
Solving Relational MDPs with First-Order Machine Learning
���

Mausam and Daniel S. Weld
Dept of Computer Science and Engineering

University of Washington
Seattle, WA-98195

{mausam,weld}@cs.washington.edu

Abstract

We present a new formulation of Relational Markov Deci-
sion Processes (RMDPs) which is simpler than the situation-
calculus approach of Boutilier, Reiter and Price. In addition,
we describe our initial efforts developing a novel, machine-
learning based method for computing an RMDP’s policy. Our
technique instantiates the RMDP into a number of propo-
sitional MDPs, which are then solved for their value func-
tions. First-order regression techniques are then used to learn
a value function for the complete RMDP. This value func-
tion may then be used to produce a policy for huge decision-
theoretic planning problems, outputting compact solutions
without actually requiring explicit state space enumeration.
Finally, we extend our RMDP formalism to cover the case of
a dynamic universe, i.e. in which action effects may create
new objects or destroy existing ones.

Background
A Markov Decision Process is a tuple < ��������	
��� >, where

 � is the set of states.

 � is the set of actions.

 	 is the transition function ������������� ������� which

takes an action, the current state and the next state and
gives the probability of this transition.

 � is the reward model which is a mapping from a state
to a real number. Intuitively, ����� � is the reward the agent
would get when it reaches a particular state � .

We consider MDPs for which the objective is to maximise
the expected discounted reward gathered by the agent act-
ing over infinite time. Thus we also include a !�"#� ���$�%�
as the discount factor. Since we are in the fully observ-
able case, we need to output a policy &(')���*� which
maximises our objective function. Note that such an MDP
satisfies the Bellman backup equation given by +-,.��� �0/
����� �214365.798%:<;>=.!@?BA�CED :GF 	��IHJ���K�L�$MN�O+6, �P�QMR�PSUT0VXW.�$YZ�IH���[.

Here VXW.�$Y represents the cost of performing an action and
+\,.��� � is defined as the maximum expected discounted re-
ward accumulated starting from a given state � .

]
This work is supported by ONR grant N00014-02-1-0932 and

NASA grant NAG 2-1538^
An extended version also submitted to the Workshop on Plan-

ning under Uncertainty and Incomplete Information, ICAPS’03.

In many cases, it is possible to factor the MDP. In this,
a state is defined in terms of a set of state variables (_`/a _cbQ�d_-e<��f�f$fd_-gJh), which are often Boolean. Thus one as-
signment of values to state variables represents one state.
Assuming Boolean state variables, one can see that i �jik/l�m nom

. In this framework, the transition function for each
action is best described using a DBN and even the reward
model may be described using the state variables.

Considerable work has been done in developing meth-
ods for solving these propositional planning problems un-
der uncertainty, especially assuming full observability. Most
approaches have used dynamic programming of the Bell-
man equation in either the value iteration or policy iteration
framework. Some have used heuristics to reduce the com-
putational requirements. In the case where the states are
non-factored, Bonet and Geffner (Bonet & Geffner 2000)
use heuristic search over the state space. However, in the
propositionally factored case, SPUDD (Hoey et al. 1999)
uses algebraic decision diagrams to do symbolic reasoning
over the state space. This method proves to be fairly fast on
many reasonable sized problems. Feng and Hansen (Feng &
Hansen 2002) observe that the information of an initial state
could be utilised to speed up the whole procedure. They
adapt SPUDD to add state reachability information by doing
alternative rounds of dynamic programming and reachable
state space expansion, and achieve much better results. Al-
ternatively, Koller and Parr (Guestrin, Koller, & Parr 2001;
Koller & Parr 2000; 1999) factor the value function as lin-
ear combination of small basis functions and then solve the
MDP approximately by doing closed form computations.

However all this is in the realm of propositional planning
that is defined in terms of ground actions and ground state
variables. But, in real life, objects are divided into various
classes. In a standard (propositional) MDP, one would have
to specify each ground action and state variable separately.
If we wish to succinctly represent such domains, we would
have to consider classes of objects, and define state variables
and actions over classes (or ordered tuples of classes), and
provide a list of ground objects separately. To expand such
a description into actual propositional planning domain we
would have to parametrise all these state variables and ac-
tions over all possible legal combinations from the list of
objects.

