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Our research’s aim is to explore the use of constraint sat-
isfaction techniques in probabilistic planning. We first fo-
cus on two special cases that make different assumptions on
the observability of the domain: the conformant probabilis-
tic planning problem (CfPP), where the agent’s environment
is not observable, and the contingent probabilistic planning
problem (CtPP), where the environment is fully observable.
A paper describing some of our work on the first case has
been accepted to the technical program of ICAPS 2003 un-
der the title “Conformant Probabilistic Planning via CSPs”.
We are currently working on applying similar techniques to
CtPP. So far, our research has resulted in exhibiting two
independent types of structure that probabilistic planning
problems tend to show. Decision theoretic techniques take
advantage of state abstraction while our approach, and AI
planning techniques in general, rely on reachability proper-
ties. Our ultimate goal is to design algorithms that can take
advantage of both of these properties, not only in the spe-
cial cases of CfPP and CtPP but in the general framework
of probabilistic planning in partially observable domains.

The Conformant Probabilistic Planning
Problem

The input to a CfPP is a tuple
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are a set of states, a set of actions, and an integer specifying
the horizon of the problem.

�
is a belief state, i.e., a proba-

bility distribution over
�

. We denote the probability of any
particular state ��� � under

�
by
��� ��� . Similarly if

�������
then

��� ��� ���! #"%$'&)(*$ ��� � � � . If +,� � we use -�.0/�� � + � � �21 to
denote the probability that action + when applied to state �
yields state � � . Finally,

�
is a goal which is a subset of

�
.

One way of viewing probabilistic actions is to regard them
as mapping belief states to new belief states. For any action+ , +3/ �41 is a new belief state such that for any state � � ,

+5/ �61�� � � �3�87"	&)(
��� ���2-�.0/�� � + � � � 1:9

The probability we arrive in � � from � is the probability we
started off in � (

��� �;� ) times the probability + yields � � when
applied in � ( -�.0/�� � + � � �21 ). Summing over all states � gives
us the probability of being in � � after executing + .

A sequence of actions is also a mapping between belief
states as follows. The empty sequence < is the identity map-
ping <=/ �61 � �

, and action sequence
� + ��>�� , where + is a

single action and
>

is an action sequence, is the mapping� + �?>�� / �41 �@+3/ > / �61�1 .
Under this view, CfPP is the problem of finding the length

plan

>
such that

> / �61�� � � is maximized: i.e., it maximizes
the probability of the goal

�
when applied to the initial be-

lief state. We call this probability of success (where the ini-
tial belief state

�
and goal

�
are fixed by the problem) the

value of
>

. More generally, for any belief state
�4�

, or indi-
vidual state � , and plan (of any length)

>
, the value of

>
in�A�

(in � ) is the probability of reaching the goal when
>

is
executed in

�6�
(or � ): i.e.,

> / �4�B1�� � � (or
> /C� 1;� � � ).

Finally we introduce some other useful pieces of nota-
tion. Given a belief state

�
, we say that a state � is in

�
if��� ���6DFE . That is, the states in a belief state are those that

are assigned non-zero probability. Second, for any action se-
quence

>
and belief state

�
, we say that state � � is reachable

by
>

from
�

if
> / �61�� � � �GDHE . That is,

>
arrives at � � with

non-zero probability when executed in belief state
�

. We
also say that � � is reachable by

>
from a particular state � if> /�� 1;� � � �IDJE , i.e.,

>
arrives at � � with non-zero probability

when executed in the state � . Finally, for a particular action+ and state � we say that � � is a successor state of � under +
if -�.0/�� � + � � �21 DKE .

We use a factored representation of the state space
�

. The
actions are represented using the sequential-effects decision
tree formalism of (Littman 1997). And the goal is repre-
sented by a boolean expression over the state variables, that
is satisfied only by the states in

�
.

