
A Novel Approach to Aggregate Scheduling in Project-Oriented
Manufacturing

András Kovács

Budapest University of Technology and Economics
Magyar Tudósok körútja 2/d, 1117 Budapest, Hungary

akovacs@mit.bme.hu

Introduction
In this paper we address medium-term scheduling in
project oriented manufacturing systems. These systems
may execute hundreds of thousands of manufacturing
operations under various capacity and technological
constraints within the typical 3-6 months long horizon.
This challenges any branch of operation research or
artificial intelligence.
 We suggest an aggregate scheduling approach to cope
with this challenge in case of project-oriented
environments, characterized by complex projects with
strict individual deadlines. Dimensions of aggregation are
time and tasks: the scheduling problem is solved with an
aggregate time unit in the order of magnitude of one week.
Furthermore, not individual manufacturing operations are
scheduled, but so-called activities, aggregate units of work
built of logical groups of discrete operations.
 We consider the aggregate scheduler as a part of a
hierarchical production planning and scheduling system. It
is not simply expected to generate schedules which are
good enough in themselves, but also takes into
considerations the effects of its decisions on lower levels,
i.e., on job-shop schedules.
 The main contribution of the paper is a detailed analysis
of the effects of decisions made during activity formation
on the outcome of the overall scheduling process. Based on
these investigations, we suggest an activity model which is
quite different from those used by previous approaches.
We consider the determination of the best suited activity
models an optimization problem, and advise an algorithm
to construct them.
 The paper is structured as follows. We start with a brief
literature overview, followed by the presentation of our
scheduling algorithm. The nucleus of the article focuses on
the analysis of activity formation decisions. Finally, we
describe our first experiences with our pilot system
working on real industrial data, and draw the conclusions.

Copyright © 2002, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

Related Work
In the related literature, two fundamentally different
approaches compete in solving medium-term scheduling
problems. Industrial practice is still dominated by lead
time-based techniques, dividing the production planning
problems into capacity and material flow oriented sub-
problems. The inadequacy of lead time-based solutions
derives from the fact that the execution time of a project
significantly depends on a number of actual parameters:
shop load, priorities, etc. Current researches try to
overcome this difficulty by applying dynamic methods for
setting the project milestones. Beyond historical data,
priorities and predicted shop load on the route of the
arriving project, they take distribution of the work load on
the resources, coefficients characteristic for the shop
control methods, and many more as input of rule-based
systems, regression analysis or neural networks, see for
example (Raaymakers and Weijters 2003) or (Sabuncuoglu
and Comlekci 2002).
 The other family of methodologies, referred to as
aggregate scheduling or aggregate production planning,
covers a fairly wide range of algorithms (Bitran and
Tirupati 1993). In batch process industries, typical
questions at this level concern lot sizing, production
sequencing and resource assignment. Herein we focus on
project-oriented environments, just as (Hackman and
Leachman 1989) did, and wish to determine a valid
assignment of activities to time units.
 A common characteristic of these approaches is that they
merge discrete operations requiring the same resource or
set of resources into one aggregate activity. Since a part
can iterate between the same resources several times
during its production, the temporal interdependencies of
these activities can be very complex. In (Leachman and
Kim 1993), a highly sophisticated model is presented for
describing valid time-assignments of aggregate activities
and relations between them. They use variable duration
activities with prescribed intensity curves, overlap
relationships, as well as balance-type relationships between
intensity curves of dependent activities.
 This approach faces serious difficulties in obtaining the
required input data, that is seldom available in existing
technological databases, nor can be trivially reconstructed
from historical archives.

A Mixed-Integer Formulation of the
Aggregate Scheduling Problem

Formulation of the aggregate scheduling problem is based
on a recently developed resource-constrained project
scheduling model (Kis 2002). The special features of this
approach are as follows:
• It works with variable-intensity, variable-duration, but

fixed-volume tasks, which well fits the concept of
aggregate activities composed of a number of discrete
operations in a closer detail.

