Nogood Learning for Classical Planning

Work in progress report

Igor Razgon
Computer Science Department Ben-Gurion University of the Negev
Beer-Sheva, 84-105, Israel

irazgon@cs.bgu.ac.il

Introduction

Methods of constraint satisfaction and SAT have been
successfully used in the planning area. Examples
are translation of planning instances into propositional
SAT formulas (Kautz, McAllester, & Selman 1996;
Kautz & Selman 1996; 1998), applying dynamic con-
straint satisfaction methods to Graphplan structures
(Kambhampati 2000), compilation of Graphplan into
a constraint satisfaction problem (CSP) instance (Do
& Kambhampati 2001). In this paper we propose a
method of pruning search space based on nogood learn-
ing.

Techniques of nogood learning are used in constraint
satisfaction (Dechter 1986; Ginsberg 1993). The essence
of nogood learning is maintaining a set of partial assign-
ments (nogoods) that cannot be extended to a full so-
lution. The constraint solver discovers nogoods during
its work. Thus nogoods are constraints acquired during
search. It is shown theoretically and empirically that
maintaining a set of nogoods of a polynomial size can
improve performance of a constraint solver (Kondrak &
van Beek 1995; Bayardo & Miranker 1996).

The method proposed in the paper is applied to a for-
ward chaining planner (Bacchus & Teh 1998) acting in
a space of states. Every state is a subset of propositions
or atoms of the universe. A plan is a sequence of states.
The transition between adjacent states is performed by
an action of the given set of actions. The task is to
find a plan whose first state is the initial state, and the
last state contains the goal. We assume that the plan-
ner has a parameter determining the maximal length
of the produced plan. Actions are represented in the
STRIPS-like style (Fikes & Nilsson 1971) by lists of
their preconditions, add, and delete effects.

A forward chaining planner constantly holds the cur-
rent plan starting at the initial state. At every iteration,
the planner tries to extend the current plan. That is,
the planner tries to append to the current plan a state
immediately reachable from the current state (the last
state of the current plan). If the planner detects that
the current plan cannot be a prefix of any full plan, it

Copyright © 2003, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

backtracks. We call states immediately reachable from
the current state exrtensions of the current plan.

We assume that the following three conditions
can cause the planner to backtrack (Kambhampati,
Katukam, & Qu 1996).

e Every extension of the current plan is a member of
the plan.

e A method approximating the distance from the cur-
rent state to the goal (Kambhampati & Nigenda
2000; Bonet & Geffner 2001) detects that the cur-
rent plan can not be a prefix of a full plan of length
less than or equal to the maximal length.

e Every extension of the current plan eventually results
in backtrack.

Let us call the first two conditions the basic backtrack
conditions, the last one the complex backtrack condition.
The complex backtrack condition can be reformulated
in a non-recursive way as follows: every sequence of
extensions of the current plan eventually meets o ba-
sic backtrack condition. Unfortunately, to detect the
complex backtrack condition in such a way, the planner
should consider all ”dead-ends”, the number of which
can be exponentially large.

We propose a method that allows detection of the
complex backtrack condition without actual reaching
all dead-ends. Whenever backtrack is performed, the
planner constructs a nogood of the current plan. This
nogood is a pattern explaining the property that forces
the plan to be discarded. The discovered patterns
are maintained in a database of nogoods. Using the
database, one can formulate yet another backtrack con-
dition: The current plan satisfies some pattern in the
database. Let us call this condition the explanation
based backtrack condition. It is the complex backtrack
condition discovered in a non-recursive way.

We describe a formal language of representation of
nogoods. In particular, we show encoding of the two
basic backtrack conditions and a method of construc-
tion of complex nogoods. Because the number of differ-
ent patterns can be exponentially large, we provide a
heuristic estimation of patterns. The pattern with the
lowest estimation is deleted from the database in the
case of ”overflow”.

The present paper is closely related to (Kambham-
pati, Katukam, & Qu 1996) where a failure driven prun-
ing method for a partial order planner was presented.
Another failure-driven pruning method was described
in (Bhatnagar & Mostow 1994). The method is ap-
plied to a state-based planner. Unlike the algorithm
proposed in the present paper, the method provided in
(Bhatnagar & Mostow 1994) affects the search heuristic
and can lead to incompleteness.

The algorithm proposed in the present paper, the
methods presented in (Kambhampati, Katukam, & Qu
1996; Bhatnagar & Mostow 1994), and the nogood
learning algorithms for constraint satisfaction can be
considered as examples of explanation based learning
techniques (Minton et al. 1989).

The rest of the paper is organized as follows. Section
2 presents a method of nogood learning during plan-
ning. Section 3 describes a context in which the method
can be useful.

Learning of Nogoods During Search

Construction of Nogoods for Basic
Backtrack Conditions

Let P be the current plan at some moment of execution
of a forward chaining planner. Let Last(P) be the last
state in the plan (as it was said above, we consider plans
as sequences of states). Let S = {s1, $2,...5m} be the
set of states reachable from Last(P) by one of actions
of the given planning domain (in other words Last(P)
is the set of possible extensions of the current plan).