This idea, termed as Relational MDPs (RMDPs), was in-
troduced in a seminal paper (Boutilier, Reiter, & Price 2001)
in the context of the situation calculus (we provide a new
and simpler formulation of RMDPs in the following sec-
tion). The standard MDP solvers can’t even take off in the
expanded RMDP problems with even a small number of do-
main objects, as the number of state variables grow with
number of domain objects fairly fast. They try to utilise
the fact that all objects of the same class behave similarly
so that rather than taking each object separately we can deal
directly with object variables which could be parametrised
appropriately in the actual problem. They learn the value
function and the policy in the symbolic abstract form inde-
pendent of the number of domain objects by partitioning the
state space based on certain properties and assigning a value
to each partition. Although their procedure is sound and ele-
gant, they could not generate a working implementation be-
cause of the need to use first order theorem provers to prune
the number of partitions as they were blowing up very fast.
On the whole their system was fairly slow and they could
only show results of first iteration with one time rewards af-
ter some hand pruning. More recently, Guestrin and Koller
(Guestrin & Koller 2002) show a way to solve RMDPs by
considering a class-based, approximate value function and
solve it using linear programming combined with sampling
over worlds.

Relational Markov Decision Process
Let us extend MDPs with full observability to RMDPs with
full observability as follows:

Definition (RMDP): We formalise a relational markov de-
cision process as a tuple < �����U������� �d	
�L� >, where �����
and � are all sets of relational schemata. In particular,

 � is a set of classes denoting the different possible types
of a ground object.

 � is the set of fluent schemata. Each fluent � "�� has
arity � ��� � and we assume typed logic i.e. with each fluent
� is associated a function Y�	 :

a �K� l ��f f f ��� ��� �LhU�
� . This
function represents the types of different arguments for �
to be valid.
 � is a set of action schemata and as with the elements of
� , there is an associated arity and a type function Y 8 for
every H " � . Also the cost of each action is a positive
real number.

 � represents a set of domain objects. With each object
from the set � is associated a single Y���
�� from ��f

 	 is a transition function which represents the probabili-
ties of transition between different states (we will discuss
what comprises a state, shortly).

 Finally � is the reward model. For simplicity, we con-
sider the model as a mapping from the set of states to
real numbers. However, we could handle a more com-
plex model which associates a real value with every tuple
�IV���������� Yd�$YOHGY��G������� Yd�$YOHGY��G��H VZY��EW�� �
Example: Following the example of (Boutilier, Reiter,

& Price 2001) let us consider a domain in which there are

boxes in different cities and the goal is to bring one box into
Paris. There are trucks which help in this transportation.
To determine one state we would have to know whether a
box is in a city (Bin), whether a truck is in a city (Tin) and
whether a box is on a truck (On). The actions are unloading a
box from the truck, loading a box onto the truck and driving
the truck from a city to another. Let us formally define this
RMDP.

 � : {Box, Truck, City}

 � : {Bin(Box,City), On(Box, Truck), Tin(Truck, City)}

 � : {Unload(Box,Truck,City), Load(Box, City, Truck),

Drive(Truck,City,City)}

 � : ����� �"!#�$� ���%��% H&���O� � Y�'(��� �$�)��*I�+� � .

 Any number of boxes, trucks and cities will give one pos-

sible � .

 The transition function 	 is defined in detail in the fol-

lowing text.

We now define the set (�-, D) of all possible fluent tuples in-
stantiated with elements of domain � M .
� , D / a � ��. b ��. e ��f$f�f�.0/01 	�2 �Xi3� "4�U�5.76�"8� M���Y�	��9�O��/

Y���
(�G�9.76���h .
If we expand the RMDP into a factored MDP then the

state variables in the MDP are elements of �:, - the set of
possible tuples comprising the fluent relations formed by in-
stantiating the schemata in � with objects in � . Hence,
the state space � of the problem is ; ���:,
� , the power set
of �-, . We can similarly define the possible actions one
can execute over some set of domain objects � M as � , D /a HJ�9. b ��. e ��f f f ��.0/71 8<2 h i Hc">� �=.76 ">�cM � Yd8G�9�O�k/ Y���
��G�9.76��Lh .

