On Managing Temporal Information for Handling Dur ative Actionsin LPG

Alessandro Saetti
Dipartimento di Elettronica per I’ Automazione, Universita degli Studi di Brescia
Via Branze 38, 1-25123 Brescia, Italy
saetti @ng.unibs.it

Abstract

This paper presents how LPG manages ordering constraints
for full handling of durative actions introduced by the recent
standard language PDDL2.1. LPG is a domain-independent
planner that took part in the third International Planning Com-
petition (Toulouse, 2002) showing excellent performance.
The current version of our planner is based on a graph-based
representation called “Temporal Durative Action Graphs”
(TDA-graphs). TDA-graphs are an extension of a plan rep-
resentation used in the competition version of LPG, and they
improve the management of temporal information required to
handle PDDL2.1 durative actions.

I ntroduction

Local search is emerging as a powerful method to address
domain-independent planning. A first version of LPG, pre-
sented in (Gerevini & Serina 1999; 2002) that handled only
STRIPS version, uses local search in the space of action
graphs (A-graphs), particular subgraphs of the planning
graph representation (Blum & Furst 1997). In this paper we
present some extensions that were implemented in the last
version of LPG to handle the domains specified in the recent
PDDL2.1 language (Fox & Long 2001) supporting “durative
actions”. In the 3rd IPC, our planner showed excellent per-
formance on a large set of problems in terms of both speed
to compute the first solution and quality of the best solution
that can be computed by the incremental process.

In this paper we focus on two extensions of LPG
concerning the use of temporal durative action graphs
(TDA-graphs), instead of simple TA-graphs introduced in
(Gerevini, et al 2003), and the temporal management of do-
mains involving durative actions. TDA-graphs are an ex-
tension of TA-graphs and they allow a better representation
of temporal information to handle durative actions. Like in
a TA-graph, the TDA-graph action nodes are marked with
temporal values estimating the earliest time when the corre-
sponding action terminates. Similarly, a fact node is marked
with a temporal value estimating the earliest time when the
corresponding fact becomes true. A set of ordering con-
straints is maintained during search to handle mutually ex-
clusive actions, and to take into account the “causal” rela-
tions in the current plan. In the previous version of LPG
all mutex actions were treated in the same way by impos-
ing an appropriate ordering constraint. In the new version
TDA-graphs can handle different type of mutex actions (de-
pending on the type of precondition/effect that make a pair
of action mutex). Different type of mutex are handled by

imposing different types of ordering constraints, which can
lead to plans of better quality, i.e., of shorter makespan.

The second section presents the plan representation used
by the last version of our planner (LPG1.1) for PDDL2.1 do-
mains involving durative actions; the third section describes
temporal management, and in particular we describe differ-
ent types of ordering constraints between durative actions
and how these orderings affect the temporal values associ-
ated with the facts and actions of the TDA-graph; the fourth
section gives the results of an experimental analysis using
domains of the 3rd IPC that involve durative actions; fi-
nally, the fifth section gives conclusions and mentions fur-
ther work.

Plan Representation

Our graph-based representation for temporal plans with du-
rative actions is based on action graphs (Gerevini & Se-
rina 1999; 2002), i.e. particular subgraphs of the planning
graph representation. In the following we will assume that
the reader is familiar with the planning graph representa-
tion (Blum & Furst 1997) and with the related terminology.
Given a planning graph G for a planning problem, it’s pos-
sible to assume that the goal nodes of G in the last level
represent the preconditions of a special action a,q, Which
is the last action in any valid plan, while the fact nodes of
the first level represent the effects of a special action as;qr,
which is the first action in any valid plan.

An action graph (A-graph) for G is a subgraph A of G
such that, if a is an action node of G in A, then also the
fact nodes of G corresponding to the preconditions and pos-
itive effects of a are in A, together with the edges connect-
ing them to a. An action graph can contain some inconsis-
tencies, i.e., an action with precondition nodes that are not
supported, or a pair of action nodes involved in a mutex rela-
tion.! In general, agoal g or a precondition node ¢ at a level i
is supported in an action graph A of G if either (i) in A there
is an action node at level 4 — 1 representing an action with
(positive) effect ¢, or (ii) ¢ = 1 (i.e., ¢ is a proposition of the
initial state). An action graph without inconsistencies repre-
sents a valid plan and is called solution graph. A solution
graph for G is an action graph A, of G where all precondi-
tion nodes of its action nodes are supported, and there is no
mutex relation between its action nodes.

