
Interleaving Temporal Planning and Execution: IXTET-EXEC∗

Solange Lemai and Félix Ingrand †

LAAS/CNRS,
7 Avenue du Colonel Roche, F-31077 Toulouse Cedex 04, France

{slemai,felix}@laas.fr

Abstract

Execution control of plans is a very active domain of re-
search, but remains a major challenge when performed
on board real autonomous systems such as robots or
satellites. In such a context, where execution concur-
rency, resources contention and environment dynamic
characterize the domain, the use of a temporal planner
and a temporal execution control system is desirable.
This paper presents IXTET-EXEC, a recent extension of the
temporal planner IXTET which allows execution control,
plan repair, and replanning when necessary. This paper
is a short version of [Lemai & Ingrand 2003].

Introduction
IXTET-EXEC enables the system to execute and monitor the
execution of a temporal flexible plan. It takes into account
runtime failures and timeouts from the underlying functional
components and incorporates those failures in the plan. If
some flexibility was left for the failed action, it may try an-
other way to achieve it, otherwise it tries to repair the plan
to still achieve the goal, and if this fails too, it replans the
whole plan. Figure 1 presents how IXTET-EXEC is integrated
in the overall LAAS architecture, and how it relates to the
procedural executive which relays the actions to the func-
tional level and passes back the reports of success or failure
of those same actions.

The paper is organized as follows. The first section de-
scribes the IXTET-EXEC component and details the methods
and algorithms used to perform temporal plan execution
monitoring, plan repair and replanning. We illustrate the
current state of implementation with an example, and con-
clude with a number of extensions currently being imple-
mented.

IXTET-EXEC
The IXTET system [Ghallab & Laruelle 1994] is a lifted
partial-order temporal planner based on CSPs. The tem-
poral representation describes the world as a set of multi-
valued functions of time, calledattributes, and resources

∗Part of this work was funded by a contract with CNES and
ASTRIUM.

†This author is currently on sabbatical at NASA Ames Research
Center, Moffett Field, CA, USA.

Environment

Modules

N

S

W E

mission report

ExoGen

GenoM

PlannerPropice
(PRS)

C
om

Li
b

:
cs

Li
b

 +
 p

os
te

rL
ib Procedural

Executive IxTeT-eXeC

Requests and Resources
Checker

Decisional
Level

Requests
Control
Level

Functional
Level

Figure 1: The LAAS Architecture.

over which borrowing, consumption or production can be
specified. The planner deals with a set of deterministic op-
erators calledtasks. A taskis a temporal structure composed
of a set ofeventsdescribing the change of the world induced
by the task, a set ofhold assertions on attributes to express
required conditions or the protection of some fact between
two events (causal link), a set of resource usages, and a set
of temporal and binding constraints on the different time-
points and variables of the task. The planning system IXTET
presents interesting properties in the context of plan execu-
tion and plan modification: it elaborates very flexible plans,
partially ordered and partially instantiated and performs the
search in the plan space. The purpose of IXTET-EXEC is to
extend IXTET to interleave more closely planning and tempo-
ral execution, especially to: regularly update the plan under
execution, reactively replan in case of failure, incrementally
replan upon arrival of new goals.

The key component in IXTET-EXEC is a temporal execu-
tive which interacts with the planning system. The general
schema of execution is the following. First, given a descrip-
tion of the task operators and of an initial plan containing the
initial situation and the goals, a complete plan is elaborated.
This plan is then executed. At each step of the execution, the
temporal executive selects the appropriate timepoints from
the temporal network, sends the corresponding commands
to the procedural executive for task expansion and integrates

Execution Cycle
ExecutedP lan: plan currently under execution
ExecutableTPs: set of executable timepoints
texec: execution time of the next executable timepoint
ExecTPs: set of timepoints to execute during the cycle

1.cycle forever
2. wake up if (currenttime≤ texec) or (replan)

or (MsgQueue not empty)
3. cycle start time←currenttime
4. cycle end time← cycle start time + timestep
5. Sense()
6. PlanRepair()
7. Act()
8 get nexttexec

9. add executable TPs occuring attexec to ExecTPs
10.end cycle

the reports sent in return. In case of failure, the temporal
executive invalidates the part of the plan concerned by the
failure. Then, taking advantage of the temporal flexibility
of the plan and using IXTET procedures, it tries to repair the
plan while continuing the execution of its valid part. If this
plan repair fails, the temporal executive aborts the execu-
tion, abandons the current plan and restarts a complete plan-
ning process from the new situation and the not yet achieved
goals.