The transition function 	 is in general a mapping from
�@� �4�-� , � � � ����� . Note that the state space is extremely
large and thus specifying a general transition function is im-
practical. An interesting restricted form is a relationally fac-
tored version of the transition function.

Assumption 1: We assume that an action can only affect
relational fluents instantiated over its parameters.

This is a reasonable assumption for many situations since
one can add an arbitrary (finite) number of parameters to an
action. Thus, the assumption is akin to ruling out universally
quantified effects. In such a case, we can achieve a compact
specification of the transition function.

Compact specification of transition function
Let us consider an action H ,0/ HJ�9.9b ��.Ke<��f f f ��.0/71 8<2 � where

H "4� and . 6 "?� . Define � ,o/A@ /01 8<26CB b a . 6 h . As assumed,
the action H�, can affect only .06 ’s, i.e. it affects the fluent
tuples instantiated only by domain objects from � . Hence,
the transition function associated with H , can be thought as
	 8+D /�; ���E, D �%�F;��9�-, D �d��� � ����� .
We can further reduce the specification in the problems
where one can assume that the value of a relational fluent
in the new state is independently modified by an action ir-
respective of the value of other fluents in the new state i.e.
depends only on the previous state. In such a case 	 8GD /
; ��� , D%� �"� , D%� � ������� .

Action : Unload(box,truck,city)
Preconditions: Tin(truck,city),

On(box,truck)
Effects: Bin(box,city) �

� On(box,truck)
c/ ��f �
Action : Load(box,city,truck)
Preconditions : Bin(box,city),

Tin(truck,city)
Effects: On(box,truck) �

� Bin(box,city)
c/ ��f �
Action : Drive(truck,city1,city2)
Precondition : Tin(truck,city1)
Effects: Tin(truck,city2) �

� Tin(truck,city1)
 / ��f �

Figure 1: Transition function for actions in Probabilistic
Strips representation.

Finally if we assume that each action template, H , behaves
similarly with all the similar objects (satisfying same rela-
tional fluents), then for each action we can specify this tran-
sition function as a template and we can instantiate the pa-
rameters with different domain objects to get the exact prob-
ability of a particular transition.

Example (contd): Following the previous example, the
figure 1, shows the transition function in Probabilistic Strips
format (Boutilier, Dean, & Hanks 1999). Note that in our
example, load and unload succeed with probability 0.8 and
drive succeeds with probability 0.9. Moreover, all the vari-
ables that have not been mentioned are assumed unchanged.
However to take advantage of the DBN representation (Dean
& Kanazawa 1989) we could instead create a relational
DBN representation where the state variables would be these
parametrised relations which would be causes of other rela-
tional state variables. But recall that in standard DBN repre-
sentations one must explicitly represent the causal relation-
ship of each new state variable. However, in our case, doing
this would greatly increase the size of the representation. So
we adopt a DBN representation with an implicit persistence
property which means that all the new variables that have not
been mentioned remain unchanged. The transition function
of � � * W H7.2���XW�� �dY���� V�� ��V��PY���� as an example of this relational
DBN with persistence is shown in figure 2.

As we consider full observability in our model, we as-
sume that after each action execution the agent knows the
new state achieved. To us, that means that after executing
action H , , the agent knows the value of each fluent from the
set � ,=D .