Given the notation, one can formulate the first basic
backtrack condition as follows.

For everyi, 1<i<m,s; € P

The nogood constructed for this case is of the form
(Last(P),S). This means that backtrack should be
performed when the last state of the current plan is
Last(P) and all states of S are members of the current
plan.

Let Size(P) be the size of plan P and MaxSize be
the maximal possible size of a plan. Assume that a dis-
tance approximation method (Bonet & Geffner 2001;
Kambhampati & Nigenda 2000) applied to Last(P),
detects that it is impossible to reach a state contain-
ing the goal performing less than X steps !, X <
MazSize — Size(P). This is the second basic back-
track condition. A nogood appropriate for this case is
(Last(P), MazSize — X). This nogood means that the
state Last(P) cannot be the last in a plan longer than
MazxSize — X steps.

The General Format of Nogoods

The general format of nogoods is {st,S, L), where st is
a state, S is a set of states, L is an integer number.
This nogood means that st cannot be the last state of
a plan longer than L if all states of S are members of
this plan.

!We assume that the distance approximation used is ad-
missible and never overestimates the distance

Definition 1 Let < st,S,L > be a nogood, and let P
be a plan. If st = Last(P), Size(P) > L and every
state of S is a member of P, then P satisfies nogood
< st,S,L >.

Note that nogoods constructed for the first and sec-
ond basic backtrack conditions do not contain the third
and the second field respectively. We can extend them
to the general format placing 0 in the third field of the
nogood constructed for the first basic backtrack condi-
tion, and () in the second field of the nogood constructed
for the second basic backtrack condition.

Maintaining Database of Nogoods During
Planning

The proposed version of forward chaining maintains a
database of nogoods during its execution. Initially this
database is empty. The algorithm performs the follow-
ing two types of additional operations:

e Every time when a backtrack condition is satisfied,
the appropriate nogood is generated and inserted into
the database of nogoods

e Every time when a new current plan is generated,
the planner checks whether the current plan satisfies
some nogood maintained in the database.

In the case of complex backtrack condition, when the
planner rejects every extension of the current plan P,
the nogood of the current plan is constructed as follows.

Let (st1,S1,L1),...{stm, Sm,Lm) be the
set of nogoods satisfied by the extensions of
P. Then the nogood formulated for P is
(Last(P),U Si, (Mazi=1,mLi) — 1)

Theorem 1 Maintaining the database of nogoods in
the form shown above, the planner does not loses so-
lutions. Moreover, it does not increase the number of
partial plans visited.

i=1,m

Restriction the Size of the Database of
Nogoods

The number of nogoods in the database of nogoods can
be exponentially large. In this section we show an al-
gorithm for restriction of the database of nogoods. We
divide all nogoods into two types: relevant and optional
ones.

Relevant nogoods are those that satisfy extensions
of prefixes of the current plan. If n is the size of the
current plan and m is the maximal number of states
immediately reachable from a state of the current plan,
then the number of such nogoods is O(n * m). These
nogoods are the necessary part of the database. All
other nogoods are optional. Let MaxOptSize be the
maximal possible number of optional nogoods in the
database, which is a parameter of our planner. If the
number of optional nogoods in the database exceeds
MazOptSize, the planner has to decide which nogood
has to be deleted from the database.

We propose to estimate nogoods by difficulty of their
derivation. In the case when the number of optional

nogoods in the database is more than the allowed, the
planner deletes the nogood with the lowest value of dif-
ficulty.

When a new nogood is constructed, its difficulty is
estimated as follows:

o If the nogood is constructed as a result of satisfaction
of a basic backtrack condition, its difficuly is set to 1

o If the nogood is constructed as a result of satisfaction
of the complex backtrack condition, its difficulty is set
to 1 plus the sum of the estimations of the nogoods
of the extensions of the current plan.

Note, that according to this estimation, the difficulty
of a nogood is an approximation of the number of back-
tracks required to derive it.

Applications of the Nogood Learning

The method presented in the paper performs pruning
of a search space of a forward chaining planner. It was
pointed out in (Bacchus & Teh 1998) that pruning of a
search space has great impact on efficiency of forward
chaining planners. In this section we describe a partic-
ular situation where the method can be worthwhile.

Maintaining of a database of nogoods can be use-
ful when a planner is applied to a domain where its
search heuristic does not help. An example is a plan-
ner, based on ordering of propositions of the goal
(Koehler & Hoffmann 2000; Porteous & Sebastia 2000;
Razgon & Brafman 2001), applied to a ”puzzle” do-
main, in which already achieved propositions of the
goal sometimes have to be destructed to achieve the
rest (non-serializable goals in the terms of Korf (Korf
1985)). Examples of domains of this type are n? — 1-
puzzle, Hungarian cube, Freecell, etc.

When planners are applied to an ”inconvenient” do-
main, they perform exhaustive search. Maintaining a
database of nogoods can help them to prune a signifi-
cant fraction of their search space.

Further Development

In this paper we presented research results concerning
use of nogood learning for classical planning. In par-
ticular, we described a format of representation of no-
goods, we proposed an algorithm for construction of
complex nogoods and a method for estimation of no-
goods. The last method allows deletion from ”over-
flowed” database the nogood with the lowest estima-
tion.