Temporal execution
The temporal executive controls the temporal network of the
plan (aminimal STN, [Dechter, Meiri, & Pearl 1989]) to de-
cide the execution of tasks and maps the abstract timepoints
to their real execution time.

The timepoints of an IXTET plan correspond to different
types of event: start or end of a task, some contingent exter-
nal event (as for instance the timepoints defining a visibility
window for a space application), or some internal event of
a task (used to represent the variation of a resource profile,
or some more complex dependency between tasks . . .). The
current implementation only takes into account start and end
timepoints.

Furthermore, three types of tasks are considered.Non pre-
emptivetasks cannot be terminated by the controller and the
end timepoint is uncontrollable.Early preemptiveand late
preemptivetasks can be terminated by the controller, as soon
as possible in the first case, as late as possible otherwise.
Note that IXTET is not able to handle non controllable tempo-
ral variables and contingent durations can be squeezed dur-
ing propagation. IXTET-EXEC can only detect when an uncon-
trollable timepoint times out. Further work needs to be done
to make the time-map manager verify the Dynamic Control-
lability property described in [Morris, Muscettola, & Vidal
2001].

The algorithmsExecution Cycle, Sense(), PlanRepair()
and Act() present how IXTET-EXEC is implemented. After
the elaboration of a complete plan by IXTET, its execution
is started. Each time the executive needs to do something,
i.e. a message has been received, or it is time to execute

Sense()
1.if (MsgQueue not empty)
2. for eachMsg
3. if (report is nominal)
4. setexecutiontime(cyclestart time)
5. forget the past()
6. if (report is failed)

// partial invalidation of ExecutedPlan
7. if (cycle start time≥ timepoint lower bound)
8. setexecutiontime(cyclestart time)
9. else
10. createnew timepoint()
11. insert new state()
12. removecls on commonattributes()
13. forget the past()
14. replan←true
15. updateExecutableTPs, ExecTPs
16. NewSearchTree←true

PlanRepair()
1.if (replan)
2. if (NewSearchTree)
3. set searchtreeroot(ExecutedP lan)
4. NewSearchTree← false
5. getlimit time
6. while (!solution found) and

(currenttime≤ limit time)
7. solution found

←plan onestep(cycle end time)
8. if (solution found)
9. ExecutedP lan← Solution Plan
10. replan← false
11. else
12. ExecutedP lan← get bestpartial plan()
13. updateExecutableTPs, ExecTPs

some timepoint, or some plan repair process is in progress,
it wakes up and follows the execution cycle described above.

In these algorithms,ExecutedP lan refers to the plan be-
ing executed. At the beginning, it corresponds to the flexible
plan resulting from the initial complete planning process. A
timepoint of its temporal network isexecutableif all time-
points that must directly precede it have already been exe-
cuted. The temporal executive determines what should be
the next timepoint to execute and its execution time (texec).
In fact, several timepoints may have to be executed during
one cycle. The set of these timepoints,ExecTPs, is initial-
ized with the set of timepoints occuring attexec and updated
during the cycle with the new executable timepoints which
have to be executed before the end of the cycle. The execu-
tion time of a timepoint depends on its type. It corresponds
to the lower bound for start timepoints and end timepoints
of early preemptive tasks; and to the upper bound for end
timepoints of late preemptive and non preemptive tasks. In
the last case, this “execution time” only corresponds to a
deadline used to detect possible timeouts.

Two types of commands are sent to the procedural execu-
tive: (START TaskId parameters) or (END TaskId)

Act()
1.while (ExecTPs not empty) and (!end cycle)

and (!timeout)
2. (ExecTP ,exec time)← get first TP(ExecTPs)
3. ExecuteNow ←true

//ExecTPs can contain timepoints to execute
//in another cycle (if wake up for replan or Msg)

