The Declarative Planning System DLV*: Progress and Extensions *

Axel Polleres

axel@kr.tuwien.ac.at
Institut fiir Informationssysteme, TU Wien, A-1040 Wien, Austria

Introduction

The knowledge based planning system DLVX implements
answer set planning on top of the DLV system (Eiter et
al. 2000). It is developed at TU Wien and supports
the declarative language K¢ (Eiter et al. 2003b; 2002a;
2002b). The language K¢ is syntactically similar to the
action language C (Giunchiglia & Lifschitz 1998), but
semantically closer to answer set programming (by in-
cluding default negation, for example). K¢ offers the
following distinguishing features:

- Handling of incomplete knowledge: for a fluent f,
neither f nor its opposite —f need to be known in
any state.

- Nondeterministic effects: actions may have multiple
possible outcomes.

- Optimistic and secure (conformant) planning: con-
struction of a “credulous” plan or a “sceptical” plan,
which works in all cases.

- Parallel actions: More than one action may be exe-
cuted simultaneously.

- Optimal cost planning: In K¢, one can assign a cost
function to each action, where the total costs of the
plan are minimized.

The prototype planning system DLVX based on K¢ is
available at http://www.dlvsystem.com/K/.

We report here briefly on the language capabilities,
system architecture, and ongoing progress of the system
as well as extensions we are currently working on.

Action Language K¢ by example

We assume that the reader is familiar with action lan-
guages and the notion of actions, fluents, goals, and
plans; see e.g. (Gelfond & Lifschitz 1998), for a back-
ground, and (Eiter et al. 2003b; 2002a) for the detailed
syntax and semantics of our language K°.

For illustration, we shall use the following running
example, for which a K¢ encoding is shown in Figure 1:
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Bridge crossing. Four men want to cross a river at
night. It is bridged by a plank bridge, which can only
hold up to two persons at a time. The men have a lamp,
which must be used in crossing, as it is pitch-dark. The
lamp must be brought back; no tricks (like throwing
the lamp or halfway crosses) are allowed. The four guys
need different times to cross the bridge, namely 1, 2, 5,
and 10 minutes, respectively. Walking in two implies
moving at the slower rate. What is the shortest time
to get them all across? m|

As exemplified in Figure 1 problems specified in our
language K¢ consist mainly of two parts: The back-
ground knowledge which can be viewed as the static
knowledge invariant over the time is given as a normal
logic program. In our case this includes the persons,
their respective crossing times and some auxiliary pred-
icates encoding the different sides of the bridge.

The problem description includes the declarations of
actions and fluents involved where actions might have
costs assigned. In our particular example this cost is
just the maximum walk time of two persons crossing.
Costs allow for a certain degree of dynamic behavior as
they might depend on the point in time, when the action
is executed. The actual action description is built up
of so called ezxecutability conditions

executable a if F.
and causation rules
caused F if G after H.

where a is an action atom, F is a fluent literal or false
(i.e. L, this is used to model constraints), G is a set
of fluent literals and H is a set of fluent literals and
actions. The language flexibly allows for modeling ar-
bitrary action effects, static effects (ramifications), ex-
ecutability conditions of actions and state constraints.
In the example these executability conditions and cau-
sation rules model the effects of crossing, that crossing
is only executable when having the lamp, etc. Inertia
of fluents is modeled by the macro inertial F. which
is short for:

caused F if not -F after F.

Non-monotonic negation not in the if and after parts
of causation rules interpreted under a minimal model



Background knowledge:

person(joe). person(jack). person(william). person(averell).

crossTime(joe, 1). crossTime(jack, 2). crossTime(will, 5). crossTime(averell, 10).

max(A,B,A) :- crossTime(_,A), crossTime(_,B),A >=B.
max(A,B,B) :- crossTime(,A), crossTime(-,B), B > A.
side(here). side(across).

otherside(X,Y) :- side(X), side(Y), X!=1Y.