The version of LPG, that took part in the 3rd IPC, uses a

1LpG considers only pairs of actions that are globally mutex
(Gerevini & Serina 2003), i.e. that hold at every level of G.

particular subset of the action graphs, called linear action
graphs with propagation. A linear action graph with prop-
agation (LA-graph) of G is an A-graph of G in which each
action level contains at most one action node and any num-
ber of no-op nodes, and such that if a is an action node of A
at level [, then, for any positive effect e of a and any level
I' > 1 of A, the no-op of e at level I’ is in 4, unless there
is another action node at a level 1" (I < " < I") which is
mutex with the no-op.?

The current version of LPG can handle levels 2 and 3 of
PDDL2.1. Level 2 introduces numerical quantities and level
3 a new model of actions, called durative actions, that allow
a higher parallelism among the actions in the plan (Fox &
Long 2001). This paper focuses on the representation of du-
rative actions. We indicate with Condgs(a), Condo(a) and
Condg(a) the at start, over al | and at end conditions,
respectively, of an action a; with Ef fs(a) and Ef fg(a)
the at start and at end effects, respectively, of a; with
Addg(a)/Delg(a) the at start additive/delete effects of
a, and with Addg(a)/ Delg(a) the at end additive/delete
effects of a.

In simple sTRIPS domains, the additive effects of an ac-
tion a at a level [are represented by fact nodes at the
level [+ 1, and its preconditions by fact nodes at the level
I. For pDDL2.1 domains involving durative actions, in or-
der to represent the facts that become true after the begin-
ning of the action a, we could introduce a third level be-
tween [and [+ 1. Instead, LPG uses no-op nodes to rep-
resent the state of the world during the execution of an
action. The at start additive/delete effects of a at level
I, Adds(a)lDelg(a), are achieved after the beginning of
a, and so LPG introduces/removes the corresponding no-op
nodes at level [of A. The at end additive/delete effects
of a, Addg(a)/Delg(a), are achieved at the end of a, and
so they do not affect any no-op node at level I; LPG intro-
duces/removes the fact nodes of Addg(a)/Delg(a) at level
I+ 1o0of A. Theat start conditions of a, Condg(a), must
be achieved at the beginning of a, and so LPG verifies that
the corresponding fact nodes at level [are supported in A.
Theover al | conditions of a, Condo(a), must be achieved
during the full duration of the execution of a, and so LPG
verifies that the corresponding no-op nodes are supported at
level I. The at end conditions of a, Condg(a), must be true
at the end of a; more precisely, they must be achieved af-
ter the at st art effects become true and before the at end
effects become true. Therefore, as for the over al | condi-
tions, LPG checks that the no-op nodes corresponding to the
at end conditions are supported at level [. The difference
between the over al | and at end conditions consists in a
different temporal management. This additional way of us-
ing the no-op nodes in action graphs leads to the definition of
a new class of action graphs called durative action graphs.

Definition 1 A durative action graph (DA-graph) for G is
a linear subgraph A of G such that, if a is an action node
of G in A, then also the fact nodes of G corresponding to
the at st art conditions and at end effects and the no-op
nodes of G corresponding to the over al |, at end condi-
tionsand at st art effects of a arein A, together with the
edges connecting themto a.

2As noted in (Gerevini, et al 2003), having only one action in
each level of a LA-graph does not prevent the generation of parallel
(partially ordered) plans.

aZ b aZb aZb a2 b
- b b e b b =
@ (b) © (d)

Figure 1: Types of ordering constraints between durative actions.

We note that the newer version of LPG represents durative
actions by modifying the original structure of the planning
graph G, i.e., by introducing an edge from an action node to
a no-op node at the same level of the graph to represent an
at start effect, and by introducing an edge from a no-op
node to an action node to represent an at end and over al |
condition.

In order to represent the temporal information associated
with the end points of an action, our planner (i) assigns
real values to action, fact and no-op nodes of the DA-graph,
and (ii) uses a set 2 of ordering constraints between action
nodes. The value associated with a fact or no-op node f
represents the (estimated) earliest time at which f becomes
true, while the value associated with an action node a rep-
resents the (estimated) earliest time when the execution of a
can terminate. Obviously, the value associated with ag¢q.¢
is zero, while the value associated with a.,q represents the
makespan of the current plan. This assignment of real values
to the durative action graph nodes leads to the representation
used by the newer version of LPG to handle durative actions
called temporal durative action graph.