4. if(exec time > cycle end time)
5. end cycle←true
6. else
7. if (replan)
8. if (ExecTP is start TP)
9. f law ←checkstartingtask()
10. if (flaw)
11. ExecuteNow ←false
12. if (ExecTP ub> cycle end time)
13. addExecTP to WaitingExecTPs
14. suppressExecTP from ExecTPs
15. elsetimeout←true
16. if (ExecuteNow)
17. if (exec time ≤ cycle start time)
18. if (ExecTP ub≥ cycle start time)
19. exec time← cycle start time
20. elsetimeout←true
21. if (ExecTP not controllable and not received)
22. timeout←true
23. else
24. if (ExecTP is start TP)
25. setexecutiontime(exectime)
26. forget the past()
27. NewSearchTree←true
28. sendcommand()
29. updateExecutableTPs, ExecTPs
30.addWaitingExecTPs to ExecTPs

(if the task is preemptive). A task is fully instantiated just
before starting its execution. A report is sent back by the
procedural executive each time a task is completed, which is
mapped into the end timepoint of the task. Note that the real
execution time assigned to an end timepoint is the time at
which the report message has been received. More precisely
a completion report contains the following information: a
completion status (nominal or failed), and in case of failure,
the actual state. This state is described as the set of new
values for the attributes of the task.

The sensepart of the cycle integrates the messages
from the procedural executive. In the nominal case, it
amounts to assigning the current time to the end timepoint
of the task and propagating this value inExecutedP lan
(setexecutiontime()). New executable timepoints may ap-
pear, andExecTPs is updated. For instance,ExecTPs
may now contain the start timepoints of parallel tasks imme-
diately following the completed task, that will be executed
in the same cycle. The failed case is detailed in the next
subsection.

The act part of the cycle “executes” the timepoints
in ExecTPs according to their precedence constraints.
get first TP() (Algo: Act(), line 2) determines which time-

point to handle next and its execution time according to the
temporal network (lower/upper-bound). Line 4 checks if the
timepoint has to be taken into account during the current cy-
cle. If not, no other timepoint is due during this cycle. Oth-
erwise, the “execution” of the timepoint depends on its type.
For a start timepoint: its execution time is assigned the value
determined lines 17-20 and propagated (line 25), the corre-
sponding command is sent. For the end timepoint of a pre-
emptive task: the command is sent, but the execution time is
set only once the report message is received in thesensepart
of the next cycle. Finally, a timeout is detected if a non pre-
emptive task is not terminated yet, but should be (line 21).
Each time a new timepoint is instantiated,ExecutableTPs
andExecTPs are updated (line 29).

The uncertainty on the duration of the execution cycle has
some consequences on the exact execution time of start or
end of tasks. Thetimestep(Algo: Execution Cycle, line 4)
is an estimation of the maximal duration of the cycle. It is
defined by the user and may vary with the application. The
model description and the planning process are independent
of the timestep. But the user has to be aware that two time-
points that have to be executed within an interval less than
one timestep, will be executed during the same cycle accord-
ing to their precedence constraints. Note that the cycle can
possibly take less time, and then the executive can react to
messages more quickly.

Finally, the temporal execution of a plan can lead to var-
ious needs for replan: (1) uncontrollable and controllable
timepoints time out, (2) excessive use or insufficient produc-
tion of resource, (3) new goals to insert, (4) failed tasks. The
adopted strategy consists of two steps: repairing the plan
(cases 2, 3 and 4) and executing its valid part while there
remains some temporal flexibility; if this fails, aborting the
execution and elaborating a new plan. The next subsection
details the plan repair process.

Plan Repair

In most cases, failed tasks have not produced the effects
initially expected in the plan. The plan repair consists of
two steps. First, invalidate the part of the plan depending
on these effects. This process includes removing the causal
links supplied by the failed task, thus revealing new open
conditions in the future. For the moment, the tasks present
in the plan are not removed, to limit the amount of deci-
sions. The second step tries to recover the lost properties of
the plan by adding new tasks and resolving conflicts.

Partial invalidation of the plan Upon reception of a fail-
ure message, two situations may arise. If the reception time
is consistent with the bounds of the end timepoint of the task,
the task is considered to be finished and its end timepoint is
instantiated (Algo:Sense, line 8). But the task can fail at
any moment and before the minimal expected end time of
the task. In that case, a new failure timepointF is created
(Algo: Sense, line 10) and set to the current time. It corre-
sponds to the new end timepoint. The other timepoints of
the task occuring after F are considered to be failed. Their
temporal constraints are relaxed and the temporal proposi-
tions (hold, event, . . .) are updated (eventually removed).

