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Abstract

Many real-world planning problems involve resource
conditions and effects expressed by complex functions.
In this paper, we present an algorithm for the compo-
nent placement problem, which is a real-world problem
with a simple logical structure and arbitrary monotonic
resource functions. We discuss challenges arising in
solving this problem, possible approaches to address-
ing them, and ways of extending our algorithm to more
general classes of planning problems.

Introduction
Many practical planning problems involve real valued re-
source variables. A number of algorithms have been de-
veloped for such problems (e.g. Zeno (Penberthy & Weld
), RIPP (Koehler 1998), LPSAT (Wolfman & Weld 2000)).
However, such algorithms usually restrict the kinds of ex-
pressions that can be used in resource preconditions and ef-
fects to simple linear functions (Zeno supports more gen-
eral expressions, but postpones their processing until they
are linearized due to binding of some variables). Such re-
strictions allow the planners to use fast specialized methods,
such as the Simplex method, or reverse resource functions,
i.e. compute values of parameters of a function given a re-
sult. In real world problems, it is not always reasonable to
assume that resource functions satisfy these restrictions.

The component placement problem (CPP) arises in dis-
tributed component based frameworks. The goal in this
problem is to choose a set of components, their locations,
and connections between them in a resource-constrained
network environment (see the next section for details). Since
this problem involves choosing a set of components, it seems
reasonable to apply AI planning to it.

Compilation of the CPP into a planning problem has a
well-defined logical structure and no negative preconditions
and effects. However, two features of this problem preclude
use of existing algorithms.

First, although the size of the answer is usually small, the
problem specification may be very large. Static preprocess-
ing techniques are not effective in case of the CPP, and new
techniques need to be developed.
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Second, the resource functions in operator precondi-
tions and effects are not necessarily linear and often non-
reversible. For example, if a component merges two data
streams to produce one, it may be impossible to calculate
the bandwidth of each of the incoming streams given the
bandwidth of the resulting stream.

The rest of this paper is structured as follows. First, we
describe the component placement problem. Second, we
present the Sekitei algorithm for the CPP. To be useful,
such an algorithm needs to produce a solution within sec-
onds. Currently, Sekitei combines regression and progres-
sion techniques to dynamically prune the set of operators.
We are also exploring several approaches to dealing with
arbitrary non-reversible monotonic resource functions. We
conclude with a discussion of future work.

The Component Placement Problem
Component-based frameworks (Ivan et al. ; Fu et al. 2001;
S. Gribble et al. 2001) allow distributed applications to be
constructed from individual components. Dynamic selec-
tion and placement of components allows for adaptation to
changing characteristics of the environment and user prefer-
ences, but requires solving the component placement prob-
lem. In this paper, we consider a special case of such ap-
plications, where components consume and produce data
streams, and the data streams are sent over links between
nodes in a wide-area distributed system.

For example, consider the following scenario (Figure 1).
The server provides a combined media stream consisting of
images and text. The client issues requests at a particu-
lar rate, which translates into the minimum bandwidth re-
quirement. If the network between the client and the server
has high bandwidth, a direct connection is made. However,
in more resource-restricted situations additional components
might be injected into the network: Figure 1 shows an ex-
ample of such injection involving splitter, merger, and com-
pression components. The CPP attempts to place these com-
ponents automatically by viewing components as operating
on typed data streams.

In general, the specification of the component placement
problem consists of:

� a description of the network (a set of nodes, a set of links,
properties of the nodes and links such as available CPU,
link bandwidth, link security),
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Figure 1: The webcast application. The network consists of
two high-bandwidth LANs with a low bandwidth link be-
tween them. The Server located on node 7 produces a media
stream, and the Client on node 0 wants the media stream
with high bandwidth. This goal is achieved by splitting the
media stream (M) into text (T) and image (I), zipping the
text portion of the stream, so that the combined I+Z band-
width is less than that of the original M stream, sending the I
and Z streams to the client LAN, and performing the reverse
transformations there.

