Contingency Planningin Linear Time Logic
Andrea Orlandini

Universita di Roma Tre
Dipartimento di Informatica e Automazione
Via della Vasca Navale, 79
00146 Rome (Italy)

Tel. +39-0655173220
orlandi n@li a.uniroma3. it

Abstract

The “planning as satisfiability” approach for classical plan-
ning establishes a correspondence between planning prob-
lems and logical theories, and, consequently, between plans
and models. This work proposes a similar framework for con-
tingency planning: considering contingent planning problems
where the sources of indeterminism are incomplete knowl-
edge about the initial state, non-inertial fluents and non-
deterministic actions, it shows how to encode such problems
into Linear Time Logic. Exploiting the semantics of the logic,
and the notion of conditioned model introduced in this work,
formal characterizations are given of the notions of contin-
gent plan (a plan together with the set of conditions that en-
sure its executability).

This work has to be considered as the beginning of a research
project in which investigate applications in realistic scenarios.

I ntroduction

Classical planning is based on a number of simplifying as-
sumptions that are too restrictive to model a realistic en-
vironment, where: the description of the initial state may
be incomplete; actions may have non-deterministic effects;
the environment may be changed by exogenous events; the
agent interacts with the environment and gathers informa-
tion from sensors.

Planning under uncertainty can be solved by conditional
planning, whose aim is the synthesis of IF/THEN/ELSE
programs whose execution requires sensing. Considering
the heavy computational complexity of conditional planning
(Rintanen 1999), an alternative approach is based on re-
planning: instead of synthesizing the whole conditional plan
off-line, and then executing it, planning and execution (with
sensing actions) are interleaved.

Most approaches to contingency planning are based
on the manipulation of knowledge states and the explicit
representation of sensing actions (Pryor & Collins 1996;
Levesque 1996; Anderson, Weld, & Smith 1998; Bonet &
Geffner 2000; Bertoli et al. 2001; Petrick & Bacchus 2002).
An exception is represented by (Rintanen 1999), where con-
ditional planning is reduced to truth evaluation of quantified
boolean formulae.

Copyright (© 2003, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

This work proposes an approach to contingency planning
where the agent’s knowledge and sensing actions are not
represented explicitly. It represents an extension of the ideas
presented in (Cialdea Mayer et al. 2000), where the whole
planning problem is modelled in linear time logic (LTL) and
planning is reduced to model search. The expressive power
of LTL allows one to represent domain restrictions, interme-
diate tasks, domain and control knowledge (useful to guide
the search), as well as temporally extended goals. Moreover,
the logical encoding of planning problems provides a formal
semantics of the planning language.

In this paper we show that both exogenous events and ac-
tions with non-deterministic effects can be represented in a
natural way. Making use of a general planning language al-
lowing for different forms of non-determinism (incomplete
knowledge about the initial state, non-deterministic opera-
tors and non-determinism in the environment) and extended
goals, we show how to encode the specification of a planning
problem into a set S of LTL formulae, by suitably modify-
ing the analogous translation for classical planning problems
defined in (Cerrito & Cialdea Mayer 1998) and used by the
system presented in (Cialdea Mayer et al. 2000).

Obviously, when the environment is not completely
known and predictable, the correspondence between plans
and models, established by the “planning as satisfiability”
approach, fails. However, we show that a similar correspon-
dence can be established between a conditioned model (a
notion introduced in this work) and a contingent plan, that is
a pair (plan, conditions), i.e. a plan together with the set of
conditions that ensure its executability. In other words, ex-
ploiting the semantics of the logic, the notion of contingent
plan is extended so that observations gathered during execu-
tion are taken into account. Such a characterization can be
used when re-planning is needed. The planning procedure
approach in this work is complete only under the assump-
tion that actions are reversible.

A Planning Language for Non-Deter ministic
Domainsand its Encoding in LTL

In this section, we define the kind of planning problems we
are dealing with and their encoding in LTL. The problems
are presented by means of a PDDL-like syntax. The lan-
guage we use can be seen as an extension of the planning

language used by the system presented in (Cialdea Mayer
et al. 2000), that allows also for the specification of dif-
ferent forms of domain-specific knowledge, such as heuris-
tic knowledge and information on domain invariants. Al-
though such a language allows also for universal and exis-
tential quantification (over finite and fixed domains) — that
are however treated as conjunctions or disjunction of propo-
sitional formulae —, for simplicity we restrict here the lan-
guage to be propositional.