• The tasks in the model may require an arbitrary mix of
resources.

• It produces solutions in which each task is scheduled
into as few time units as its volume and the capacity
constraints allow. A more exact formulation of this
property and the gain on it will be presented later.

• It has proven to be fast enough to solve large-scale
real-life problems to optimality.

In order to be self-contained, herein we give a brief
presentation of the model and the algorithm.
 Resource-constrained project scheduling problems
(RCPSP) are concerned with scheduling a number of
discrete tasks, each requiring some resources. Constraints
due to the limited capacities of resources and precedence
relations between the tasks are prescribed. The classical
model assumes fixed task durations and a constant rate of
resource usage during the entire processing of each task
(Demeulemeester and Herroelen 2002, and Weglarz 1998).
 However, in aggregate scheduling the above
assumptions cannot be taken and there is also no need to
generate detailed solutions for future periods that will
certainly be different from the anticipated. Hence, the
classical RCPSP model was extended by allowing (1)
preemption of activity execution, (2) variable-intensity
activities, and (3) continuously divisible resources.
 An instance of the problem is given by a set },...,1{ nN =
of activities, a set },...,1{ rR = of continuously divisible and
renewable resources, and a directed acyclic graph

),(AND = representing precedence constraints among the
activities. Each activity Ni∈ must entirely be processed
within its time window: between its earliest starting time

ie and deadline id .
 Each activity may require the simultaneous use of some
resources. The entire processing of activity i requires a
total of i

kr units of resource k , for each Rk ∈ . The
intensity of each activity may vary over time, and the
resource usage is proportional to the intensity. If i

tx is the
intensity of activity i in time period t , then it requires

i
t

i
k xr ∗ units of resource k in that period. However, the

intensity of executing an activity is limited: in any time
period],[ii det ∈ at most 1≤ia fraction of activity i may
be completed.
 The capacity of each resource Rk ∈ is fixed period by
period over the horizon. In each time period t , a certain
internal capacity of each resource k is available. Internal

resource capacities can be used free of charge. Additional
external capacities are also available, but at the expense of
some cost per resource units.
 The solution of the problem consists of determining for
each activity i an intensity i

tx in each time period
],[ii det ∈ such that ii

t ax ≤≤0 , 1=∑ i
tx , all the

precedence constraints among the activities are fulfilled,
the resource demands do not exceed the resource
availabilities in any time period, and it is optimal according
to some objective function.
 The above problem has been formalized as a mixed
integer-linear program, and solved by a branch-and-cut
algorithm. Experience gathered on benchmark problems
and real-life industrial data (Márkus et al. 2003) has shown
that though the problem is NP-complete in the strong
sense, it is a viable approach for solving even very large
problem instances.
 This algorithm is able to solve the above problem for
optimization criteria which can be expressed as a linear
function of the i

tx variables, or established with a
dichotomizing search. These include project duration,
maximum tardiness or weighted tardiness or minimum
work in process (WIP). In our current settings, we
minimize the cost of external resource usage first, and in a
second run, minimize WIP with the previous bound on
external resource usage.

Fig. 1. Assembly operations and project tree of a toy ship.
Our project trees contain up to 500 vertices.

Aggregate Scheduling in Components
Manufacturing

In components manufacturing each project can be
described by a rooted tree, the so-called project tree,
whose vertices represent manufacturing operations.
Vertices with several children denote joining operations,
while those with one single child can either represent
machining operations or joining a purchased part to a sub-
assembly. The execution of the project over time then
advances from the leaves towards the root that stands for
the finishing operation of the final product. Edges
represent strict precedence relations, i.e., the sons of an

2 3
4

1 2 3 4

1

operation v must all be completed before v could be
started. Fig. 1 shows the creation of a project tree for a
simplistic assembly.
 Vertices of the project tree are then to be contracted into
components representing the aggregate activities. This
partitioning of the project tree will be referred to as the
activity model of the project, and will be illustrated by the
aggregate project tree, in which vertices of the project tree
belonging to the same activity are contracted into one
vertex.
 The following section is dedicated to showing that the
way activity models are created has a crucial influence on
the quality of the aggregate schedule. Departing from
identifying the relevant aspects we get to the definition of
optimal activity models and also show that such activity
models can be constructed by a polynomial-time tree
partitioning algorithm.