K¢ problem description:

actions: crossTogether(X,Y) requires person(X), person(Y), X!=Y
costs S where crossTime(X, SX), crossTime(Y,SY), max(SX,SY,S).

cross(X) requires person(X) costs SX where crossTime(X, SX).
takeLamp(X) requires person(X).

fluents : at(X,S) requires person(X), side(S).
hasLamp(X) requires person(X).

always : executable crossTogether(X,Y) if hasLamp(X), at(X,S), at(Y,S)
executable crossTogether(X,Y) if hasLamp(Y), at(X,S), at(Y,S)
executable cross(X) if hasLamp(X).
executable takeLamp(X) if hasLamp(Y), at(X,$S), at(Y,S), X!=Y.
caused at(X,S1) after crossTogether(X,Y), at(X,S), otherside(S,S1).

caused at(Y,S1) after crossTogether(X,Y), at(Y,S), otherside(S,S1).
caused -at(X,S) after crossTogether(X,Y), at(X,S).
caused -at(Y,S) after crossTogether(X,Y), at(Y,S).

caused at(X,S1) after cross(X), at(X,S), otherside(S, S1).
caused -at(X,S) after cross(X), at(X,S).
caused hasLamp(X) after takeLamp(X).
caused -hasLamp(X) after takeLamp(Y), hasLamp(X).
inertial at(X,S).
inertial hasLamp(X).

noConcurrency.

initially: caused at(X,here). caused hasLamp(joe).

goal :

at(joe, across), at(jack,across), at(william,across), at(averell,across)? (7)

Figure 1: K¢ encoding of the Bridge crossing problem

semantics of transitions (based on the answer set se-
mantics (Gelfond & Lifschitz 1991)) allows for modeling
several legal initial states and several legal transitions
to subsequent states from one state wrt. to some ex-
ecuted actions. This can be used to model reasoning
under incomplete knowledge and with nondeterminis-
tic action effects. We refer to (Eiter et al. 2003b;
2003a) for a detailed discussion. By default, K¢ allows
simultaneous execution of actions. This is prohibited
by the keyword noConcurrency. which enforces the ex-
ecution of at most one action at a time.

The two final lines in our example model initial and
goal state, i.e. that initially all persons are at side here
of the bridge and all should finally be brought across.
The goal is given as a set of ground literals in our lan-
guage and includes the plan length (7, in our example).

The pLv* System

We have implemented an experimental prototype sys-
tem, DLVX, for solving K¢ planning problems; a detailed
description is given in (Eiter et al. 2003a). The current

system is capable of optimal and admissible ! planning
for planning problems specified in €.

For nondeterministic planning domains the system
allows for computing optimistic plans and secure plans:
We define plans as sequences of sets of actions P =
(A1,...,A,) where actions in the same action set are
executed in parallel: P is called optimistic plan if there
is an execution possibly reaching the goal. If P reaches
the goal under all contingencies, we call P secure (i.e.
conformant, in the sense of (Goldman & Boddy 1996)).

DLVX has been realized as a frontend to the DLV dis-
junctive logic programming system (Eiter et al. 2000;
Leone et al. 2002). First, the planning problem at hand
is tranformed to a disjunctive logic program where an-
swer sets correspond to optimistic plans. Details about
the transformation can be found in (Eiter et al. 2003a;
2002b). Then, the DLV kernel is invoked to produce
answer sets. For optimistic planning the (optimal, if
action costs are defined) answer sets are then simply

We call a plan admissible if it does not exceed a given
cost bound



translated back into suitable output and printed.

Assume that the above background knowledge
and planning problem description are given in files
crossing.bk and crossing.plan, respectively. The
execution of the command:

$ dlv -FP crossing.bk crossing.plan
computes for instance the following plan:

PLAN: crossTogether(jack, joe):2;
cross(joe) :1; takeLamp(averell);
crossTogether (averell,william):10;
takeLamp (jack); cross(jack):2;
crossTogether (jack,joe) :2 COST: 17

which is indeed an optimal seven step plan for this prob-
lem, where the plan cost (i.e. the shortest time for get-
ting them all across) is 17. The costs of single actions
are also displayed.