The language we consider is built over an alphabet IP =
A U F of propositional letters, partitioned into the two sets
A of action names and F of fluents. In turn, F is parti-
tioned into the two sets Z of inertial fluents and F — 7 of
non-inertial ones. Inertial fluents (Giunchiglia, Kartha, &
Lifschitz 1997) are subject to the “commonsense law of in-
ertia”: if no action affects them, their value stays unchanged.
The value of a non-inertial fluent, on the contrary, cannot be
always predicted from its previous value and the agent’s ac-
tions, but it may be subject to exogenous events. It can also
be affected by the agent’s actions, but the effect of actions
on non-inertial fluents is guaranteed for the next state only.

The specification of a planning problem is divided into
different sections. The declaration of fluents, partitioned
into inertial and non-inertial, is contained in a specific sec-
tion.

Thei ni t section contains a set of classical formulae de-
scribing the initial state. Such a section may contain dis-
junctive information and is not required to be complete, ac-
cording to the hypothesis that the agent’s knowledge of the
initial state may be incomplete.

The goal of the problem is described in a corresponding
section, in which it may contain also the temporal operator
< (“eventually in the future™).

Each action is described in an act i on section, contain-
ing the operator’s name, its preconditions and effects. Pre-
conditions are classical formulae of any form. Conditional
effects (when <condi ti on> <effect >) are allowed,
as well as non-deterministic ones, expressed as disjunc-
tions, or exclusive disjunctions, of literals (atoms or negated
atoms).

An example of non-deterministic action is take_file in
Example 1: it non-deterministically causes one to obtain a
pdf or postscript file (and not both). The symbol & is used
for exclusive OR.

Example 1 The agent has to get a file and print it. He does
not know whether a postscript or pdf version of the docu-
ment is available. Depending on this, he will use either Ac-
robat Reader or GhostView to print it.

(:fluents
(:inertial (printed, have_ps, have_pdf)))
(:action gv
:preconditions have_ps
ceffects printed)
(:action acroread
:precondi tions have_pdf
ceffects printed)
(:action take_file
:precondi tions —have_ps A —have_pdf

ceffects have_ps @ have_pdf)
(:init —haveps, —have_pdf, -printed)
(: goal printed)

In the rest of this section we show how to encode a plan-
ning problem into a set of LTL formulae. The encoding is
an extension of the encoding of classical planning problems
proposed in (Cerrito & Cialdea Mayer 1998) and used in
(Cialdea Mayer et al. 2000).

We consider the language of LTL overthesetIP = AUF

built by means of the connectives -, A, V and the future
time operators O (always), < (eventually), O (next). Im-
plication and double implication are defined symbols. For
convenience, we restrict the language to formulae in nega-
tion normal form.
For our aims, a non standard way of describing the seman-
tics of LTL is more convenient. It makes use of labelled
formulae, i.e. expressions of the formn : A where n € IN
and A is a formula. If £ is a literal, then n : £ is a labelled
literal. Intuitively, the label over a literal identifies the state
where the literal is true. A set .S of labelled literals is com-
plete if foralln € IN and all p € TP, eithern : p € S or
n : p € S. Itis consistent if it does not contain both n : p
andn : -pforanyn € Nandp € IP.

Definition 1 A temporal interpretation M is a consistent
and complete set of labelled literals.