Consistency of the Schedule
In most previous approaches to aggregate scheduling, the
consistency of the schedules was endangered by
technologically infeasible solutions hidden behind the
abstract notion of activity, since many low-level
technological constraints were abandoned in the activity
models.
 We suggest an approach where operations with arbitrary
resource requirements, but constituting a connected
component of the project tree can be merged into aggregate
activities. In our model of the discrete scheduling problem,
all technological constraints are expressed by end-to-start
precedence relations between operations. For each job-
shop level precedence constraint, if the two connected
operations are ordered into the same activity, then the
constraint is omitted from the aggregate model. Otherwise,
a conventional end-to-start precedence constraint is posted
on the two aggregate activities. Note that the precedence
graph of the activities will also form a tree. Furthermore,
the resource requirements of an activity are the sum of
resource requirements of the contained operations.
Illustrations of such activity models are presented in Fig. 2
and 3.
 Clearly, this method guarantees that aggregate schedules
can be disaggregated to feasible discrete operation
sequences, though, it might happen that the execution of
the latter does not fit exactly into the time window as
assigned in the aggregate schedule.

Time-Feasibility of the Schedule
The aggregate schedule designates one or more aggregate
time units for the execution of each activity. We define a
consistent aggregate schedule time-feasible, if it has a job-
shop level disaggregation such that each discrete operation
falls into one of the time units designated for its containing
activity. Clearly, the time-feasibility of a schedule cannot
be guaranteed only by prescribing that in each time unit the
total duration of operations on a resource should not

exceed resource capacity: precedence constraints can
prevent resources processing operations continuously.
 An aggregate activity is called n-feasible, if its discrete
operations can be scheduled into a time window whose
length is of n aggregate time units, provided we omitted all
other activities in the plant. Note that determining the
feasibility number of an activity is NP-complete, e.g., the
job-shop scheduling problem can easily be reduced to it.
 Furthermore, the size of an activity or its corresponding
component in the tree will denote the sum of the durations
of the contained operations. In a given aggregate schedule,
we define an activity broken, if its execution is divided
between several time units in the aggregate schedule.
Otherwise, we call it unbroken. Now, having all the
necessary definitions, one can make the following
observations:
• In case all activities are unbroken in an aggregate

schedule, the inequalities of the project model describe
exactly that the aggregate schedule provides a correct
approximation of a valid discrete schedule according
to energetic reasoning (Baptiste, Le Pape and Nuijten
1999). In all other cases, the estimation is less
punctual, since there would be operations whose
resource requirements are distributed among various
time units, while the operation itself is executed in
exactly one.

• If for each activity i its maximal intensity is 1=ia ,
then the above presented algorithm provides an
aggregate schedule in which the predominant part of
activities will be unbroken.

The latter holds due to a side effect of the linear program
formalization. In each stage of the branch-and-cut
procedure, the simplex algorithm solving the relaxed linear
program returns a basic solution, in which all but as many
variables i

tx as the rank of the matrix of the linear program
are zeros (Vajda 1961). Consequently, if 1=ia , i.e., the
execution of the activity may fit in one time unit, then i
will really be unbroken, unless a strict resource capacity
constraint precludes it. Experiments with real-life data
have show that the ratio of unbroken activities was
between 90 and 100 % even for highly loaded problem
instances.
 All the above observations motivate us to build activities
that fit into one aggregate time unit, in order to receive as
good approximation of a valid job-shop level schedule as
possible. This can be established by setting 1=ia for all
activities. The 1-feasibility of each activity is then a
necessary condition of the time-feasibility of the aggregate
schedule. It is clearly not a satisfactory condition, since
potential interactions of activities are not considered here.
 Accordingly, we have to partition the project tree into 1-
feasible components. We are looking for a minimum-
cardinality partitioning respecting this constraint, because
a higher number of smaller activities (1) would not
ameliorate the estimation of the discrete schedule, but (2)
would increase computational complexity and (3) we will
see another good reason to do so in the following section.