Definition 2 A temporal durative action graph (TDA-
graph) of G isatriple (A4, T, Q) where 4 isadurativeaction
graphwith propagation; 7 isan assignment of real valuesto
the fact, no-op and action nodes of A; €2 is a set of ordering
congtraints between action nodes of A.

Temporal Management for Durative Actions

In this session we discuss which types of ordering con-
straints are stored in €2 and how, in conformity with €, the
temporal values assigned by 7 are computed.

Ordering Constraints

The original planning graph representation (Blum & Furst
1997) imposes the global constraint that, for any action a at
any level [of the graph, every action at the following level
starts after the end of a. If we remove this constraint the
order of the graph levels should not imply by itself any or-
dering between actions; the orderings between actions are
only those into set 2. The TA-graphs (Gerevini, et al 2003)
respect this assumption. So, it’s easy to see that TA-graphs
allow to improve the parallelism of the plan with respect to
the original planning graph representation.

The ordering constraints in the TA-graphs are of two
types: constraints between actions that are implicitly or-
dered by the causal structure of the plan (<¢-constraints),
and constraints imposed by the planner to deal with mutu-
ally exclusive actions (< g-constraints). a <¢ b belongs to
Q if and only if a is used to achieve a condition node of b
in A, while a <g b (or b <g a) belongs to €2 only if ¢ and
b are mutually exclusive in A. If a and b are exclusive, the
planner appropriately imposes either a <g borb <g a.
LPG chooses a < b if the level of a precedes the level of b,
b < g a otherwise. Under this assumption on the “direction”

Conds(b) Condo(b) Condg(b) Effs(b) Ef fr(b)
1 <e | 2 <e | 3 <g | 4 <g | 5 <E
:; - b - b - - b b -

IS L

S| a] A] a | |[_a | a]
. 6 <E 7 <E 8 <E 9 <g | 10 ~<E
::5 — b — b b~ g b~
IS |

S a | a | a | |[a | a]
|1 <g | 12 <g | 13 <g | 14 <g | 15 <E
S

3 b - b b - - b b -
£ , i . !
S| a | a] a | |[a | a]
| 18 {<c, <e}| 17 {=<c, <p}| 18 {=<c, <e}| 19 <g | 20 <E
= - b - b - - b b -~

Sy i

e] a] a | |[_a | a]
| {=c, =6} 22 {=<c, <g}| = {=¢, <e}| 24 <p | 2 <E
= -~ b -~ b b -~ - b b -
Sy I

e] a] a | |[a | a]

Table 1: Ordering constraints between the durative actions a and b, according to the possible casual relations (<) and to the mutex between
conditions and effects of the durative actions (<z). The label <z, marking an entry of the table, indicates that at least a proposition of the
set associated with the raw of the entry is mutex with at least a proposition of the set associated with the column of the entry. The label <¢,
marking an entry of the table, indicates that at least one proposition of the set associated with the raw of the entry supports a proposition of

the set associated with the column of the entry.

in which < g-constraints are imposed, it is easy to see that
the levels of a TA-graph correspond to a topological order of
the actions in the represented plan satisfying every ordering
constraint in .3 In the TA-graphs, an ordering constraint
a < bin Q (where “<” stands for <¢ or <g) states that
the beginning of b comes after the end of a. Our planner
schedules actions in a way that the execution of an action is
anticipated as soon as possible; and so a < b, means that b
starts immediately after the end of a. Note that LPG gener-
ates partial order plans; so, the ordering strategy illustrated
in this section is only one possible policy of scheduling the
actions.

In PDDL2.1 domains with durative actions, LPG uses
TDA-graphs. In the TDA-graphs, if Q@ = a < b, it’s pos-
sible that a and b overlaps; so, we can distinguish other
types of constraints in accordance with the possible casual
relations (<¢) and with the mutex between conditions and
effects (<g). Two ordered actions a and b can overlap in
four different ways. Any way represents a different ordering
constraint; so, we distinguish between the following four or-
dering constraints (see figure 1):4

a. b can’t start before the end of a (denoted by a = b);

b. b can’t end before the end of a (denoted by a =z b);

3The <¢ and <z-constraints are distinguished only for clarity
of presentation; but L PG manages both in the same way.