The solution of such an RMDP is similar to that
of the MDP i.e. to find a policy (& : � � � ,)
which maximises the expected discounted reward over
an infinite horizon. We see that the Bellman backup
equations can be inherited from the MDP. The opti-
mal value function +6, is defined as: +6,.��� � / ���P� � 1
3 5 7 8Q:<;�� = ! ?BA C D :GF 	 8G�P�<�L�QMR�d+6,.���QMN� S T4V�W.��YZ��H�� [

Tin(truck,city)

On(box,truck)

Bin’(box,city)

On’(box,truck)

Bin(box,city)

Tin On Bin Bin’

F F F 0
F F T 1
F T F 0

Tin On Bin’ On’

F F X 0
F T X 1
T F X 0
T T T 0
T T F 1

T F F 0
T F T 1
T T F 0.8

Figure 2: Relational DBN representation of transition func-
tion of Unload(box,truck,city). Note that all unmentioned
terms (eg. Tin’(truck,city)) will remain unchanged. Note
that both Bin(box,city) and On(box, truck) can’t be true at
the same time.

Solving RMDPs by learning the value function
In this section, we describe our approach to learn the first or-
der value function for the RMDPs. Notice that it is straight-
forward to use this value function to generate the policy.

Assumption 2: We assume that the RMDP reward model
is a piecewise constant function which defines a partition
over state space such that each equivalence class has the
same value. We also assume that each equivalence class
can be defined as a quantified first order logic expression.

That is we will not handle rewards which are, for exam-
ple, proportional to the number of objects satisfying certain
constraints. Where (Boutilier, Reiter, & Price 2001) used
deductive reasoning in generating the first order value func-
tion, we use inductive learning techniques to do the same.

1. We first expand the RMDPs with an extremely small num-
ber of objects into a ground MDP.

2. We then use a state of the art MDP solver to compute the
value function of this small MDP.

3. We repeat the above two steps to generate a suitable num-
ber of training examples.

4. We now apply learning techniques using this data to gen-
erate a value function in the symbolic form. Specifically,
we use a learner which generates first order regression
trees (decision trees with internal nodes having quantified
logic expressions and leaves as numeric values).

An example of such a value function is shown in Figure 3.
This figure can be read as follows. If there is a box in Paris
the value is �Q� , else if there is a box on some truck and that
truck is in Paris then value is 	 . If that truck is elsewhere
then the value is
 and so on.

Since we wish to learn a real-valued value function, we
require a learning technique which ascribes numeric values
(rather than a symbolic classifications) to a partition of the
state space. A variant of inductive logic programming called
structural regression trees (SRT) (Kramer 1996) is tailor-
made for our purposes. SRT builds a sequence of increas-
ingly complex trees (by gradually decreasing the minimum

E

bBin(b,Paris)

E

b tOn(b,t)

E

Tin(t,Paris)

E

cTin(t,c)

...

10

7

5 ...

Figure 3: A value function represented as a first order re-
gression tree. The leaf nodes are the values of the partitions.
Note that all the left branches are true branches.

coverage parameter) and then chooses the best according to
a minimum description length (MDL) heuristic (Rissanen
1978).

Each regression tree is grown in a manner similar to the
top-down induction of a decision tree. A partition is split by
considering conjunctions of literals and choosing the con-
junction whose split most lowers the sum of squared differ-
ences (equation 1). For example, a set of instances � might
be split by a conjunction � into a set, � b that satisfies � and a
set, ��e that does not. If � 6 denotes the mean of the elements
(� 6�� �) of �G6 , then the sum of squared differences is:

e�
6CB b

m ���Om�

��B b
�9� 6	� � T � 6 � e (1)

When the stopping criterion terminates tree growth, the
tree may be used to predict the value for an arbitrary state
by applying the tests at each node in turn until a leaf, � b , is
reached. The value assigned to the state is simply the mean
value of the leaf: �&6 .

The major concerns in this approach are whether the as-
sumption 2 is a good bias for learning; will the learner con-
verge and is our method scalable. Although we don’t have
direct answers to these questions, our initial efforts with
hand-implementation suggest that the learner will converge.

Implementation status
We tested the algorithm by hand-executing several iterations
on a small number of examples and the results seem ex-
tremely positive. This has led us to start with the imple-
mentation of the system. We use SPUDD (Hoey et al. 1999)
as the MDP solver. We are currently modifying C4.5 (Quin-
lan 1993), a decision tree learner (which is written in �) to
learn first order regression trees in the same fashion as SRT.