Intuitively, if n : p € M then p is true at state n, and if n :
—p € M then pis false at state n. If M is an interpretation
of P, n € IN and A is a formula, the relation M =n : A
corresponds to the usual satisfiability relation M,, = A (the
n-th state of M satisfies A) and is recursively defined as
follows:

1. MEn:Liffn:£Le M,whenisaliteral;

MEnRANBiff MEn: Aand M =n: B;

. MEn:Av Biffeither M En: AorM [=n: B;
MER:QAIfFMER+1: A4

. MEn:DAiffforall k> n, M = k : A;

. MEn:OAiffforsomek >n, M Ek: A

A formula A is true in M (and M is a model of A) iff
ME0: A If Sisasetof formulae, M = Siff M = A
forall A € S. From now on, a set S of LTL-formulae is
considered the sameas {0: A | A € S}.

o O A WODN

The specification of a planning problem in the language
described above is encoded by the set Sy of LTL formulae
obtained as follows.

o All the formulae describing the initial state (in the i ni t
section) are included in So. This results in a (possibly
incomplete) description of the initial state.

e The goal G (stated in the goal section) is represented by
the formula ¢G.

e For each operator a having preconditions Aq, ..., Ay,
Sp contains an action precondition axiom, i.e.

O(a— A1 Ao NAY)

e For each action a, having a disjunctive effect 4; V ... V
£i, under conditions C, When C (¢ V...V £))anon-
deterministic effect axiom is in Sy:

O@AC = Ol V...VOUl)
(if the effect is unconditioned, C' is omitted).

e If f is a non-inertial fluent or a fluent that can be non-
deterministically affected by some action, let G be the
disjunction of all the a; A C; that have f as a determin-
istic effect (Gj{ specifies all the conditions that determin-
istically lead to change the truth value of f from false to
true), and GJZ the disjunction of all the a; A C; that have
—f as a deterministic effect (G~ specifies all the condi-
tions that deterministically lead to change the truth value

of f from true to false). Then Sy contains the following
effect axiom for each of such fluents:

0(G} = Of),0(G; = O~f)
e For each inertial fluent f, such that:

(i) -~f is a non-deterministic effect of some actions
a1, .., ag, under conditions, respectively, C, ..., Ck;

(if) fisanon-deterministic effect of some actions by, .., b,
under conditions, respectively, D1, ..., Dy,

Sp contains the following inertia axioms for f:

O((f A=G; A=(a1 ACi) A...m(ar A Cr)) = OF)
0(Qf = (fVGF V(b AD1) V...V (bn A Dy)))

where G;[and G are as specified in the previous item.

e For each inertial fluent f, that is never a non-deterministic
effect of any action, So contains the following para-
phrases of Reiter’s Successor State Axiom (Reiter 1991):

0(Of =G} Vv (f A-GT))

e Sy contains also a set of axioms describing incompatibil-
ity relations between actions, of the form:

D(—|a V —|b)

What has to be explicitly encoded, however, are the in-
compatibilities of actions a and b such that a deletes a
precondition of b, or vice-versa. In fact, if two actions
a and b have conflicting preconditions or effects, such an
incompatibility is taken into account by the logic itself,
since a and b cannot be true in the same state.

For convenience, we also declare two actions a and b to be
incompatible whenever a has a non-deterministic effect f
and b a (deterministic or non-deterministic) effect —f (or
vice-versa).

The adequacy of the analogous encoding for classi-
cal planning problems has been shown in (Cerrito &
Cialdea Mayer 1998). In the new setting, the encoding can
be recognized correct when we consider that a successor
state axiom is equivalent to the conjunction of the follow-
ing formulae:

(1) B(G} = Of) 2) O(G; = O~f)
3) D(fA=G; = Of) (4) DO(fA-G}—O-f)

Non-inertial fluents clearly do not satisfy (3) and (4), while
(1) and (2) are present in Sy as effect axioms. If f is a non-
deterministic effect of some action, (3) and (4) are in Sy as
inertia axioms, (1) and (2) are replaced by the effect and
non-deterministic effect axioms.

Here we give the complete encoding of the example pre-
sented before, filtered by application of some simple logical
simplifications.

Example 1
Initial state:
—have_ps, ~have_pdf, —printed
Goal:
Oprinted

Preconditions:
O(take-file — —have_ps A —have_pdf)
O(acroread — have_pdf), O(gv — have_ps)

Fluents behaviour:

O(take-file = (Ohave_ps A O—have_pdf)
V (Ohave_pdf A O—have_ps)))

O(have_ps — Qhave_ps)
O(have_pdf — Qhave_pdf)
O(Qhave_ps — have_ps V take_file)
O(Qhave_pdf — have_pdf V take_file)
O(Oprinted = (gv V acroread V printed))

Contingent Plans

In this section, we identify a planning problem with its tem-
poral logic encoding and formalize the notion of contingent
plan in terms of temporal interpretations.