“There is a fifth possible ordering constraint between a and b;
e.g., if dur(b) > dur(a), it is possible that a supports an at end
condition of b and b supports or deletes an at st art condition of
a, but actually LPG does not consider it.

c. bcan’tstart before the beginning of a (denoted by a z b);

d. bcan’tend before the beginning of a (denoted by a =z b).
Instead, we note that in the TA-graphs the ordering between

a and b is only of type a 'ffc bora 2 g b.
Table 1 shows all possible situations that generate in Q
one of the ordering constraints of figure 1. For example, the

sixteenth entry of the table 1 shows that a Zbreqif (1
at least an effect of type at st art of a supports a condition

of type at start of b (Sﬁc-constraints), or (ii) at least an
effect of type at start of a is mutex with a condition of

SS .
type at start of b (< g-constraints).
In general, if a < b, there is at least an ordering constraint

in Q2 between @ and b of type 22,8 or Z.If there
are more than one ordering constraints between a and b, it’s
possible to simplify Q by removing all ordering constraints
between a and b except the strongest one, i.e. the constraint
for which the execution of b is most delayed. The strongest

. . ES ES . .
constraint is <, because a < b imposes that the execution
of a can not overlap the execution of b, i.e. b can not start

before the end of a. The weakest constraint is S—f, because

a X b imposes that b ends after the beginning of a; so b,
can start before the beginning of a. Note that the strongest

constraint between = and X depends on the durations of
the actions involved. In particular, if the duration of b is

longer than the duration of a, the constraint = is stronger
than “ZX'; if the duration of b is shorter than the duration of a,
then the constraint "< is stronger than = (see figure 2). If a

EE b - EE lo)}
a<b : a=<b i
[a] [a
aZb y b a2 b
[a . [a | .

Lty ts 1y

dur(b) > dur(a) dur(b) < dur(a)

Figure 2: The strongest ordering constraints between Zand X
depending on the durations of the actions a and b.

and b have the same duration, the constraint %< is as strong as
2. Since the duration of an action can depend on the state
of the world in which the action is applied, ifa = b & Q

buta {2, Z} b e Q thenbotha =X banda = b must be
kept in Q and evaluated at “runtime”.

Temporal Values of TDA-graph Nodes

The constraints stored in 2 are useful to compute the tempo-
ral values of the TDA-graph action nodes. We denote with

Time(x) the temporal value assigned by 7 to a node z.
In the TA-graphs, LPG computes the temporal value of an
action b by simply examining the maximal values over the
temporal values of the actions a in A that must precede b
according to €:

Time(b) = max {Time(a)7 0} + dur(b) + €.
a<beQ

If there is no action node that must precede a according to
Q, then b can not start before zero; so, T'ime(b) is set to the
duration of 4.5

In the TDA-graphs, LPG considers all types of ordering
constraints previously introduced, and so the temporal value
of an action node b is computed according to the following
definition of Time(b):

Time(b)= | max { max {Time(a) — dur(a)} — dur(b),
aS<EbEQ
max {Time(a)}, max {Time(a)} — dur(b),
ES EE
a < beN a < beQ

max {Time(a) — dur(a)}, 0}

SS
a < beq

+ dur(b) + ¢.

The term into square brackets represents the earliest tempo-
ral value at which the execution of b can start, in accordance
with the ordering constraints of type 2,2, % and X in-
volving b that are present in the current TDA-graph.

The temporal values of TDA-graph action nodes are used
to compute temporal values of TDA-graph fact and no-op
nodes. If a fact f is supported by more actions, LPG consid-
ers the temporal value of the action that supports f earlier.
In TA-graphs, LPG computes the temporal value of a fact

®In order to respect the ordering constraint, LPG introduces an
epsilon (e > 0) between the actions involved.

®In order to give the better estimate of the temporal value at
which an action terminates, if a condition is not supported, instead
of zero, LPG estimates the earliest temporal value at which the cor-
responding proposition becomes true, as described in (Gerevini, et
al 2003).