� a set of available component types specified by required
and produced types of data streams, resource require-
ments of the component as a function of parameters of
the incoming streams and properties of the node where
the component is to be deployed, and functions describ-
ing parameters of the produced data streams, and

� a user goal as a pair of a node and a component type to be
deployed on that node.

The goal is to find a (smallest) set of components and con-
nections between them such that all requirements of all com-
ponents are satisfied and the goal is achieved. For more de-
tails on the specification of the CPP see (Kichkaylo, Ivan, &
Karamcheti 2003).

This problem can be compiled into a planning problem as
follows.

� Availability of a data stream on a node and the deploy-
ment of a component on a node are described by propo-
sitions. For example, avText(0) means that a Text
stream is available on node 0, and placedZip(2)
means that a Zip component is deployed on node 2.

� Properties of links, nodes, and data streams on nodes are
resource variables. For example, cpu(0) describes the
available CPU on node 0, ibwMedia(1) is the band-
width of the Media stream on node 1, and lbw(1,2) is
bandwidth of the link between nodes 1 and 2.

� There are two types of operators: Placing a component on
a node and crossing a link by a data stream. Operators
have logical and resource preconditions and effects. For
example, the operator placeSplitter (Figure 2) de-
scribes placing of a Splitter component on a node. Log-
ically, the Splitter requires that a Media data stream be
present on the node, and as a result the Splitter makes
Text and Image data streams available on that node. From
the resource point of view, placing the Splitter is possible
if sufficient number of CPU units is available to process
the incoming Media stream. The resource effect formulae

operator placeSplitter(?n: Node)
Lreq: avMedia(?n)
Leff: avText(?n),

avImage(?n),
placedSplitter(?n)

Rreq: cpu(?n)>max(ibwMedia(?n), 10)
Reff: cpu(?n)-=max(ibwMedia(?n), 10)

ibwText(?n):=ibwMedia(?n)*0.3
ibwImage(?n):=

min(ibwMedia(?n)*0.7,
sqrt(cpu(?n))*10)

operator crMedia(?n1, ?n2: Node)
Lreq: avMedia(?n1)
Leff: avMedia(?n2)
Rreq:
Reff: ibwMedia(?n2):=min(ibwMedia(?n1),

lbw(?n1,?n2))
lbw(?n1,?n2)-=min(ibwMedia(?n1),

lbw(?n1,?n2))

Figure 2: Examples of operators in the compilation of a CPP
into a planning problem.

describe the change in CPU availability and bandwidth
of the produced streams. Similarly, the operator crMe-
dia describes sending a Media stream from node n1 to
node n2. There are no resource preconditions, and re-
source effects in this case describe consumption of the
link bandwidth and the bandwidth of the data stream at
the destination.

The planning problem obtained from a CPP has a simple
logical structure with no negative logical preconditions or
effects (if a data stream reaches a node it does not get de-
stroyed). What makes this problem hard is that the resource
expressions may involve arbitrary non-reversible functions.
The only assumption we make is that all functions are mono-
tonic. For example, if bandwidth of a data stream at the
source increases, the bandwidth at the destination will not
decrease, and if a component can be deployed on a node
with less resources, it still can be deployed on that node if
more resources become available. These assumptions are
true for the applications we are addressing.

Limiting the Search Space

The Sekitei algorithm

The first issue that an efficient planner for the CPP needs to
address is the size of the problem. A problem instance can
include hundreds of nodes and dozens of component types,
which translate into component placement and link cross-
ing operators. However, most of these operators will not be
used in the shortest plan that achieves the goal. Standard
preprocessing techniques (Blum & Furst 1997) do not re-
move these operators, because they can be included in some
(long) sequence leading from the initial to the goal state. For
example, when sending a data stream between two nodes in



the same LAN, the operator for crossing a network link on
the other side of the globe cannot be statically eliminated.

Sekitei (Kichkaylo, Ivan, & Karamcheti 2003) limits the
search space by combining regression and progression ap-
proaches and adding resource checks in layers, so that re-
source functions are evaluated only for promising operators.
Sekitei performs regression (backward search) and progres-
sion in the network structure similar to classic planners rea-
soning about time. The high-level algorithm is as follows:

1. Build a regression graph RG for the goal using only log-
ical preconditions and effects of operators (see example
below). Let N be the minimum depth of RG reaching the
initial state.

