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Introduction   
In this paper we address medium-term scheduling in 
project oriented manufacturing systems. These systems 
may execute hundreds of thousands of manufacturing 
operations under various capacity and technological 
constraints within the typical 3-6 months long horizon. 
This challenges any branch of operation research or 
artificial intelligence. 
 We suggest an aggregate scheduling approach to cope 
with this challenge in case of project-oriented 
environments, characterized by complex projects with 
strict individual deadlines. Dimensions of aggregation are 
time and tasks: the scheduling problem is solved with an 
aggregate time unit in the order of magnitude of one week. 
Furthermore, not individual manufacturing operations are 
scheduled, but so-called activities, aggregate units of work 
built of logical groups of discrete operations. 
 We consider the aggregate scheduler as a part of a 
hierarchical production planning and scheduling system. It 
is not simply expected to generate schedules which are 
good enough in themselves, but also takes into 
considerations the effects of its decisions on lower levels, 
i.e., on job-shop schedules. 
 The main contribution of the paper is a detailed analysis 
of the effects of decisions made during activity formation 
on the outcome of the overall scheduling process. Based on 
these investigations, we suggest an activity model which is 
quite different from those used by previous approaches. 
We consider the determination of the best suited activity 
models an optimization problem, and advise an algorithm 
to construct them. 
 The paper is structured as follows. We start with a brief 
literature overview, followed by the presentation of our 
scheduling algorithm. The nucleus of the article focuses on 
the analysis of activity formation decisions. Finally, we 
describe our first experiences with our pilot system 
working on real industrial data, and draw the conclusions. 
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Related Work 
In the related literature, two fundamentally different 
approaches compete in solving medium-term scheduling 
problems. Industrial practice is still dominated by lead 
time-based techniques, dividing the production planning 
problems into capacity and material flow oriented sub-
problems. The inadequacy of lead time-based solutions 
derives from the fact that the execution time of a project 
significantly depends on a number of actual parameters: 
shop load, priorities, etc. Current researches try to 
overcome this difficulty by applying dynamic methods for 
setting the project milestones. Beyond historical data, 
priorities and predicted shop load on the route of the 
arriving project, they take distribution of the work load on 
the resources, coefficients characteristic for the shop 
control methods, and many more as input of rule-based 
systems, regression analysis or neural networks, see for 
example (Raaymakers and Weijters 2003) or (Sabuncuoglu 
and Comlekci 2002). 
 The other family of methodologies, referred to as 
aggregate scheduling or aggregate production planning, 
covers a fairly wide range of algorithms (Bitran and 
Tirupati 1993). In batch process industries, typical 
questions at this level concern lot sizing, production 
sequencing and resource assignment. Herein we focus on 
project-oriented environments, just as (Hackman and 
Leachman 1989) did, and wish to determine a valid 
assignment of activities to time units. 
 A common characteristic of these approaches is that they 
merge discrete operations requiring the same resource or 
set of resources into one aggregate activity. Since a part 
can iterate between the same resources several times 
during its production, the temporal interdependencies of 
these activities can be very complex. In (Leachman and 
Kim 1993), a highly sophisticated model is presented for 
describing valid time-assignments of aggregate activities 
and relations between them. They use variable duration 
activities with prescribed intensity curves, overlap 
relationships, as well as balance-type relationships between 
intensity curves of dependent activities. 
 This approach faces serious difficulties in obtaining the 
required input data, that is seldom available in existing 
technological databases, nor can be trivially reconstructed 
from historical archives. 



A Mixed-Integer Formulation of the 
Aggregate Scheduling Problem 

Formulation of the aggregate scheduling problem is based 
on a recently developed resource-constrained project 
scheduling model (Kis 2002). The special features of this 
approach are as follows: 
• It works with variable-intensity, variable-duration, but 

fixed-volume tasks, which well fits the concept of 
aggregate activities composed of a number of discrete 
operations in a closer detail. 

• The tasks in the model may require an arbitrary mix of 
resources. 

• It produces solutions in which each task is scheduled 
into as few time units as its volume and the capacity 
constraints allow. A more exact formulation of this 
property and the gain on it will be presented later.  

• It has proven to be fast enough to solve large-scale 
real-life problems to optimality. 