The CSP Encoding
A CSP consists of a set of variables and a set of constraints.
Each variable has a finite domain of values and can be as-
signed any value from its domain. Each constraint is over
some subset of the variables. It acts as a function from an
assignment of values to those variables to true L false. We
say that an assignment of values to the variables of a con-
straint satisfies the constraint if the constraint evaluates to
true on that assignment. A solution to a CSP is an assign-
ment of a value to each variable such that all constraints are
satisfied.

The CSP variables We represent a CfPP with a CSP con-
taining three types of variables. For each step of the length


plan, we have M state variables whose values specify the



state reached at that step of the plan; one action variable
whose value specifies the action taken at that step of the
plan; and � random variables whose values specify the par-
ticular random outcome of the action taken at that step.

In most problems the state variables are boolean, but be-
cause we are encoding to a CSP, our formalism can deal with
arbitrary domain sizes. For example, we need only



action

variables with domains equal to all possible actions. In a
SAT encoding one needs � 
 action variables where � is the
number of possible actions, and


�� ��� clauses to encode the
constraint that only one action can be executed at each step.
These exclusivity constraints are automatically satisfied in
the CSP encoding by the fact that in a CSP a variable (in
particular the action variables) can only be assigned a single
value.

The CSP Constraints The CSP encoding of a CfPP will
contain constraints over the variables specified above. One
constraint is used to encode the goal. It is a constraint over
the state variables mentioned in the goal that is satisfied only
by the settings to those variables that satisfy the goal. Since
the goal is a condition on the final state, its constraint would
only mention state variables from the



-th step.

The other constraints are used to model the action transi-
tions. This constraint will be over some subset of the state
variables at step � , some subset of the state variables at step
���
	 , some subset of the random variables at step � , and the
action variable at step � . The constraint encodes the setting
of the step ����	 state variables that is compatible with the
execution of a particular action with a fixed random outcome
in the step � state.

Reusing Intermediate Computations
A naive implementation in which all solutions are enumer-
ated and the value of each plan evaluated, runs very slowly.
To make our approach viable it is necessary to do a further
analysis to identify redundancies in the computation that can
be eliminated using dynamic programming techniques, i.e.,
caching (recording) and reusing intermediate results.

This analysis identifies two types of intermediate compu-
tation that can be cached and reused. The first arises from
the Markov property of the problem. In particular, if we ar-
rive at the belief state

��

with


�� � steps remaining, the
optimal sequence of


�� � actions to execute is independent
of how we arrived at

� 

. Thus, for each step � and each

belief state we arrive at step � , we can cache the optimal
subplan for that belief state once it has been computed. If
we once again arrive at that belief state with


�� � steps
to go, we can reuse the cached value rather than recomput-
ing the


�� � step optimal plan for that belief state. This is
the dynamic programming scheme used in value iteration
POMDP algorithms (discussed below). It is also the dy-
namic programming scheme used in MAXPLAN ((Majercik
& Littman 1998)).

Both MAXPLAN and our own system CfPplan work by
searching in a tree of variable instantiations. At each node


in the search tree a variable � is chosen that has not been
assigned by any ancestor node. The children of



are gen-

erated by assigning � all possible values in its domain. The

leaves of the tree are those where some constraint has been
violated (or for MAXPLAN a clause falsified) or where all
variables have been assigned. The latter leaves are solutions.
The tree is searched in a depth-first manner (and in fact it is
constructed and deconstructed as it is searched, so that the
only part of the tree that is actually materialized at any point
in the search is the current path).

Our planner CfPplan uses a more refined caching scheme
than MAXPLAN’s. It instantiates variables in the sequence,��� � � � �	��� �����=� � � �	��� ��� 
 � � 
 �	� 
 ��9 9�9

, where
� 


is the � -
step action variable, �



are the � -step random variables and� 


are the � -step state variables. That is, like MAXPLAN
it builds up the plan chronologically, but after each action it
branches on all of the settings of the random variables as-
sociated with the chosen action. The setting of the previous
state variables, the action variable, and the random variables,
is sufficient to determine the next state variables (i.e., these
variables do not generate any branches—they each will have
only one legal value).