 Since finding maximal 1-feasible components of the
project tree is computationally prohibitive (even testing the
1-feasibility of a component is NP-hard), and such a tense
activity model would easily result in time-infeasible
aggregate schedules, we approximate it by looking for
activities the size of which does not exceed the length of an
aggregate time unit. We suppose that there is no operation
whose duration exceeds this time limit.

Fig. 2. A minimal cardinality size-bounded activity model

 of a sample project. Project tree and aggregate
project tree. (Height=4, Cardinality=5)

Extra Constraints Added
Though the aggregate scheduling problem is usually
considered as a relaxation of the job-shop level problem,
some extra constraints are introduced or strengthened as
well during aggregation. A precedence constraint states
that the connected operations or activities have to be
executed in the given order, in distinct time units. While
this on the job-shop level allows the second operation to
start directly after the first has ended, the inherent
constraint on the aggregate level prescribes that an
aggregate time-unit change (a weekend, for example) has
to elapse between the two activities. Consequently, if the
activity model of a project contains a precedence chain of
length p, then in an aggregate scheduling problem working
with this activity model the completion of the project takes
at least p aggregate time units. This makes possible that
though the project on Fig. 2 could be executed in 2 time
units, the inappropriate activity model requires a time
window of at least 4 units. With a more adequate activity
model, like the one on Fig. 3, the same project can be
scheduled within the minimal time window of 2 units.

Fig.3. The minimal-height, minimal-cardinality size-bounded
activity model of the sample project. Project tree and

aggregate project tree. (Height=2, Cardinality=5)

 Hence, an activity model containing a maximal
precedence chain as short as possible – i.e., a minimum
height partitioning of the project tree – is looked for. Note
that in another view, this means increasing the parallelism
between activities.

Optimal Activity Models
After the above considerations, we give the definition of
the optimal activity model of a project as follows:

 The optimal activity model of a project is a partitioning
of the project tree into connected components such that
• each component respects the weight limit of W, the

number of working hours in an aggregate time unit;
• the height of the partitioning is minimal;
• with the above prerequisites, the cardinality of the

partitioning is minimal.

Then, to each component in the partitioning corresponds an
activity. Both its volume and maximal intensity equals the
sum of the contained operations’ durations, while its
resource requirements are computed as follows:

∑
∈

=
ij ActOp

j
k

i
kr ρ , RkNi ∈∈ ,

 Apparently, the creation of the optimal activity model of
a project corresponds to a tree partitioning problem with
regards to the bi-criteria given by minimum height and
minimum cardinality. In (Kovács and Kis 2003), a bottom-
up dynamic program is suggested to solve this partitioning
problem in O(n3) time.
 Note that since only technological plans are used to
establish the activity models, and those are relatively
stable, the partitioning can be done off-line.

Experiments
The algorithms suggested in this paper are meant to
constitute a module of an integrated production planner
and scheduler system under implementation in the
Computer and Automation Research Institute of the
Hungarian Academy of Sciences. Currently, we are
performing the first test with industrial data on them.
 The factory of our case study manufactures mechanical
products of high value in a make-to-order manner, by using
machining and welding centres, assembly and inspection
stations. A typical project consists of 20 to 500 discrete
manufacturing operations, each taking from 0.5 to 120
hours. Trees of these projects were shrunk into aggregate
project models consisting of 1 to 10 activities. The number
of resources is around 150. The horizon of the medium-
term scheduling problem is 15-25 weeks, and its time unit
of one week equals the horizon of the job-shop level
problem. The latter is solved with a 0.1 hours horizon by a
constraint-based scheduler.