 
In order to be self-contained, herein we give a brief 
presentation of the model and the algorithm. 
 Resource-constrained project scheduling problems 
(RCPSP) are concerned with scheduling a number of 
discrete tasks, each requiring some resources. Constraints 
due to the limited capacities of resources and precedence 
relations between the tasks are prescribed. The classical 
model assumes fixed task durations and a constant rate of 
resource usage during the entire processing of each task 
(Demeulemeester and Herroelen 2002, and Weglarz 1998).  
 However, in aggregate scheduling the above 
assumptions cannot be taken and there is also no need to 
generate detailed solutions for future periods that will 
certainly be different from the anticipated. Hence, the 
classical RCPSP model was extended by allowing (1) 
preemption of activity execution, (2) variable-intensity 
activities, and (3) continuously divisible resources.  
 An instance of the problem is given by a set },...,1{ nN =  
of activities, a set },...,1{ rR = of continuously divisible and 
renewable resources, and a directed acyclic graph 

),( AND = representing precedence constraints among the 
activities. Each activity Ni∈ must entirely be processed 
within its time window: between its earliest starting time 

ie and deadline id .  
 Each activity may require the simultaneous use of some 
resources. The entire processing of activity i  requires a 
total of i

kr  units of resource k , for each Rk ∈ . The 
intensity of each activity may vary over time, and the 
resource usage is proportional to the intensity. If i

tx  is the 
intensity of activity i  in time period t , then it requires 

i
t

i
k xr ∗  units of resource k  in that period. However, the 

intensity of executing an activity is limited: in any time 
period ],[ ii det ∈  at most 1≤ia  fraction of activity i  may 
be completed. 
 The capacity of each resource Rk ∈  is fixed period by 
period over the horizon. In each time period t , a certain 
internal capacity of each resource k  is available. Internal 

resource capacities can be used free of charge. Additional 
external capacities are also available, but at the expense of 
some cost per resource units.  
 The solution of the problem consists of determining for 
each activity i an intensity i

tx  in each time period 
],[ ii det ∈  such that ii

t ax ≤≤0 , 1=∑ i
tx , all the 

precedence constraints among the activities are fulfilled, 
the resource demands do not exceed the resource 
availabilities in any time period, and it is optimal according 
to some objective function.  
 The above problem has been formalized as a mixed 
integer-linear program, and solved by a branch-and-cut 
algorithm. Experience gathered on benchmark problems 
and real-life industrial data (Márkus et al. 2003) has shown 
that though the problem is NP-complete in the strong 
sense, it is a viable approach for solving even very large 
problem instances.  
 This algorithm is able to solve the above problem for 
optimization criteria which can be expressed as a linear 
function of the i

tx  variables, or established with a 
dichotomizing search. These include project duration, 
maximum tardiness or weighted tardiness or minimum 
work in process (WIP). In our current settings, we 
minimize the cost of external resource usage first, and in a 
second run, minimize WIP with the previous bound on 
external resource usage. 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 

Fig. 1. Assembly operations and project tree of a toy ship. 
Our project trees contain up to 500 vertices. 

 

Aggregate Scheduling in Components 
Manufacturing 

In components manufacturing each project can be 
described by a rooted tree, the so-called project tree, 
whose vertices represent manufacturing operations. 
Vertices with several children denote joining operations, 
while those with one single child can either represent 
machining operations or joining a purchased part to a sub-
assembly. The execution of the project over time then 
advances from the leaves towards the root that stands for 
the finishing operation of the final product. Edges 
represent strict precedence relations, i.e., the sons of an 
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operation v must all be completed before v could be 
started. Fig. 1 shows the creation of a project tree for a 
simplistic assembly. 
 Vertices of the project tree are then to be contracted into 
components representing the aggregate activities. This 
partitioning of the project tree will be referred to as the 
activity model of the project, and will be illustrated by the 
aggregate project tree, in which vertices of the project tree 
belonging to the same activity are contracted into one 
vertex.  
 The following section is dedicated to showing that the 
way activity models are created has a crucial influence on 
the quality of the aggregate schedule. Departing from 
identifying the relevant aspects we get to the definition of 
optimal activity models and also show that such activity 
models can be constructed by a polynomial-time tree 
partitioning algorithm. 