In case of secure planning, our system has to check
security of the plans computed, i.e. whether the plans
work for all possible executions. In normal (non-
optimal) planning, this is simply done by checking each
answer set returned right from the DLV kernel before
transforming it back to user output. On the other
hand, for optimal secure planning the candidate an-
swer set generation of the DLV kernel itself has to be
“intercepted”: Optimal answer set generation wrt. so
called weak constraints (Buccafurri, Leone, & Rullo
2000) used in our translation is a built-in feature of
DLV: The kernel proceeds computing candidate answer
sets, returning an answer set with optimal costs, by run-
ning through all candidates. Here, in order to generate
optimal secure plans, the planning frontend interrupts
computation, allowing only answer sets which represent
secure plans to be considered as candidates, as we want
to find the optimal among the secure plans only.

Checking plan security is done by rewriting the trans-
lated logic program wrt. the candidate answer set/plan
in order to verify whether the plan is secure. The rewrit-
ten “check program” is tested by a separate invocation
of the DLV kernel. To avoid duplicate secure checking of
a plan, the checked plans are cached.

Our example does not include nondeterminism, so
secure checking is not necessary here.

For further details on the system architecture, perfor-
mance and experimental results we refer to (Eiter et al.

2003a; 2002b).

Theoretical Background of the
Translation

In (Eiter et al. 2003b; 2002b) we have thoroughly an-
alyzed the computational complexity of optimal opti-
mistic and secure planning. Results obtained there give
a fundamental basis for the polynomial translations of
these problems to disjunctive logic programs. We as-
sume that the reader is familiar with the basic notions of
complexity theory, such as NP and the Polynomial Hi-
erarchy (PH), cf. (Papadimitriou 1994) and references
therein.

As for optimistic planning we have shown in (Eiter
et al. 2003b) that optimistic planning with given (poly-
nomial) plan length is NP-complete (propositional case)
and finding such a plan is NPMV-complete. Head cy-
cle free disjunctive logic programs evaluated under the
answer set semantics cover exactly this class of prob-
lems and the respective polynomial translation is given
in (Eiter et al. 2003a) and implemented in the DLVX
system outlined above.

When considering optimistic optimal planning
the complexity of finding such optimal plans to
FAZ. When extending logic programs with weak con-
straints (Buccafurri, Leone, & Rullo 2000), comput-
ing the respective optimal answer sets wrt. these con-
straints covers exactly this complexity class. The re-
spective translation is given in (Eiter et al. 2002b). As
weak constraints are a built-in feature of DLV, we could
also implement this translation in our prototype sys-
tem. The bridge crossing problem belongs to the class
of problems solvable in this framework.

Secure planning is ¥’ -complete even for given plan
length which makes a direct translation to answer set
programming infeasible. This is why we decided for
the interleaved plan checking approach outlined in the
previous section.

Checking plan security is II}-complete for given
plan length, but we have identified subclasses where
“cheaper” checks can be applied (for details, see (Eiter
et al. 2003b; 2003a)):

Check 1 is applicable to programs which are false-
committed (defined in (Eiter et al. 2003a)). This condi-
tion is e.g. guaranteed for the class of X domains which
are stratified, when viewed as a logic program.

Check 2 is applicable for domains where the existence
of a legal transition (i.e., executability of some action
leading to a consistent successor state) is always guar-
anteed. In (Eiter et al. 2002a) we have shown that
using these two checks implemented in our system we
can solve relevant conformant planning problems.