 Preparing the optimal activity models of projects never
took more than a second per project. Using those activity
models, we could create valid and reasonable schedules on
both aggregation levels. However, unpredicted orders with
tight time windows, whose release and/or due date were
prescribed with daily precision required special dealing.
 The most exigent deficiency of the current state of our
algorithms seems to be the lack of an intelligent interplay
between the two schedulers working on different
aggregation levels and with different time scales. With the
current settings, it often happens that the amount of work
appropriated to a given week by the aggregate scheduler
requires up to 10-20 % more processing time on the
discrete level. However, we do not know whether this
problem has a practical relevance, since it is an established
custom for our industrial partner to slightly overload the
predictive schedule, in order to compensate execution-time
shortfall of jobs.

Conclusions
In this paper we have presented a novel approach to
aggregate scheduling in project-oriented environments.
Our first experiments confirmed that the aggregate
scheduling approach is an adequate means to handle the
complexity of the medium-term scheduling problem, and
to produce optimal schedules by handling together the
material- and workflow oriented aspects of production.
 Compared with previous aggregate scheduling
techniques, we suggest that merging discrete operations of
a connected component of the project tree into aggregate
activities is profitable with respect to aggregation along
resources. However, activity formation has a crucial
influence on the quality of the aggregate schedule in
several ways. For the special case of components
manufacturing, where the project graph is a tree, we gave a
definition of optimal activity models and also suggested a
tree partitioning algorithm to build such models in
polynomial time.

Acknowledgements
A part of the ideas published in this paper are results of
joint work with Tamás Kis, József Váncza and András
Márkus. Thanks are due to Tadeusz Dobrowiecki for his
valuable comments. This research has been supported by
the grant NRDP 2/040/2001.

References
Baptiste, P., Le Pape, C., Nuijten, W., 1999. Satisfiability
tests and time-bound adjustments for cumulative
scheduling problems, Annals of Operation Research 92,
305–333.

Bitran, G.R., Tirupati, D. 1993. Hierarchical Production
Planning, In: Graves, S.C., Rinnooy Kan A.H.G., Zipkin,

P.H. (eds), Logistics of Production and Inventory, 523-568,
North Holland.

Demeulemeester, E.L., Herroelen, W.S., 2002. Project
Scheduling: A Research Handbook. Kluwer Academic
Publishers.

Hackman, S.T., Leachman, R.C. 1989. An Aggregate
Model of Project-Oriented Production. IEEE Transactions
on Systems, Man, and Cybernetics, 19(2) 220-231.

Kis, T., 2002. A Branch-and-Cut Algorithm for Scheduling
Projects with Variable-Intensity Activities. Submitted to
Mathematical Programming.

Kovács, A. and Kis, T., 2003. Partitioning of Trees for
Minimizing Height and Cardinality, Submitted to
Information Processing Letters.

Leachman, R.C., Kim, S., 1993. A Revised Critical Path
Method for Networks Including Both Overlap
Relationships and Variable-Duration Activities, European
Journal of Operational Research 64(1993), 229-248.

Márkus, A., Váncza, J., Kis, T., Kovács, A., 2003. Project
Scheduling Approach to Production Planning, Annals of
the CIRP 52(1). (in print)

Raaymakers, W.H.M., Weijters, A.J.M.M., 2003.
Makespan Estimation in Batch Process Industries: A
Comparison Between Regression Analysis and Neural
Networks, European Journal of Operational Research 145
(2003) 14–30.

Sabuncuoglu I., Comlekci, A. 2002. Operation-Based
Flowtime Estimation in a Dynamic Job Shop, Omega 30
(2002) 423– 442.

Vajda, S., 1961. Mathematical Programming. Addison-
Wesley.

Weglarz, J. (ed.), 1998. Project Scheduling. Recent
Models, Algorithms and Applications, Kluwer Academic
Publishers.