The next stage of the research is to find a way of
implementation making the gain of use the database of
nogoods more than the expenses of its maintenance.

We suggest implementation of the planner as two
parallel processes cooperating in the form of ”master-
slave”. The master is the forward chaining planner.
The slave is the process maintaining the database of
nogoods.

The master cooperating with the slave can perform
the following actions:

1. Every time when the master generates a new plan,
it sends to the slave a request to check whether the
plan satisfies some nogood in the database

2. If the master receives from the slave a message that

some plan satisfies a nogood in the database, and
this plan is a prefix of the current plan, the master
”backjumps”, to the last state of the received plan

3. If the master performs backtrack itself witout a mes-

sage from the slave, it sends to the slave a request to
generate a nogood for the discarded current plan.

The slave answers to the requests of the master. If it
has a ”free time” when there is no request from the mas-
ter, it can perform additional reasoning of the database
of nogoods, increasing the pruning effect.

The main expected effect of the model of cooperation
is that the master does not waste time to unsuccessful
checks. Really, assume that to check if the current plan
satisfies some nogood in the database takes time t. In
the proposed model, the master sends the checking re-
quests to the slave and proceeds to work. In the case
when the current plan does not satisfy any nogood in
the database, the master spends no time to checking!
If the current plan does satisfy a nogood, the checking
time is the same as in the sequential model plus the
time of message transfer.

References

Bacchus, F., and Teh, Y. W. 1998. Making forward
chaining relevant. In International Conference on Ar-

tificial Intelligence Planning Systems, volume 4, 54—
61. AAAT Press.

Bayardo, R., and Miranker, D. 1996. A complexity
analysis of space-bounded learning algorithms for the
constraint satisfaction problem. In Proceedings of the
Thirteenth National Conference on Artificial Intelli-
gence (AAAI ’96), Volume 1, 298-304. AAAI Press /
The MIT Press.

Bhatnagar, N., and Mostow, J. 1994. line learning
from search failures machine learning. Machine Learn-
ing 15:69-117.

Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1-2):5-33.

Dechter, R. 1986. Learning while searching in
constraint-satisfaction problems. In National Confer-
ence on Artificial Intelligence, 178-183.

Do, M. B., and Kambhampati, S. 2001. Plan-
ning as constraint satisfaction: Solving the planning
graph by compiling it into CSP. Artificial Intelligence
132(2):151-182.

Fikes, R., and Nilsson, N. 1971. Strips: A new ap-
proach to the application of theorem proving and prob-
lem solving. Artificial Intelligence 2:189-208.

Ginsberg, M. L. 1993. Dynamic backtracking. Journal
of Artificial Intelligence Research 1:25-46.

Kambhampati, S., and Nigenda, R. S. 2000. Distance-
based goal-ordering heuristics for graphplan. In Arti-
ficial Intelligence Planning Systems, 315-322.

Kambhampati, S.; Katukam, S.; and Qu, Y. 1996.
Failure driven dynamic search control for partial order
planners: An explanation based approach. Artificial
Intelligence 88(1-2):253-315.

Kambhampati, S. 2000. Planning graph as a (dy-
namic) csp: Exploiting ebl, ddb and other csp search
techniques in graphplan. Journal of Artificial Intelli-
gence Research 12:1-34.

Kautz, H., and Selman, B. 1996. Pushing the envelope:
Planning, propositional logic, and stochastic search. In
Shrobe, H., and Senator, T., eds., Proceedings of the
Thirteenth National Conference on Artificial Intelli-
gence and the Eighth Innovative Applications of Arti-
ficial Intelligence Conference, 1194-1201. Menlo Park,
California: AAAT Press.

Kautz, H., and Selman, B. 1998. Blackbox: A new ap-
proach to the application of theorem proving to prob-
lem solving.

Kautz, H. A.; McAllester, D.; and Selman, B. 1996.
Encoding plans in propositional logic. In Proceedings
of the Fifth International Conference on the Principle
of Knowledge Representation and Reasoning (KR’96),
374-384.

Koehler, J., and Hoffmann, J. 2000. On reasonable and
forced goal orderings and their use in an agenda-driven
planning algorithm. Journal of Artificial Intelligence
Research 12:338-386.

Kondrak, G., and van Beek, P. 1995. A theoreti-
cal evaluation of selected backtracking algorithms. In
Mellish, C., ed., IJCAI’95: Proceedings International
Joint Conference on Artificial Intelligence.

Korf, R. E. 1985. Macro-operators: A weak method
for learning. Artificial Intelligence 26:35-77.

Minton, S.; Carbonell, J.; Knoblock, C. A.; Kuokka,
D. R.; Etzioni, O.; and Gil, Y. 1989. Explanation-
based learning: A problem solving perspective. Arti-
ficial Intelligence 40:63—-118.

Porteous, J., and Sebastia, L. 2000. Extracting and
ordering landmarks for planning.

Razgon, I., and Brafman, R. 2001. A forward search
planning algorithm with a goal ordering heuristic. In
6th European Conference on Planning.