ES ES ES EE
Q= {asta'rt <c a1, a1 <¢ a2, Astart =<C 2, @1 <E GS}

Ca a ‘ Durations:
; o I ; ay: 50

| ’—3_“ | + ay: 100

0 20 50 150 az: 30

Figure 3: A portion of a TDA-graph. The edges from no-op nodes
to action nodes and from action nodes to no-op nodes represent the
over al | and at st art conditions, respectively. Round brack-
ets contain temporal values assigned by 7 to the fact nodes (cir-
cles) and the action nodes (squares). The Square-nodes marked
with facts are no-ops. The numbers in square brackets represent
action durations. “(-)” indicates that the corresponding fact node
is not supported.

node f by simply examining the minimum values over the
temporal values of the actions a in A that support f:

Time(f) = ag}\i(r}) {Tz'me(a)},

where A(f) is the set of TA-graph action nodes that support
the fact node f. In TDA-graphs, LPG distinguishes the cases
in which f is supported at the beginning or at the end of an
action, and so the temporal value of a fact node f is com-
puted according to the following definition of Time(f):

Time(f)=min { aEI/I\lng%f) {Tz’me(a)},

aergisréf) {Time(a) - dur(a)}},

where Ag(f) and As(f) are the sets of the TDA-graph ac-
tion nodes that support f at the end and at the beginning,
respectively. In planning problems for which it is impor-
tant to minimize the makespan of the plan, LPG uses these
temporal values to guide the search toward a direction that
improves the quality of the plan; in particular they are used
to estimate a temporal value at which a condition not sup-
ported could become supported (Gerevini, et al 2003).
Figure 3 gives an example of a portion of a TDA-graph
containing four action nodes (ai...3, star+) and several fact

Domain Problems LPG-speed LPG-quality LPG-speed LPG-quality
| solved | better better | worse worse

Simple-time

Depot s 22 (11) 19 (86.4%) 10 (90.9%) 3(13.6%) 1(9.1%)

Driver Log 20 (16) 18 (90%) 15 (93.8%) 2 (10%) 1(6.2%)

Rovers 20 (10) 16 (80%) 10 (100%) 4 (20%) 0 (0%)

Satellite 20 (19) 17 (85%) 19 (100%) 2 (10%) 0 (0%)

ZenoTr avel 18 (16) 17 (85%) 15 (93.8%) 1 (5%) 1(6.2%)

Tot al 98(735)% | 85.2% 95.8% 11.7% 4.2%

Time

Depot s 21(12) 14 (63.6%) | 10(90.9%) 7 (31.8%) 1(9.1%)

Driver Log 20 (16) 19 (95%) 16 (100%) 1 (5%) 0 (0%)

Rovers 20(12) 19 (95%) 12 (100%) 1(5%) 0(0%)

Satellite 20 (20) 18 (90%) 20 (100%) 1 (5%) 0(0%)

ZenoTr avel 20 (20) 20 (100%) 15 (75%) 0 (0%) 5 (25%)

Tot al 99(77.5)% | 882% 92.4% 9.8% 7.6%

Complex

Satellite | 20 (17) | 19 (95%) | 17 (100%) | 1(5%) | 0 (0%) |
[Total [987(715% [87.5% [946% [102% [54% |

Table 2: Summary of the comparison of LPG1.1 and SuperPlan-
ner in terms of: number of problems solved by LPG (2nd column)
and the SuperPlanner (in brackets); problems in which LPG-speed
is faster/slower (3rd/5th columns); problems in which LPG-quality
computes better/worse solutions (4th/6th columns).

and no-op nodes representing eleven facts (f1...11). Since ay
supports an over al | condition of as, a; ch az belongs
t0Q. a1 =g as belongs to Q because an at end effect of

ay is mutex with an at end effect of as. as¢are 250 a; €0
because fi, that is an over al | condition of a;, and fs,
that is an at start condition of a,, belong to the initial

state. Similarly, asiqr E<SC as € Q) because f3 and fy4, that
are at start conditions of as, belong to the initial state.
The temporal value assigned to the facts f;.. 4 at the first
level is zero, because they belong to the initial state. Since

Astart E—%gc a1, Time(ay) is the sum of Time(astqrs) and
of the duration of a,. T'ime(a2) is given by the sum of the
duration of a, and of the maximum over Time(astqr¢) and

Time(ay), because {a1, Gstart} E<Sc az € Q. fipisan
at end effect of as; so, the time assigned to fy, at level 3
is equal to Time(az). fr is an at start effect of as; so,
the time assigned to the no-op node f7 at level 2 is equal to

Time(az) — dur(az) (the beginning of a,). Since a; =<
az € Q, Time(as) 1s given by the sum of the duration of
az and the maximum between zero (because condition fg
and fy are not supported) and T'ime(a1) — dur(as). fi1 at
level 4 is supported only by a3 at the end of it; therefore the
temporal value associated with f;; is equal to T'ime(as).
f10 at level 4 is supported at the end of a and as; since
Time(as) > Time(as), we have that Time(f1o) at level 4
is equal to Time(as).