Dynamic Object Relational Markov Decision
Process

Consider a factory domain, where lots of widgets are be-
ing continually produced by various mills. Periodically, we
need to pack and ship them appropriately. We can think of a

 � W�.&�JVG� action that creates a new widget and a ��'��C
 action
that takes some already produced widgets out of the system.

In order to model such a domain, we need to formalise ac-
tion effects that change the set of objects � .

Note that such a system can’t be modelled by traditional
MDPs as the number of domain objects, and hence the num-
ber of states is unbounded. Even if there were a bound and
one added a new attribute H * ��
7� which told whether an ob-
ject is still in system or not, this would create the problem
of having a large number of objects in the working set from
the very beginning and since the size of the planning prob-
lem grows unbelievably large with the number of domain
objects, it would be very slow. We could try to model this
with RMDPs in such a way, however, similar work in CSPs
(Mittal & Falkenhainer 1990) suggests that it is faster to han-
dle the dynamic creation of objects differently. Hence, we
propose dynamic object relational MDPs (DORMDPs) as a
model that caters to dynamic creation of an unbounded num-
ber of objects.

There are different possibilities for the dynamic universes
in terms of the number of objects that could be created as a
result of an action execution:

 Unbounded Object Creation: The most generic model

would allow for an unbounded, variable number of new
objects being created as a result of an action.

 Bounded Object Creation: An action producing vari-
able number of objects subject to a maximum value.

 Constant Object Creation: An action producing only
constant number of new objects.

 Single Object Creation: At most one new object being
created per action execution.

For simplicity of presentation, we consider the last case in
some detail. Note that, the following model can be easily
extended to deal with any of above listed cases. For exam-
ple, to model the first two cases, we could take the number
of objects created as a probability distribution based on the
current state.

Definition (DORMDP): A DORMDP is a tuple
< �����U��� ��� ��	
��� > whose elements are the same as
those of an RMDP except that � is infinite.

The state space � is ;��9� , � but since � is infinite, the
set of relational fluents defined over � is also infinite, hence
� is infinite. In particular, � is ����@ [@

m
 m
6CB b a . 6 b ��. 6 eK��f f f h]

where � � is the initial set of objects. We can shrink � by
having the .76�� ’s only for those types (VG6) for which some ac-
tion creates an object of that type. Moreover, we also define
two new functions over each action
 V : � � �c� � ������� which
denotes the probability that action � produces a new object
in the state � and YOV : � � � which denotes the class of the
object created.

We maintain Assumption 1, in which we assume that rela-
tional fluents are independent and that an action affects only
fluents instantiated by action parameters and the new object
created. In this case, the transition function can be defined
as follows:

Let the action being considered be H , =
H2��. b ��. e �$f f f ��.7/01 8<2 � such that H�,-"�� , and H@"�� . Let � ,
be @ /01 8<26CB b a .76Eh . Moreover, let �cM = �>,=@ a . g���� h where . g����

is the new object created such that Y���
��G�9. g ��� �0/ YOV.�IH�� .
Also, note there would be new relational fluents created (as
a result of object creation) whose truth values need to be
found out. The total set of relational fluents affected would
be � , D . Then our transition function for the action H2, is
	 8 D : ;��9� , � �%�"� , D � � ������� .

Finally the observation model for full observability re-
quires the agent to observe whether the new object was cre-
ated or not and also the truth values of all the relational flu-
ents from the set � , D , if new object was created and � , D ,
if it was not created. The definitions of policy and reward
model etc. can be inherited from the RMDP definition. And
as usual, the goal of such a planning problem is to find an
optimal policy (�)� � ,) such that discounted sum of ex-
pected rewards is maximised over an infinite horizon.

We know that DORMDPs can’t be expanded into propo-
sitional MDPs directly since the state space is infinite. So,
the only way to generate a value function, in this case, seems
to be generating a first order one, partitioning the state space
based on attributes of the states. Note that this work is still
ongoing.