Consistency of the Schedule 
In most previous approaches to aggregate scheduling, the 
consistency of the schedules was endangered by 
technologically infeasible solutions hidden behind the 
abstract notion of activity, since many low-level 
technological constraints were abandoned in the activity 
models. 
 We suggest an approach where operations with arbitrary 
resource requirements, but constituting a connected 
component of the project tree can be merged into aggregate 
activities. In our model of the discrete scheduling problem, 
all technological constraints are expressed by end-to-start 
precedence relations between operations. For each job-
shop level precedence constraint, if the two connected 
operations are ordered into the same activity, then the 
constraint is omitted from the aggregate model. Otherwise, 
a conventional end-to-start precedence constraint is posted 
on the two aggregate activities. Note that the precedence 
graph of the activities will also form a tree. Furthermore, 
the resource requirements of an activity are the sum of 
resource requirements of the contained operations. 
Illustrations of such activity models are presented in Fig. 2 
and 3. 
 Clearly, this method guarantees that aggregate schedules 
can be disaggregated to feasible discrete operation 
sequences, though, it might happen that the execution of 
the latter does not fit exactly into the time window as 
assigned in the aggregate schedule. 

Time-Feasibility of the Schedule 
The aggregate schedule designates one or more aggregate 
time units for the execution of each activity. We define a 
consistent aggregate schedule time-feasible, if it has a job-
shop level disaggregation such that each discrete operation 
falls into one of the time units designated for its containing 
activity. Clearly, the time-feasibility of a schedule cannot 
be guaranteed only by prescribing that in each time unit the 
total duration of operations on a resource should not 

exceed resource capacity: precedence constraints can 
prevent resources processing operations continuously. 
 An aggregate activity is called n-feasible, if its discrete 
operations can be scheduled into a time window whose 
length is of n aggregate time units, provided we omitted all 
other activities in the plant. Note that determining the 
feasibility number of an activity is NP-complete, e.g., the 
job-shop scheduling problem can easily be reduced to it.  
 Furthermore, the size of an activity or its corresponding 
component in the tree will denote the sum of the durations 
of the contained operations. In a given aggregate schedule, 
we define an activity broken, if its execution is divided 
between several time units in the aggregate schedule. 
Otherwise, we call it unbroken. Now, having all the 
necessary definitions, one can make the following 
observations: 
• In case all activities are unbroken in an aggregate 

schedule, the inequalities of the project model describe 
exactly that the aggregate schedule provides a correct 
approximation of a valid discrete schedule according 
to energetic reasoning (Baptiste, Le Pape and Nuijten 
1999). In all other cases, the estimation is less 
punctual, since there would be operations whose 
resource requirements are distributed among various 
time units, while the operation itself is executed in 
exactly one. 

• If for each activity i its maximal intensity is 1=ia , 
then the above presented algorithm provides an 
aggregate schedule in which the predominant part of 
activities will be unbroken. 
 

The latter holds due to a side effect of the linear program 
formalization. In each stage of the branch-and-cut 
procedure, the simplex algorithm solving the relaxed linear 
program returns a basic solution, in which all but as many 
variables i

tx  as the rank of the matrix of the linear program 
are zeros (Vajda 1961). Consequently, if 1=ia , i.e., the 
execution of the activity may fit in one time unit, then i 
will really be unbroken, unless a strict resource capacity 
constraint precludes it. Experiments with real-life data 
have show that the ratio of unbroken activities was 
between 90 and 100 % even for highly loaded problem 
instances. 
 All the above observations motivate us to build activities 
that fit into one aggregate time unit, in order to receive as 
good approximation of a valid job-shop level schedule as 
possible. This can be established by setting 1=ia  for all 
activities. The 1-feasibility of each activity is then a 
necessary condition of the time-feasibility of the aggregate 
schedule. It is clearly not a satisfactory condition, since 
potential interactions of activities are not considered here. 
 Accordingly, we have to partition the project tree into 1-
feasible components. We are looking for a minimum-
cardinality partitioning respecting this constraint, because 
a higher number of smaller activities (1) would not 
ameliorate the estimation of the discrete schedule, but (2) 
would increase computational complexity and (3) we will 
see another good reason to do so in the following section. 



 Since finding maximal 1-feasible components of the 
project tree is computationally prohibitive (even testing the 
1-feasibility of a component is NP-hard), and such a tense 
activity model would easily result in time-infeasible 
aggregate schedules, we approximate it by looking for 
activities the size of which does not exceed the length of an 
aggregate time unit. We suppose that there is no operation 
whose duration exceeds this time limit.  
 