Experimental Results

In this section we present some experimental results il-
lustrating the efficiency of LPG using the variants of the
domains of the 3rd IPC that involve durative actions
(“SimpleTime”, “Time” and “Complex™).”

With respect to the previous temporal management of
LPG, the newer management (that full handles durative ac-
tions) gives some improvements on the quality of the plans.
For example, in the “Satellite” domain the duration of the
plans generated by LPG using TDA-graphs is on average

"For a description of these domains and of the relative vari-
ants the reader may see the official web site of the 3rd IPC
(www. dur . ac. uk/ d. p. 1 ong/ conpetition. htm).

10% shorter than the duration of the plans generated using
TA-graphs.

In order to derive some general results on the performance
of our planner with respect to all the other planners of the
3rd IPC, we have compared the last version of our planner
(LPG1.1) with the best results over all the other fully auto-
mated planners in terms of CPU-time and plan quality. We
will indicate these results as if they were produced by an hy-
pothetical “SuperPlanner” (note, however, that such a plan-
ner does not exist). The tests of “SuperPlanner” were con-
ducted on the official machine of the competition, an AMD
Athlon(tm) MP 1800+ (1500Mhz) with 1 Gbytes of RAM,
while the tests concerning the last version of LPG on a PIlI
Intel 866 Mhz with 512 Mbytes of RAM, that is slightly
slower than the previous machine. The results of LPG cor-
respond to median values over five runs for each problem
considered. The CPU-time limit for each run was 5 minutes,
after which the termination was forced.

The performance of L PG was tested in terms of both CPU-
time required to find a solution (LPG-speed) and quality of
the best plan computed, using at most 5 minutes of CPU-
time (LPG-quality). The overall results are showed in table
2. LpG-speed is generally faster than the SuperPlanner, and
it always solves a larger number of problems. Overall, the
percentage of the problems solved by LPG is 98.7%, while
those solved by the SuperPlanner is 75%. The percentage of
the problems in which our planner is faster is 87.5%, while
this percentage for the SuperPlanner is 10.2%. Concerning
LpPG-quality, the percentage of the problems for which our
planner produced a better quality solution is 94.6%, while
this percentage for the SuperPlanner is only 5.4%. In partic-
ular LPG finds a solution with quality considerably better (at
least 50%) in 35.7% of the problems for which both L PG and
SuperPlanner find a solution (with some significant differ-
ences in Sat el | i t €), while the SuperPlanner never finds
a solution with quality considerably better than LPG.

Conclusions

We have presented a new plan representation and the tech-
nique to manage ordering constraints for handling dura-
tive actions in PDDL2.1. These techniques are fully imple-
mented and integrated in the last version of LPG. This work
has been carried out in collaboration with Alfonso Gerevini
and lvan Serina.

In my Ph.D. studies, that I am conducting as a first year
student at the University of Brescia, | intend to continue this
work along several directions. One of the most interesting
concerns the management of domains with uncertainty and
incomplete information.

References
Blum, A., and Furst, M. 1997. Fast planning through planning
graph analysis. Artificial Intelligence 90:281-300.
Fox, M., and Long, D. 2001. PDDL2.1: An ex-
tension to PDDL for expressing temporal planning domain.
http://www.dur.ac.uk/d.p.long/competition.html.
Gerevini, A., and Serina, I. 1999. Fast planning through greedy
action graphs. In Proc. of AAAI-99.
Gerevini, A., and Serina, I. 2002. LPG: A planner based on local
search for planning graphs with action costs. In Proc. of AIPS-02.
Gerevini, A., Serina, |., Saetti A., Spinoni S. 2003. Local Search
for Temporal Planning in LPG. In Proc. of ICAPS-03.
Gerevini, A., and Serina, I. 2003. Planning through Stochastic
Local Search and Temporal Action Graph s. In JAIR (to appear).