Precedence constraints are also added betweenF and the
executable timepoints of the plan.

Next, the new state is inserted (Algo:Sense, line 11). The
new state is formalized as a set ofevents on the attributes of
the task, occuring at the end timepoint (or atF) and setting
the value of the attributes to the new values given by the pro-
cedural executive. Such an event may or may not be inserted
in ExecutedP lan. If the plan does not contain any conflict-
ing proposition with the event, it is inserted. If the new value
is in conflict with propositions of another running task, it is
not inserted. Indeed, we consider, that unless the other task
is reported failed, its execution is nominal. Finally, if the
new value is in conflict with some propositions of the failed
task or some causal links, the event is inserted and the con-
flicting propositions and causal links are removed. Note that
the breaking of causal links does not call the temporal con-
straints between tasks into question.

At this point, the plan may contain open conditions to re-
establish. The repair may require the insertion of new tasks.
To allow a task insertion within the current order of tasks,
we need to break additional causal links (Algo:Sense, line
12). We adapted the work presented in [Gaborit 1996] to
determine which causal links to remove. A plan repair is
then attempted.

Interleave plan repair and execution The plan repair is
similar to the IXTET plan search process in the plan space.
The root of the search tree is the partially invalidated plan
ExecutedP lan. The search tree is developed according to
an Ordered Depth First Search strategy.

Plan repair is distributed, if necessary, on several cycles to
allow the concurrent execution of the valid part. During the
plan repairpart of the cycle, planning is done one step at a
time until a solution is found or a deadline is reached. This
deadline (limit time on line 5, Algo: PlanRepair) corre-
sponds to the share of the timestep allocated to thesense
andplan parts. This parameter is defined by the user. This
planning distribution raises two important problems:

1. On which plan relies the execution in theact part, espe-
cially if no solution has been found? This plan has to sat-
isfy the condition:The currently running tasks are fully
supported in ExecutedPlan. The plan does not contain
any flaw in relation to these tasks. At each planning step,
the node is labeled if the corresponding partial plan sat-
isfies the condition. At the end ofPlanRepair(line 12,
Algo: PlanRepair) and if the current plan is not accept-
able, the last labeled node is chosen and the corresponding
plan becomesExecutedP lan.

2. On which plan and which search tree relies the planning
process in the next cycle? If no decision has been made
meanwhile (no timepoint instantiation, no message re-
ception), the search tree can be kept as is and further
developed during the nextRepairPlanpart. It is even
possible to backtrack on decisions made in previous cy-
cles. However, ifExecutedP lan has been modified, a
new search tree is mandatory. Its root node is the new
ExecutedP lan. The planning decisions made in the pre-
vious cycles are now fixed, no backtrack is possible.

Some precautions must be taken to prevent from planning
in the past. Each new timepoint inserted during the plan-
ning process is constrained to occur aftercycle end time.
And, to prevent the planner from looking for threats or es-
tablishing events in the past, aforget the past() function
is applied at each timepoint instantiation. So that the sets
used for the flaw analysis contain, for each instantiated at-
tribute, only the last event and the assertions occuring after
it.

The execution of a partially invalid plan requires to check,
before starting a new task, that it is fully supported in
ExecutedP lan (Algo: Act, line 9). If not, and if the time
upper bound of the start timepoint has not been reached, its
execution is postponed (Algo:Act, line 13). In case of time-
out, the execution is failed and a complete replanning pro-
cess is necessary.

This plan repair process is not guaranteed to find a valid
plan everytime (backtrack nodes frozen by execution or tem-
poral constraints too tight to add new tasks . . .), but can
avoid to abort execution and completely replan at each fail-
ure. By invalidating only a part of the plan, the amount of
decisions is rather limited and a repaired plan may be found
in a few cycles. Plan repair is especially efficient and use-
ful for not temporally over-constrained plans and plans with
some parallelism (some sets of tasks can be executed inde-
pendently). This approach is illustrated with a short example
in the next section.