Conclusions
While our work is ongoing, we have already made the fol-
lowing contributions:

1. We defined Relational MDPs. Although (Boutilier, Re-
iter, & Price 2001) has already done this in the context of
situation calculus, we believe that our formalism is more
practical.

2. We presented a new solution method based on relational
decision tree learning from the solution of expanded
propositional MDPs.

3. We defined Dynamic Object Relational MDPs which al-
low one to model actions whose effects created objects.

In future, we will complete the implementation of our sys-
tem and do experiments over it; these will answer our con-
cerns on the convergence and scalability of the system. Fur-
ther, we wish to relax the two assumptions we have made in
the paper. For instance, we could deal with reward models
which have rewards proportional to number of objects of a
certain type and handle universally quantified effects. We
could use First Order Regression System (FORS) (Karalic
& Bratko 1997) since it has the ability to learn regression
models over attributes. We can further incorporate the ob-
jective of trying to achieve goals in our framework, instead
of maximising rewards. We also wish to look for improved
reachability analysis and better heuristics to speed up the
system. Another direction of research is including temporal
duration in uncertain actions. We will also continue to work
on solving dynamic object RMDPs.

Acknowledgements
We are thankful to Pedro Domingos for his inputs at vari-
ous stages of this research. We also thank Kate Deibel, Lin
Liao, Don Patterson and Sumit Sanghai for giving useful
comments on an earlier draft of the paper.

References
Bonet, B., and Geffner, H. 2000. Planning with incomplete
information as heuristic search in belief space. In Proceed-
ings of the Fifth Interational Conference on Artificial In-
telligence Planning and Scheduling, 52–61. Breckenridge,
CO: AAAI Press.
Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision the-
oretic planning: Structural assumptions and computational
leverage. Journal of Artificial Intelligence Research 11:1–
94.
Boutilier, C.; Reiter, R.; and Price, B. 2001. Symbolic dy-
namic programming for first-order MDPs. In Proceedings
of the Seventeenth International Joint Conference on Arti-
ficial Intelligence, 690–697. Seattle, WA: Morgan Kauf-
mann.
Dean, T., and Kanazawa, K. 1989. A model for reason-
ing about persistence and causation. Computational Intel-
ligence 5(3):142–150.
Feng, Z., and Hansen, E. 2002. Symbolic heuristic search
for factored markov decision processes. In Proceedings
of the Eighteenth National Conference on Artificial Intelli-
gence. Edmonton, Canada: AAAI Press.
Guestrin, C., and Koller, D. 2002. Generalizing plans
to new environments in relational mdps. Unpublished
Manuscript.
Guestrin, C.; Koller, D.; and Parr, R. 2001. Max-norm
projections for factored MDPs. In Proceedings of the Sev-
enteenth International Joint Conference on Artificial Intel-
ligence, 673–682.
Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C. 1999.
SPUDD: Stochastic planning using decision diagrams. In
Proceedings of the Fifteenth Conference on Uncertainty in
Artificial Intelligence, 279–288. San Francisco, CA: Mor-
gan Kaufmann.
Karalic, A., and Bratko, I. 1997. First order regression.
Machine Learning 26:147–176.
Koller, D., and Parr, R. 1999. Computing factored value
functions for policies in structured MDPs. In Proceedings
of the Sixteenth International Joint Conference on Artificial
Intelligence, 1332–1339.
Koller, D., and Parr, R. 2000. Policy iteration for factored
MDPs. In Proceedings of the Sixteenth Conference on Un-
certainty in Artificial Intelligence, 326–334.
Kramer, S. 1996. Structural regression trees. In Proceed-
ings of the Thirteenth National Conference on Artificial In-
telligence, 812–819. Cambridge, Menlo Park: AAAI Press.
Mittal, S., and Falkenhainer, B. 1990. Dynamic constraint
satisfaction problems. In Proceedings of the Eighth Na-
tional Conference on Artificial Intelligence, 25–32.
Quinlan, J. R. 1993. C4.5: Programs for machine learning.
Rissanen, J. 1978. Modelling by shortest data description.
Automatica 14:465–471.