At a node of its search tree where all of the � -step state
variables have first been set, i.e., the node where state � has
first been generated by � -steps of some plan prefix, CfPplan
computes for every length


�� � plan,
>���� 


, the value (suc-
cess probability) of

> ��� 

in state � . It then caches these

values in a table indexed by the state � , and the step � . If
later on in the depth-first search CfPplan again encounters
state � at step � it backtracks immediately without having to
recompute these values. Note that storing the value of

>
on� is more general than storing its value on individual belief

sets, since for any belief set
�

we can compute
> / �41 from> /�� 1 : > / �41 �8 #"	& � > /�� 1 .

The CfPplan algorithm
We use value / >�� � 1 to denote the value of

>
in state � (i.e.,

the probability
>

reaches the goal when executed in � ). The
CfPplan algorithm computes for every state � in the initial
belief state

�
(i.e.,

��� ���
D E ), and every length



plan
>

,
value / >�� � 1 . From these values, the value of any length



plan is simply computed by the expression

7""! �$# "&%(' �
��� ��� � value / >�� � 1:9

That is, the probability that
>

reaches the goal state from
�

is the probability we start off in � (
��� ��� ) times the probability>

reaches the goal when executed in � (value / >�� � 1 ). Thus
these values provide us with sufficient information to find
the length



plan with maximum value (success probability).

Note that we must have the value of all plans in each of the
initial states. It is not sufficient to keep, e.g., only the plan
with maximum value for each state. The plan with maxi-
mum value overall depends on the probabilities of the states.
For example, the best plan for state � � may be very poor for
another state � � . If

��� � � � is much greater than
��� � � � , then its

best plan might be best overall, but if
��� � � � is much lower

than
��� � � � it is unlikely to be best overall. Even more prob-

lematic is that the best plan overall might not be best for any
single state.

As mentioned above the CfPplan algorithm works by do-
ing a depth-first search in a tree of variable instantiations.



CfPplan()
Action variable first; then random variables; then state variables

Select next unassigned variable �
If � is the last state variable of a step:

If this state/step is already cached return
Else-if all variables are assigned

Cache 1 as the value of the previous state/step
Else

For each value � of �
�����
CfPplan()
If � is the action variable ���

Update the cached results for the previous state/step
adding the value of all plans starting with �

Table 1: CfPplan algorithm

But given the order it instantiates the variables (action vari-
able followed by the random variables followed by the state
variables), its computation can be recursively decomposed
as follows. To compute the value of any length � plan> � � + �?> 
 � � � in state � , where + is

>
’s first action, we use

the fact that

value / >�� � 1 � 7" $ ! �
	��B"�
 ��
 " $�� ' � -�.0/��
� + � � � 1 � value / > 
 � � � � � 1;9

That is,
>

can reach the goal from � by making a transi-
tion to � � , with probability -�.0/�� � + � � � 1 , and then from there
reach the goal, with probability value / > 
 � � � � �B1 . Summing
the product of these probabilities over all of � ’s successor
states under

>
gives the probability of

>
reaching the goal

from � .
Hence, if we recursively compute the value of every

length � � 	 plan in all states reachable from � by a sin-
gle action, we can compute the value of every length � plan
in � , that starts with this action, with a simple computation.
After each value + for the action variable below � , we can
update � ’s cached value to include � ’s value on the plans
starting with + . Subsequent actions + � might be able to reuse
some of these computations (or previous computations). Af-
ter all actions have been tried, we can backtrack from � with
a complete cache for � . The recursion bottoms out at states
generated at step



that satisfy the goal (the goal constraint

does not allow any step



state that falsifies the goal to be
visited). For these states we only need to compute the value
of the empty action sequence. This has value 1 since the
state must satisfy the goal. Finally, after backtracking from
the initial call we can compute the value of all length



plans

from the caches for the initial states.
The algorithm used is given in Table 1.
We have compared CfPplan to MAXPLAN on

SandCastle-67 and on the Slippery Gripper problem.
These results show that CfPplan’s caching mechanism is
much faster (between 2 and 3 orders of magnitude) than
MAXPLAN, which itself was faster than previous planners
in the AI community. CfPplan also uses much less memory.