Complete replanning
If a plan repair is not possible, a complete replanning pro-
cess is mandatory. This problem has not been completely
addressed yet, and thus does not appear in the algorithms
presented above. The idea is to adapt the approach proposed
in [Muscettolaet al. 1998] (“planning to plan”) and con-
sider the planning process as one of the tasks of the plan,
in our case a non preemptive task. Thus, the plan on which
replanning is started would contain:

• the origin and end horizon timepoints ofExecutedP lan,

• the new global state returned by the procedural executive
once the execution is completely stopped, associated with
the timepointT set to the reception time,

• a non preemptive task PLAN, withT as start timepoint
(and each new timepoint in the plan is constrained to oc-
cur after its end timepoint),

• the set of not yet executed goals,

• a new goal requiring the plan to be found.

Open issues remain. One is for instance the detection and
abandonment of goals that can not be achieved because of a
lack of time.

Example
Let consider a robot with two arms (LH andRH), initially
located inL3. This robot has to take two objects (O1 and
O2, respectively located inL1 andL2), and to bring them
in L4. The robot capabilities are described as a set of four
tasks: MOVE from a location to another one, TAKE an ob-
ject with one of its arms, CARRY the object from a location

L1

L4

O1

L5

L2

L3

O2

event(ON(O2): (?,L2),tS)
event(AT_OBJECT(O1): (?,L1),tS)
event(ON(O1): (?,L1),tS)

event(AT_OBJECT(O2): (?,L2),tS)
event(AT_ROBOT(): (?,L3),tS)
ARM(LH), capacity = 1
ARM(RH), capacity = 1

hold(ON(O1): L4,(tG,tE))
hold(ON(O2): L4,(tG,tE))

task CARRY(?l1,?l2,?obj,?arm) (tstart,tend){
 ?l1,?l2 in LOCATIONS
 ?obj in OBJECTS
 ?arm in {LH,RH}
 timepoint t1

 ?l1 != ?l2
 (tend−t1) in [1,1]
 (tend − tstart) in [1,1000]

 hold(AT_ROBOT(): ?l2,(t1,tend)) (1)
 hold(ON(?obj): on_robot,(tstart,tend)) (2)
 event(AT_OBJECT(?obj): (?l1,at_object_idle),tstart)
 hold(AT_OBJECT(?obj): at_object_idle,(tstart,tend))
 event(AT_OBJECT(?obj): (at_object_idle,?l2),tend)
 use(ARM(?arm):1,(tstart,tend))
} early preemptive

Initial State Goals

Figure 2: Example of IXTET formalism.

S 19 20 5 6

21 22 9 10

11 12

17 18

14 16 15

7 8

3 4

13

EMOVE(L3,L2)

PUT(L4,O1,RH)

PUT(L4,O2,LH)

CARRY(L2,L4,O2,LH)

CARRY(L1,L4,O1,RH)

MOVE(L1,L4)

TAKE(O1,L1,RH)MOVE(L2,L1)

TAKE(O2,L2,LH)

Figure 3: The initial plan.

������������ ������������ ������������������������ 	�		�	
�

�
 ������������

29

10

14

5 6 112019

12

13

��������S 9222321

(Running)
MOVE(L2,L1)

CARRY(L2,L4,O2,LH)
(Failed)

30

MOVE(L1,L5)

TAKE(O2,L5,LH)

17 1832

26

25

MOVE(L5,L1)

24

31
7

3

8

4

E

16 15

27

CARRY(L5,L4,O2,LH)

28

Figure 4: The plan after repair.

to another one and PUT the object. The initial state and goals
as well as an example of a task description in the IXTET for-
malism are illustrated in Figure 2. The CARRY task is early
preemptive. It will be terminated as soon as the robot arrives
in its final location?l2 with the object?obj. The proposition
(1) asserts that the object is on the robot and the proposition
(2) guarantees that the robot is in?l2 1 second before the
possible end of the task.

Figure 3 presents the initial plan found by IXTET-EXEC
(bold circles represent start and end timepoints of the tasks,
arrows represent the precedence constraints between time-
points). The execution starts and a failure occurs: the robot
letsO2 fall on the floor at the locationL5 while it is going
to L1.

Figure 4 presents the plan repaired by IXTET-EXEC. The

failure occurred at the beginning of the CARRY task, a fail-
ure timepoint (23) has been created and timepoints 12 and 13
relaxed. The part of the plan concerned by the invalidation
is related only to the attributes representing the position of
O2. The task PUT(L4,O2,LH) is no more supported, but the
task TAKE(O1,L1,RH) remains valid and can be executed.
The shaded timepoints represent the tasks added by the plan
repair. Note that this repaired plan is not optimal. Since no
initial task has been removed (especially MOVE(L1,L4) is
no more useful), the plan contains an extra MOVE fromL5
to L1.