Instead of producing the whole conditional plan off-line,
and then executing it, we can consider the possibility that
planning and execution (with sensing actions) are inter-
leaved. In that case, a single contingent plan can be gener-
ated at first. During its execution, its conditions are checked
by means of sensing actions. When a condition turns out to
be false, a different contingent plan is generated and consid-
ered.

A plan can be represented by a set of labelled action
names. If S is a set of labelled formulae, then lits(S) is
the set of labelled literals in S.

Let Sp be a set of formulae encoding a planning problem,
as illustrated before. From a model M of Sy we want to
extract a contingent plan solving the problem represented
by So, i.e. a significant subset of M, describing a plan,
together with a set of conditions ensuring the executability
of the plan. In general, in fact, it is not the whole model
M that is of interest and has to be explained, but only a
finite fragment of the model, up to the achievement of the
goals. Even the description of M up to such a “final” state
need not be complete. However, it must be rich enough: it
must contain enough information on how to reach the goal
and which conditions ensure its reachability. The following
definition formalizes this concept. For simplicity we assume
here that Sy contains formulae in negation normal form.

Definition 2 Let Sy be a set of labelled formulag, S O Sy
andm € IN. Then S is a saturated extension of Sy up to m
if foreveryn : A € Ssuchthatn < m:

1. ifA= Ao A Ay, thenbothn : Ag € Sandn : A; € S;

if A= AgV Ay, theneithern: Ag € Sorn: A; € S;

3. if A=0Aqgthenforall ksuchthatn <k <m,k: Ag €
S;

4, if A = OAp then for some &k such that n < k < m,
k: Ao €S,

5. ifA=QApandn <mthenn+1: 49 € S.

If M is a model of Sy and S a saturated extension of Sy

up to m, such that lits(S) C M, then lits(S) is called a
significant description of M as a model of Sp.

o

Note that, mainly because of clause 4 above, any signif-
icant description of a model of the encoding of a planning
problem implies that the goals are achieved.

It can easily be proved, by use of the same techniques
used to prove soundness of tableau methods, that if M is a
model of Sy then there exists a significant description of M
as a model of Sg.

The following definitions are introduced to the aim of
characterizing an adequate set of conditions ensuring the ex-
ecutability of a plan.

Definition 3 If S is a set of labelled literals. The history of
Supton, h(S,n),is{k:£|k:£e Sandk <n}.

Let Sy be a set of labelled formulae, and K and U sets
of labelled literals. Then U is a set of conditions explaining
K in the context of Sy (briefly, U explains K in Sy) iff U is
a minimal set (w.r.t. set inclusion) such that for all n : £ €
K: So,h(Un—-1)En:{L

The condition above amounts to saying that, for all n :
¢ € K and for every model M’ of Sy, if M’ is also a model
of the subset h(U, n— 1) of the history of U upton — 1, then
M' = n : £, t00. Ininformal terms, h(U,n — 1) “explains”,
in the context of Sy, all that happens, according to K, up to
the n-th state. Moreover, no subset of U has such a property.
If K implies, in the context of Sy, that the goals are achieved
within the n-th step, then (U, n —1) actually guarantees the
achievement of the goals.

Definition 4 Let Sy be a set of labelled formulae represent-
ing a planning problem. A conditioned model of Sy is a pair
(K,U), where K U U is a significant description of some
model M of Sg and U explains K in Sy.

If (K,U) is a conditioned model of Sy then the contin-
gent plan corresponding to (K, U) solving the problem rep-
resented by Sy is the set (P, C), where:

P
C

{n:a|n:a€Uandae A}
{n:pln:peUandpe F}
U{n:—p|n:-pelUandpe F}

In simpler words, a contingent plan solving the problem
encoded by Sy can be extracted from the set U of conditions
of a conditioned model of Sy, by dropping negative action
literals, i.e. labelled literals of the form n : —a fora € A,
and splitting the rest of U into the set of action names and
the fluents (contingencies guaranteeing the executability of
the plan).