Both checks carry over to planning with action costs
in a straightforward way, and optimal resp. admissible
secure plans can be similarly computed by answer set
programming. A generalization of these secure checks
via a translation to full disjunctive logic programs is un-
der investigation. The methods investigated so far for
planning under uncertainty cover only optimistic and
secure planning. Furthermore, the possibility of com-
puting conditional plans under full /partial observability
by means of translations to logic programs as well could
be an interesting direction for further research.

Extensions in Progress
Multivalued fluents in K¢

Taking a closer look to the example in Figure 1 one
might criticize some deficiencies in the way fluents are
represented: Fluent literals in ¢ can only represent
boolean predicates. However, in planning we often have
to face state variables which do not only take boolean



values but a range of values from a (finite) domain. For
the example above, a person can always be at at most
one location (here,across) or exactly one person has
the lamp. In order to express such settings, multivalued
fluents like in the action language C+ (Giunchiglia et
al. 2001; Lee & Lifschitz 2001; Giunchiglia et al. 2003)
would be desirable. Intuitively, we would preferably
write something like:

caused hasLamp:=jack after takeLamp(jack) .
instead of two causation rules:

caused hasLamp(jack) after takeLamp(jack) .
caused -hasLamp(joe) after takeLamp(jack).

as effect of takeLamp(jack) in a state where joe has
the lamp. In K¢ we often use classical negation only
to “override” inertia, if fluents are concerned which can
only take a distinct value at each point of time. Using
this notation, our example in Figure 1 could be repre-
sented more compact and comprehensive.

We therefore extend the notion of fluent declarations
in K¢ from (Eiter et al. 2003b) in order to allow for
multivalued fluent declarations is of the form:

p(Xi,...,X,) : range requires t1,...,t, (1)

where p is the fluent name, X3, ..., X, are variables and
n > 0 is the arity of p. t1,...,t, refer to background
predicates, m > 0, every X; occurs in t1,...,ty, and

range is a unary predicate from the background knowl-
edge.

Furthermore, causation rules may contain multival-
ued fluent literals of the form p(Xy,...,Xy) := V in this
extended version, where V is a constant or a variable.

The semantics can be defined by viewing multivalued
fluent literals as macros for regular boolean fluent liter-
als, where we execute the following preprocessing steps:
(i) Each multivalued fluent declaration

fluent : £1(X) : type requires...

will be rewritten to a boolean fluent declaration:
£1(X,Val) requires type(Val)...
(ii) Causation rules with multivalued fluent literals can

be naively rewritten as follows: Each causation rule
with a multivalued fluent literal in the head

caused f1(X):=val ...
will be transformed to:

caused f1(X,val) ...

caused -f1(X,Vall) if vall!=Vall, type(Vall) ...
where type is the range predicate from the fluent dec-
laration of £1. A (possibly default negated) multival-
ued fluent literal £1(X) := Val in the if (resp. after)
part of a causation rule or executability condition can
then be simply rewritten to its boolean counterpart
£1(X,Val).

However, in this macro translation, we do not yet
make use of an important representational advantage
of K¢: As stated above, classical negation is only used
to “override” the old fluent value here, and the sub-
sequent state, i.e. we do not necessarily want to carry

fluent :

over all negative values of -f1 to the next state. In
K¢ states are defined as consistent sets of fluent liter-
als (i.e. the current knowledge of the planning agent
about the world) and not as a mapping from fluents
to truth values like in other approaches. So the naive
transformation from above can be further simplified for
K¢ under certain circumstances.