2. Build a planning (progression) graph PG (Blum & Furst
1997) for N steps, using only operator and propositions
belonging to the corresponding layers of the subgraph of
RG rooted in the initial state. For each propositional layer
of PG, compute an optimistic resource map as described
below. When building an operator layer, execute each
of the operators in the optimistic map of the preceding
propositional layer.

3. If the last layer of PG contains the goal, search for a plan
in PG using the procedure described in (Blum & Furst
1997). Symbolically execute the found plan to ensure
soundness. If execution succeeds, return the plan.

4. Add one step to the RG. Set N=N+1. Go to step 2.

Execution of an operator changes values of resource vari-
ables as described by the operator’s resource effects. Let���������
	����
�
	������

be the set of all resource variables. A state
is described by a set of name-value pairs for all variables:� ������� � 	�������	��
�
��	 ��� � 	�� � �!�"	�#%$'&�()&+*�,-���/.10

Execution of an operator 2!3 in a state produces a new state
where values of some variables are changed:4 564 ��� 2!3 	 � �+� �/7

A resource map is a mapping of each variable in
�

to a
minimum and maximum value.

An optimistic resource map 8:9<; 3 � 8 � for a given layer
8 of the planning graph is defined recursively as follows.
8�91; 3 �>=�� maps each variable into its minimum and maxi-
mum value in the initial state. For 8@? =

, 8�91; 3 � 8 � maps re-
source

�
to the minimum and maximum value of

�
over all

states that result from applying any operator of layer 8 of the
progression graph to any state consistent with 8:9<; 3 � 8�ACB � .

Since all resource functions are monotonic, it is sufficient
to construct states using only boundaries of the intervals. LetD ,�E-F 8 4 � 9<; 3 � be a set of all such states for the 9<; 3 :D ,�E-F 8 4 � 9<; 3 �G��� �6H �

where
91;�3 ���"�:� � 	)� 9 � 	)��I � ��	����
��	 ��� � 	�� 9 � 	)��I � ���
� H �J����� � 	)� � ��	��
�
��	 ��� � 	�� � �!�"	K*�,-���L.M� � 9 ��	)��IN�O�

Now the optimistic resource map can be computed as fol-
lows.

1. 8:9<; 3 �:=��M�P�"�:� � 	�� 9 � 	)��I � ��Q � � .R�S�
, where

� 9 �
and��IN�

are minimum and maximum values for resource
���

in the initial state.
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Figure 3: In the network of 8 nodes connected with links of
different bandwidth, it is required to send a data stream from
node 1 to node 0 so that the bandwidth of the stream at the
destination is at least 90. The shortest plan to achieve this
goal involves sending the stream through node 2, because
the direct link between nodes 0 and 1 does not provide suf-
ficient bandwidth.

2. Let 2!3 D � 8 � be the set of operators, including no-ops, of
layer 8L? =

of the planning graph. Then
8:9<; 3 � 8 �/���"�:� � 	)� 9 � 	)��I � ��Q

� 9 �T� 9 ,�EU�V	���IN�W� 9<; 5 �V	
�:����	����@. 4�5�4 ��� 2!3 	 � ��	 2!3 . 2!3 D � 8 ��	� . D ,�E-F 8 4 � 8:9<; 3 � 86ACB ���!�

Sekitei relies only on monotonicity of resource functions.
We do not assume that the functions are reversible (i.e. that
we can compute the arguments given the result). There-
fore, we cannot propagate goal intervals backwards during
the plan extraction phase (step 3) as done in (Koehler 1998).
Symbolic execution must be performed after the plan extrac-
tion to ensure soundness.

Example

To illustrate how the regression-progression approach helps
to limit the search, consider the example shown on Figure 3.
The goal is to place the Client on node 0, which requires
sending a data stream M produced by the Server running on
node 1 to node 0 so that the bandwidth of the stream on the
client node is at least 90. It is easy to see that, although there
is a direct link between nodes 0 and 1, the shortest plan to
achieve the goal involves crossing two links.