Note that, according to Definition 4, the success of the
plan could also be conditioned by contingencies regarding

the same state where the goal is achieved. For instance, let
us consider the following simplification of the problem pre-
sented as Example 1:

(:fluents
(:inertial haveps, have_pdf))
(:action take_file
> preconditions —have_ps A —have_pdf
ceffects haveps ® have_pdf)
(:init —have_ps, —have_pdf)
(: goal have_ps)

A conditioned model of its encoding is:

K
U

{0 : ~have_ps, 0 : ~have_pdf}
{0 : take_file, 1: ~have_pdf, 1: have_ps}

The goal have_ps is achieved at state 1, but it is conditioned
by contingencies relatives to state 1 itself. In this case, al-
thoughforn =1, So, U |= n : have_ps, the achievement of
the goal is not guaranteed only by Sy U h(U,n — 1), but the
whole set U has to be taken into account.

If this situation is to be excluded, then we must also re-
quire for a pair (K,U) to be a conditioned model of the
encoding So of a problem, that K |= 0 : ¢G, where &G is
the representation of the goal.

Let (K,U) be a conditioned model of the encoding So
of a planning problem and let us assume that, during the
execution of the contingent plan extracted from (K, U), the
set O of observations has been gathered. Let us assume,
moreover, that n : £ is the result of the last sensing action
and the only observation that is inconsistent with U. Then
we want to synthesize a plan that is “complementary” to the
previous one with respect to n : £. The new plan must take
O into account, i.e. the observations should not appear as
conditions in the new plan, nor should whatever is derivable
from the observations and Sy.

Definition 5 Let Sy be the encoding of a planning problem,
and O a set of observations, i.e. a set of labelled literals
that is consistent with Sy. A conditioned model of Sy in the
presence of O is a conditioned model of So U O, i.e. a pair
(K,U) such that KUU is asignificant description of SoUO
andforalln: ¢ € K: Sy, O,h(U,n—-1) En: L.

Let (K, U) be a conditioned model of Sy, O a set of obser-
vations, and n the maximum label of the literals in O. Let
us assume, moreover, that n. : £ is the only labelled literal
that is inconsistent with U. Then a pair (K',U") is comple-
mentary to (K, U) in the presence of O if it is a conditioned
model of Sy in the presence of @ and K UU and K' U U’
describe the same model upto stepn — 1, i.e. forall k < n:
{k:l|k: e KUU}={k:L|k:Le K'UU'}.

For instance, let S; be the encoding of the problem pre-
sented as Example 1, where the take_file action has a
non-deterministic effect, and let (K, U) be the conditioned

model of S; where:

K = {0:-have_ps, 0 : —have_pdf, 0 : —printed,
0 : —gv, 0: ~acroread,
1: —printed, 1: —take_file,
2 : printed, 2 : have_ps, 2 : ~have_pdf ,
2 : macroread, 2 : —take_file}
U= {0:take_file,
1: have_ps, 1: —~have_pdf, 1 : gv,
1: —acroread, 2 : —gv }

Note that both 1 : have_ps and 1 : ~have_pdf occur as con-
ditions in U, although they are inter-derivable in the context
of S1; in fact, none of the two literals is derivable from S;
and h(U, 0), since, at that step, the effect of 0 : take_file
cannot be predicted.

Let us assume that, during the execution of this plan, after
performing the take_file action at step 0, have_ps turns out
to be false at step 1, so the observation O ={1 : —have_ps}
must be taken into account when synthesizing the new plan.
A suitable new plan is unconditioned:

({0 : take_file, 1 : acroread}, O).
In fact, this is the plan corresponding to the conditioned
model (K',U") of S; U O, where:

K'= {0:-have_ps, 0: —have_pdf, 0 : —printed,
0 : —gv, 0: —acroread,
1: —printed, 1: —have_ps, 1 : have_pdf,
1:gv, 1: —~take_file,
2 : printed, 2 : ~have_ps, 2 : have_pdf,
2: —gv, 2: —take_file }

U' = {0:take_file,1: acroread,?2 : ~acroread }

Infact, S1,0,0 : take_file =1 : have_pdf.