As said before, two parameters are defined by the user:
the timestep and how much of it is allocated to the plan re-
pair. Their values mainly depend on the size of the plan. In
fact, several factors play a part in the duration of the exe-

cution cycle, among them: the number of timepoints exe-
cuted during the cycle, the duration of the propagation in the
STN (varies with the numbern of timepoints in the plan, the
complexity is in(n2 +n)), the duration of the plan invalida-
tion in case of failure and the duration of the most expensive
planning step. The simple example above has been run on
a SunBlade100. Plan invalidation takes 190ms. Plan repair
requires 29 steps and 1 backtrack and is distributed on 2 cy-
cles for a 1s timestep (plan repair: 85%), on 4 cycles for a
600ms timestep (plan repair: 80%). During the other cycles,
a 5Hz control rate is achieved.

Conclusion and Prospectives
This paper presents some preliminary results on IXTET-EXEC,
an extension to the IXTET planning system, which is able
to interleave more closely planning and temporal execution
control. In particular, it regularly updates the plan under ex-
ecution, it reactively repairs the plan in case of failure, and
it incrementally replans upon arrival of new goals.

The process of plan repair in IXTET-EXEC allows, to some
extent, concurrent planning and execution. It is well adapted
for domains where subsystems are rather independent and
allow some sets of tasks to be executed in parallel. More-
over, this repair technique is “safe” if the domain is such
that no failure is fatal, and can always be recovered from.
In any case, for critical situations where the system does not
have time to repair or replan, one can always consider using
predefined emergency plan or procedure, which can be fired
by the procedural executive to put the system in a safe state
(safe enough to allow a lengthy replanning from scratch).

The work presented here is still ongoing, and we have al-
ready identified a number of desirable features, and in some
cases, potential methods and solutions to address them:

• We plan to handle uncontrollable timepoints [Morris,
Muscettola, & Vidal 2001].

• One of the main advantages of IXTET is its handling of
production, consumption or borrowing of resources. The
quantities can be defined as variables ranging over con-
tinuous domains. We aim at exploiting this flexibility to
update the actual levels of resource during execution, de-
tect future resource contention, repair if possible (add a
production task . . .) or replan (if a resource is no more
available).

• The insertion of new goals is quite similar to the plan re-
pair process. A goal is sent by the procedural executive.
It is inserted in the plan as ahold proposition with the
adequate temporal constraints. As for plan invalidation,
causal links on common attributes are removed to allow
the insertion of new tasks and the plan is “repaired” to
satisfy the new open condition.

Another important aspect of this work is to embark it and
test it on real robotics platforms. Considering that all the
other tools and functional modules are currently available on
a number of robots at LAAS (Diligent, Dala, etc), and that
the development of IXTET-EXEC is made under Linux (the op-
erating systems used on all these platforms) we do not fore-
see any particular implementation problem. However, de-

pending on the complexity of the planning task and the dy-
namic of the environment, we still need to test how well the
current implementation will perform on real applications.

References
Dechter, R.; Meiri, I.; and Pearl, J. 1989. Temporal con-
straint networks. InKR’89: Principles of Knowledge Rep-
resentation and Reasoning. Morgan Kaufmann.
Gaborit, P. 1996. Planification distribuée pour la
cooṕeration multi-agents.Thèse de Doctorat, Université
Paul Sabatier, Toulouse.
Ghallab, M., and Laruelle, H. 1994. Representation and
Control in Ixtet, a Temporal Planner. InProceedings of the
International Conference on AI Planning Systems, 61–67.
Lemai, S., and Ingrand, F. 2003. Interleaving temporal
planning and execution: Ixtet-exec. InProceedings of the
ICAPS Workshop on Plan Execution.
Morris, P. H.; Muscettola, N.; and Vidal, T. 2001. Dynamic
control of plans with temporal uncertainty. InProceedings
of the International Joint Conference on Artificial Intelli-
gence (IJCAI).
Muscettola, N.; Nayak, P. P.; Pell, B.; and Williams, B.
1998. Remote agent : To boldly go where no ai system has
gone before.Artificial Intelligence103.