Dynamic action costs

A further extension of K¢ are fully dynamic action costs.
Plan costs in K¢ are defined as the sum of the single ac-
tion costs of all actions in the plan, where plans are se-
quences of (sets of) actions. At present, K¢ only allows
for action costs with very restricted means of dynamic
cost contributions: Action costs may only depend on
background knowledge facts or on the time when the
action occurs, but not on dynamic fluent values.
However, the current restriction has a practical rea-
son: Whereas in deterministic planning with complete
knowledge each plan corresponds to a unique sequence
of states, whenever nondeterminism comes into play, a
plan might have several possible “trajectories” 2. The
current restriction guarantees unique costs of plans as
different intermediate states, i.e. different fluent values
can not influence action costs per definition.
Nevertheless, dynamic costs are an important issue:
For instance, in our example we have no possibility to
express that a person gets tired when crossing several
times. This could for instance be expressed as follows:

fluents: fatigue(X): integer requires person(X).
actions: cross(X) requires person(X) costs C
where crossTime(X,SX),
fatigue(X) :=K,C = SX +K.
always : caused fatigue(X):=K1 after

cross(X), fatigue(K),K1 = K + 1.

inertial fatigue(X):=K.
expressing that a person fatigues from subsequent
crosses, so the cost of crossing is dependent on the new
fluent fatigue, which increases by one on every cross.
Things get even more involved if fatigue is nondetermin-
istic, i.e. a person might fatigue or not from crossing.
This could be modeled:

caused fatigue(X):=K1 if
not fatigue(X):=K after
cross(X), fatigue(X) :=K,K1 =K + 1.
caused fatigue(X):=K if
not fatigue(X) :=K1 after
fatigue(X) := K,K1!=K.

always :

where the unstratified negation in these two causation
rules models nondeterminism. In a setting with dy-
namic costs we have to extend our definition of plan
costs from (Eiter et al. 2002b) wrt. trajectories 3:

2We use the term trajectory for a sequence of state tran-
sitions.

3For the exact definitions of transitions, trajectories and
plans we refer to (Eiter et al. 2003b)



Definition 1 LetT = (t1,...,t) be a trajectory, where
t; = (sj—1,Aj,s;) is a legal state transition from state
sj_1 to state s; executing a set of actions A; (j =
1,...,1). Then, the cost of T wrt. a K¢ planning do-
main is defined as

cost(T) = Y, ( > cost;(a, 3]'_1)> .

j:l aeAJ-

where costj(a,s;—1) is the cost of action a wrt. state
sj_1 at time j according to the costs part of the resp.
action declaration of a.

Now that action costs depend on the state where they
are executed we have to change the definition of plan
costs accordingly:

Definition 2 Let P be a K¢ planning problem. Then,
for any plan P = (A, ..., A}) for P, where A; is the set
of actions executed at time i, the cost of p is defined as
the maximum cost over all trajectories T constituting a
successful execution of p (written T |=p), i.e.

cost(p) = ;n‘ax cost(T).
An optimal plan is again a plan with minimal cost; an
admissible plan wrt. cost ¢ is a plan with cost(p) < c.
As for secure planning, we define optimal plans as plans
with minimal costs among all secure plans.

This cautious definition of optimality could be in par-
ticular important for an estimation of worst case bounds
in presence of uncertainty in critical applications.

As for implementation, our current approach for com-
puting optimal plans outlined above is not feasible any
longer wrt. this definition. In order to surmount this,
a naive approach would be caching all plans and their
maximal costs during answer set computation. How-
ever, as there might be an exponential number of plans,
caching would be highly inefficient. A better strategy
is again “intercepting” candidate answer set generation
at the same point where checking plan security is per-
formed now: In order to find the optimal plan, consider
only those answer sets representing maximum cost tra-
jectories by checking whether there is a more expensive
trajectory for the answer set at hand. Possible improve-
ments of this computation and analysis of complexity
aspects are under investigation.

Conclusions and Outlook

The presented work describes further progress in the
research on modeling planning tasks in a declarative
high-level language K¢ and solving such tasks by effi-
cient reductions of the respective problems to answer
set programs. We have outlined the architecture of the
running prototype DLVX based on the DLV system. Fur-
thermore, we have proposed two upcoming extensions
we are currently working on in order to (i) allow for
a more concise representation of problems and (ii) be
able to expressed and solve a wider range of planning
problems in our framework.
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