Sekitei starts by building a layered regression graph start-
ing with the goal state (Figure 4). Only the logical part
of operator specifications is taken into account, so that the
smallest subgraph rooted in the initial state corresponds to
the single-link plan (shown in bold).

Given the operators and propositions of the subgraph
found at the previous step, Sekitei builds a planning graph.
Execution of the placeClient(0) operator in the opti-
mistic resource map containing (ibwM(0),50,50) fails,
and Sekitei adds one more layer to the regression graph.
The new subgraph of RG (shown in thin solid lines) con-
tains the two-link plan. The corresponding progression
graph (Figure 5) reaches the goal, and contains the solu-
tion (crM(1,2), crM(2,0), placeClient(0)),
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Figure 4: The regression graph for the problem shown on
Figure 3. Bold links correspond to the smallest subgraph of
RG rooted in the initial state, solid lines correspond to the fi-
nal subgraph. Propositions are shown in italics, operators in
normal font. Propositions and operators used for construc-
tion of the progression graph are shown in bold.

i.e. cross links from node 1 to 2 and from 2 to 0 with in-
terface M, and place the client on node 0.

Note, that because of the layered structure of the algo-
rithm, only the portion of the network around nodes 0 and 1
was visited, and the resource functions were evaluated only
for three links.

Evaluation

We implemented Sekitei in Java and tested it on a vari-
ety of component placement problems. The regression-
progression approach does indeed help in pruning the set of
operators, and the algorithm scales well with respect to the
size of the network and the number of component types not
used in the final plan (see (Kichkaylo, Ivan, & Karamcheti
2003) for detailed results).

However, the performance of the planner degrades
quickly in scenarios where steps are added to the plan solely
because of resource restrictions. For example, if Figure 1
is part of a larger graph, the planner may consider placing
useless Zip and Unzip components off the main path.

This problem stems from the fact that symbolic execution
is performed after plan extraction. This means that many re-
source conflicts are detected very late, which leads to poor
performance on problems involving injecting multiple com-
ponents and using multiple data streams. If the operator that
fails during the symbolic execution is close to the end of the
plan, then the same plan prefixes are evaluated many times.
For example, in the webcast example (Figure 1) all plan pre-
fixes succeed up to the placement of the client.

Reducing the Number of Function Evaluations
One solution to the above problem is to save intermediate
results. GraphPlan-based algorithms use a technique called
memoization: for each of the layers of the planning graph
sets of propositions not achievable together are memoized,
so that they do not get checked more than once. Similar
to this, we use positive memoization to save good sets of
propositions along with corresponding resource maps.
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Figure 5: The progression graph containing the solution.
The optimistic resource maps for each step are shown be-
low the graph. The third layer placeClient(0) -
placedClient(0) is not shown. %avM(n) is a no-op
operator for proposition avM(n).

Positive memoization
The high-level goal of positive memoization is to detect re-
source conflicts earlier during the plan extraction phase by
executing plan tails in the optimistic resource maps. In the
Sekitei algorithm described above, the maps are built per
layer. To make resource conflict detection more effective,
we need to calculate resource maps at finer granularity.

Similar to the optimistic resource map for the whole layer,
we define an optimistic resource map D 91;�3 ����	 8 � for a subset
of propositions

�
at layer 8 of a planning graph.

1. D 9<; 3 ����	)="�/� 8:9<; 3 �>=�� for all
�
.

2. Let 2!3 D ����	 8 � be a set of smallest subsets of operators, in-
cluding no-ops, at layer 8 that together achieve

�
.

