir(root)

file(*f)

dir(*d)

LCW(inDir(*f, papers))

ls(papers)

inDir(papers, root)

curDir(papers) curDir(papers)

curDir(root)

inDir(papers, root)

curDir(root)

inDir(papers, root)

file(paper.dvi)

file(paper.tex) file(paper.tex) file(paper.tex)

file(paper.dvi)

file(paper.pdf)

LCW(inDir(*f, root)) LCW(inDir(*f, root)) LCW(inDir(*f, root))

latex(paper.tex)

Figure 3: The agent’s knowledge expands after executing ls(root) and we see how the planning graph is updated.

3. RePOP heuristic (cost of open conditions)
4. LPG-like local search

A planning graph will show the first level at which a
proposition appears. This can be quite useful in deciding the
difficulty of obtaining such a goal, or if it is even possible to
reach a goal state which contains all the goals. An agent can
use this information to decide when to focus on constructing
a complete plan, or when to execute some actions to get to a
better search space.

Apart from finding the first level at which a proposition
appears, the agent can also get an estimate of the difficulty
of reaching that proposition by seeing how many sensing
actions are required. This can guide the agent in choosing
some actions over others when working with a partial plan,
or preferring one state over another while searching through
state space.

As the agent executes sensing actions and updates the
planning graph, it can learn how effective some sensing ac-
tions are in improving the planning graph, making it more
likely to reach the goal. This may give an estimate of when
the agent should focus on sensing (and specifically which
type of sensing actions) to reach a better proposition level
in the planning graph, or how to contract the graph easing
future planning.

A more concrete heuristic borrowed from the partial-order
planner RePOP involves looking at the set of subgoals in a
partial plan. The planning graph can be used to recursively

estimate the cost of reaching those goals by seeing at which
levels in the graph they are obtainable. By propagating sens-
ing actions and links, the agent may be able to get a more
accurate measure of the difficulty of varying goal sets.

Although the proposed planning graph is much less struc-
tured than the traditional planning graph due to incomplete
and unbounded information, it may be possible to borrow
the ideas from LPG and do a local search on the planning
graph to find either a complete plan that is expected to reach
the goal state, or a subplan that is expected to lead to promis-
ing modifications to the graph.

Conclusions
We began by discussing the problem of planning in domains
with incomplete information and unbounded sensing. Plan-
ners such as the one used for the Internet Softbot have had
limited success, showing that in principle there exist tech-
niques that will work, but that in practice they do not scale
well and are not domain independent.

We propose methods that an agent can use to extract
heuristics from the planning domain by constructing a plan-
ning graph and borrowing many of the already existing ideas
as well as introducing some new ones. We outline how to
make additions to the planning graphs to include LCW and
sensing actions, and the need for a dynamic planning graph
that learns and quickly updates as the agent interleaves plan-
ning with execution.



We conclude by suggesting some specific heuristics the
agent can find in the planning graph. These include apply-
ing already existing methods such as those used by RePOP
and LPG, as well as some new ones that involve learning and
deciding when to plan or execute which are specific to do-
mains with incomplete information. We are working on the
formalization and implementation of these ideas, and hope
to soon demonstrate their effectiveness in detailed experi-
ments.
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