Concluding remarks

The “planning as satisfiability” approach for classical plan-
ning establishes a correspondence between planning prob-
lems and logical theories, and, consequently, between plans
and models. This work proposes a similar framework
for contingency planning: considering contingent planning
problems where the sources of indeterminism are incom-
plete knowledge about the initial state, non-inertial fluents
and non-deterministic actions, it shows how to encode such
problems into LTL. Exploiting the semantics of the logic,
and the notion of conditioned model, we give a formal
characterization of the notions of contingent plan and re-
planning in the presence of a set of observations.

Much work still remains to be done. Let us consider at
first the implementation side. A first prototype system was
presented in (Cialdea Mayer & Limongelli 2002), but its per-
formance are poor and it has to be re-implemented. The use
of appropriate structure, e.g. BDD’s for represent proposi-
tional formulae, can improve the efficiency of the system.

Our studies are involving in order to exploiting the ex-
pressive power of the language proposed: refining the de-
scription method of the planning domains can lead to a more
efficient behaviour of the planner. In such a way, the choice
of good control knowledge it’s a crucial problem.

Moreover, we are actually studying the application of this
tecnique in more complex domain. A realistic scenario can

be a robot in a simulated environment in which a sensors
system and a planning module interact.

References

Anderson, C.; Weld, D.; and Smith, D. 1998. Extending
Graphplan to handle uncertainty and sensing actions. In
Proc. of the 15th National Conf. on Artificial Intelligence
(AAAI-98), 897-904.

Bertoli, P.; Cimatti, A.; Roveri, M.; and Traverso, P. 2001.
Planning in non deterministic domains under partial ob-
servability via symbolic model checking. In Proc. of the
17th Int. Joint Conf. on Artificial Intelligence 1JCAI 2001,
473-478.

Bonet, B., and Geffner, H. 2000. Planning with incomplete
information as heuristic search in belief space. In Proc. 5th
Int. Conf. on Al Planning and Scheduling (AIPS 2000), 52—
61.

Cerrito, S., and Cialdea Mayer, M. 1998. Using linear
temporal logic to model and solve planning problems. In
Giunghiglia, F., ed., Proceedings of the 8th International
Conference on Artificial Intelligence: Methodology, Sys-
tems, Applications (AIMSA’98), 141-152. Springer.

Cialdea Mayer, M., and Limongelli, C. 2002. Linear time
logic, conditioned models and planning with incomplete
knowledge. In Fermiller, C., and Egly, U., eds., Proc.
of the Int. Conf. on Automated Reasoning with Analytic
Tableaux and Related Methods, volume 2381 of LNAI, 70—
84. Springer.

Cialdea Mayer, M.; Orlandini, A.; Balestreri, G.; and
Limongelli, C. 2000. A planner fully based on linear time
logic. In Chien, S.; Kambhampati, S.; and Knoblock, C.,
eds., Proc. of the 5th Int. Conf. on Artificial Intelligence
Planning and Scheduling (AIPS-2000), 347-354. AAAI
Press.

Giunchiglia, E.; Kartha, G. N.; and Lifschitz, V. 1997.
Representing action: Indeterminacy and ramifications. Ar-
tificial Intelligence 95(2):409-438.

Levesque, H. 1996. What is planning in the presence of
sensing? In Proc. of the 13th National Conference on Ar-
tificial Intelligence, AAAI-96, 1139-1146. AAAI Press.

Petrick, R., and Bacchus, F. 2002. A knowledge-based ap-
proach to planning with incomplete information and sens-
ing. In Proc. of the 6th Int. Conf. on Artificial Intelligence
Planning and Scheduling (AIPS-2002).

Pryor, L., and Collins, G. 1996. Planning for contingen-
cies: a decision-based approach. Journal of Artificial Intel-
ligence Research 4:287-339.

Reiter, R. 1991. The frame problem in the situation cal-
culus: A simple solution (sometimes) and a completeness
result for goal regression. In Lifschitz, V., ed., Artificial
Intelligence and mathematical theory of computation: Pa-
pers in honor of John McCarthy. Academic Press. 359—
380.

Rintanen, J. 1999. Constructing conditional plans by

a theorem-prover. Journal of Artificial Intellingence Re-
search 10:323-352.