Let 3�� 4 � D � 2 	 8 � be a set of preconditions (propositions at
level 8-ACB ) of the set of operators 2 at level 8 .
Then the optimistic resource map D 91;�3 ����	 8 � for 8+? =

is
defined as follows:D 91; 3 ����	 8 �+���"��� � 	)� 9 � 	)��I � ��Q

� 9 � � 9 ,�EU�V	���I � � 9<; 5 �V	
�:����	����@. 4�5�4 ��� 2!3 	 � ��	 2!3 .�� 	�� . 2!3 D ����	 8 ��	� . D ,�E-F 8 4 � D 91; 3 � 3�� 4 � D ��� 	 8 ��	 8�A B �)�!�

In words, each subset of operators achieving
�

is executed
in the optimistic resource map for the union of precondi-
tions of these operators, and then the map for

�
is com-

puted as a union of the resulting maps.

After the optimistic map is computed for the goal state,
the plan extraction phase proceeds as usual, except every
time a subset of operators 2 is chosen at some level 8 , the
plan tail including 2 is replayed in the optimistic map of 2 ’s
preconditions D 91;�3 � 3�� 4 � D � 2 	 8 ��	 8-A B � .

Note that the use of positive memoization does not put
any additional restrictions on the form of resource functions;
only monotonicity is required.

Adding positive memoization to Sekitei resulted in huge
(several orders of magnitude) speedup on some instances of
the webcast problem and a small increase of running time
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Figure 6: Planning time for placing a webcast client on each
node of a 93-node network given a fixed location of the
server.

on simple problems. Figure 6 shows planning time for the
webcast application on a 93-node network. Intuitively, the
use of positive memoization in planning with resources is
similar to use of binary mutex relations in planning graph-
based algorithms.

Unfortunately, positive memoization has high memory re-
quirements. Having resource maps for all sets of proposi-
tions (essentially, most of the subsets of sets of propositions
for each layer of the planning graph) leads to a worst case
exponential memory explosion. In addition, now we need
to explore all possible ways to achieve a set of propositions,
which means we are doing some unnecessary work.

Focused Search
We are currently investigating two possible solutions to the
memory explosion problem mentioned above. These in-
clude exploring only the most promising paths and saving
optimistic maps per proposition rather than per set of propo-
sitions.

One possible way to identify the most promising paths
in the component placement problem is to start by building
a direct connection between the client and the server along
the shortest path in the network, and then deviate from this
path and add components only in case of a resource conflict.
Currently, we are working on combining a regression-based
evaluation function (Bonet & Geffner 1999) with positive
memoization ideas for early resource conflict detection to
produce a heuristic search-based planner that supports com-
plex resource expressions.

Another way to improve performance of Sekitei is to use
some properties of resources to prune search. It is often
possible to distinguish between monotonic and general re-
sources. A resource is monotonic if application of any op-
erator changes its value in the same direction. If some op-
erators can increase and others can decrease the value of a
resource, we refer to such a resource as general. For ex-
ample, available CPU is always a decreasing resource in the
CPP, but the bandwidth of a data stream may be general if
a caching component can be injected into the data path. We
are currently investigating use of resource monotonicity in-
formation for early resource conflict detection.

Conclusions and Future Work
In this paper, we present the Sekitei algorithm for solving
the component placement problem and possible ways to im-
prove its performance. The CPP is a real-world problem,
whose compilation into a planning problem is character-
ized by simple logical structure and arbitrary non-reversible
monotonic resource functions. In addition, a planner for the
CPP needs to cope with large number of irrelevant operators
that cannot be removed by static preprocessing techniques.

Sekitei addresses the scaling problem by using a combi-
nation of regression and progression techniques to limit the
search space. The positive memoization technique signif-
icantly increases performance of Sekitei by allowing early
detection of resource conflicts. The main drawback of posi-
tive memoization is its high memory requirements. We dis-
cussed possible ways to address this problem.

Sekitei is designed and optimized specifically for the
component placement problem. However, techniques devel-
oped for the CPP may be useful for other problems. We
plan to extend our resource planners to support more gen-
eral planning problems, namely, those containing operators
with negative logical preconditions and effects.

The current version of our planner, as many other AI plan-
ners, minimizes the total number of parallel steps. In real
world problems, such as the CPP, application of an operator
usually involves some cost. It is more desirable to minimize
the total cost of a plan rather than its parallel length. We plan
to add support for operator cost into the next version of our
planner.
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