 
 
 
 
 
 
 

 
Fig. 2. A minimal cardinality size-bounded activity model 

 of a sample project. Project tree and aggregate  
project tree. (Height=4, Cardinality=5) 

 

Extra Constraints Added 
Though the aggregate scheduling problem is usually 
considered as a relaxation of the job-shop level problem, 
some extra constraints are introduced or strengthened as 
well during aggregation. A precedence constraint states 
that the connected operations or activities have to be 
executed in the given order, in distinct time units. While 
this on the job-shop level allows the second operation to 
start directly after the first has ended, the inherent 
constraint on the aggregate level prescribes that an 
aggregate time-unit change (a weekend, for example) has 
to elapse between the two activities. Consequently, if the 
activity model of a project contains a precedence chain of 
length p, then in an aggregate scheduling problem working 
with this activity model the completion of the project takes 
at least p aggregate time units. This makes possible that 
though the project on Fig. 2 could be executed in 2 time 
units, the inappropriate activity model requires a time 
window of at least 4 units. With a more adequate activity 
model, like the one on Fig. 3, the same project can be 
scheduled within the minimal time window of 2 units. 
 
 
 
 
 
 
 
 

 
 

Fig.3. The minimal-height, minimal-cardinality size-bounded 
activity model of the sample project. Project tree and  

aggregate project tree. (Height=2, Cardinality=5) 
 

 Hence, an activity model containing a maximal 
precedence chain as short as possible – i.e., a minimum 
height partitioning of the project tree – is looked for. Note 
that in another view, this means increasing the parallelism 
between activities. 

Optimal Activity Models 
After the above considerations, we give the definition of 
the optimal activity model of a project as follows: 
 
 The optimal activity model of a project is a partitioning 
of the project tree into connected components such that 
• each component respects the weight limit of W, the 

number of working hours in an aggregate time unit; 
• the height of the partitioning is minimal; 
• with the above prerequisites, the cardinality of the 

partitioning is minimal. 
 
Then, to each component in the partitioning corresponds an 
activity. Both its volume and maximal intensity equals the 
sum of the contained operations’ durations, while its 
resource requirements are computed as follows: 
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 Apparently, the creation of the optimal activity model of 
a project corresponds to a tree partitioning problem with 
regards to the bi-criteria given by minimum height and 
minimum cardinality. In (Kovács and Kis 2003), a bottom-
up dynamic program is suggested to solve this partitioning 
problem in O(n3) time. 
 Note that since only technological plans are used to 
establish the activity models, and those are relatively 
stable, the partitioning can be done off-line.  

Experiments 
The algorithms suggested in this paper are meant to 
constitute a module of an integrated production planner 
and scheduler system under implementation in the 
Computer and Automation Research Institute of the 
Hungarian Academy of Sciences. Currently, we are 
performing the first test with industrial data on them.  
 The factory of our case study manufactures mechanical 
products of high value in a make-to-order manner, by using 
machining and welding centres, assembly and inspection 
stations. A typical project consists of 20 to 500 discrete 
manufacturing operations, each taking from 0.5 to 120 
hours. Trees of these projects were shrunk into aggregate 
project models consisting of 1 to 10 activities. The number 
of resources is around 150. The horizon of the medium-
term scheduling problem is 15-25 weeks, and its time unit 
of one week equals the horizon of the job-shop level 
problem. The latter is solved with a 0.1 hours horizon by a 
constraint-based scheduler. 



 Preparing the optimal activity models of projects never 
took more than a second per project. Using those activity 
models, we could create valid and reasonable schedules on 
both aggregation levels. However, unpredicted orders with 
tight time windows, whose release and/or due date were 
prescribed with daily precision required special dealing. 
 The most exigent deficiency of the current state of our 
algorithms seems to be the lack of an intelligent interplay 
between the two schedulers working on different 
aggregation levels and with different time scales. With the 
current settings, it often happens that the amount of work 
appropriated to a given week by the aggregate scheduler 
requires up to 10-20 % more processing time on the 
discrete level. However, we do not know whether this 
problem has a practical relevance, since it is an established 
custom for our industrial partner to slightly overload the 
predictive schedule, in order to compensate execution-time 
shortfall of jobs. 

Conclusions 
In this paper we have presented a novel approach to 
aggregate scheduling in project-oriented environments. 
Our first experiments confirmed that the aggregate 
scheduling approach is an adequate means to handle the 
complexity of the medium-term scheduling problem, and 
to produce optimal schedules by handling together the 
material- and workflow oriented aspects of production.
 Compared with previous aggregate scheduling 
techniques, we suggest that merging discrete operations of 
a connected component of the project tree into aggregate 
activities is profitable with respect to aggregation along 
resources. However, activity formation has a crucial 
influence on the quality of the aggregate schedule in 
several ways. For the special case of components 
manufacturing, where the project graph is a tree, we gave a 
definition of optimal activity models and also suggested a 
tree partitioning algorithm to build such models in 
polynomial time. 
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