POMDPs
CfPP can also be seen as a special case of Partially Ob-
servable Markov Decision Processes (POMDPs). A gen-
eral POMDP model has probabilistic transitions but also al-
lows for partial observability (as compared to the complete
unobservability case of CfPP). In this setting, a solution is
a mapping from history (past actions and observations) to
actions. Decision theoretic planning techniques for solving
POMDPs usually assume a fixed reward for every state and
an infinitely executing plan. The plan specifies the action to
take in each belief state, and each belief state visited yields a
reward equal to the expected reward under that distribution.
The plan’s infinite horizon is handled by discounting future
rewards exponentially.

To cast the



-step CfPP in precisely this formalism re-
quires a specialized encoding to handle the fact that in a
CfPP the rewards are only given after



steps of the plan

have been executed. But such an encoding would result
in an important blow up of the state space. There is how-
ever, a class of POMDP algorithm that although designed to
solve the general infinite horizon problem, in fact does all
the computations required to solve CfPP. These algorithms
are called value iteration (VI) algorithms, and we will now
describe their basic operation. In our description we ignore
observations, so that all plans are simple action sequences
rather than conditional plans.

Brief VI overview
VI algorithms compute the optimal � step plan for every be-
lief state starting at �,� E and increasing � until they reach
a � such that adding one more step to any of the plans makes
less than < difference to the value of the plan.

The reason this approach works is that there exists com-
pact representations for the function that maps any belief
state to its optimal � step plan. There are of course an infi-
nite number of belief states, but since there are only a finite
number of different � step plans it must be the case that the
same plan is optimal for an entire region of the belief space.
More importantly, it turns out that many of the � step plans
are nowhere optimal, and those that are optimal for some
belief state are optimal for a linear region of the belief space
surrounding that belief state.

For any � step plan,
>

, the value of
>

in any belief state is
a linear function of its value in the individual states. That is,

value / >����61 � 7"	&)(
��� ��� � value / >�� � 1:9

Thus by storing
>

’s value for every state, we can easily com-
pute its value for every belief state. If there are � states in

�
,

then we need only store an � dimensional vector of values
for

>
. This vector is called an � -vector.

Abstractly VI algorithms start with � � 	 and with a set� � of � -vectors that contains an � -vector for every one-step
plan that is optimal for some region of the belief space. At
stage � we have a set

���
of � -vectors each corresponding to

some � -step plan that is optimal for some region of the be-
lief space, and we use this to compute

� ��� � . The dynamic
programming scheme is based on the fact that any optimal
� � 	 plan must be of the form

� + �?> � � where
> �

is an opti-
mal � step plan. Thus

> �
must be one of the plans already



represented in
���

. Therefore, we compute the � -vectors as-
sociated with all one step extensions of the plans in

� �
and

then prune those that are nowhere optimal to obtain
� ��� � .

Once we have the set
� �

we can find the optimal



step
plan for a particular belief state

�
, by computing the value

of all of the plans in
� �

at
�

(using the � -vectors as shown
above) and identifying the plan with maximal value. The
value of this maximum value plan at

�
is also called

�
’s

value. Thus, the set
� �

also represents a value function that
maps every belief state

�
to the value of the best plan for

�
.

The key factor in the complexity of VI POMDP algo-
rithms is the number of somewhere optimal length � plans
and how this number grows with � . These algorithms scale
well if this number grows slowly. As we will see in the next
section, this is the case for many of the problems we have
experimented with.

� -vector abstraction
� -vector abstraction refers to the fact that each � -vector
specifies a plan that is optimal for a (linear) region of the
belief space. Thus it can be that a relatively small number of
plans are in fact sufficient to cover the entire belief space.

Thanks to the power of this abstraction it might only be
necessary to evaluate a small portion of all possible plans at
every step. However to evaluate one plan, one must consider
the whole (

� ���
-dimensional, continuous) belief state space,

even though potentially large regions of that space are not
reachable from the initial belief state. When the number of
states in the problem is large, solving the resulting linear
programs can take time.

Dynamic Reachability
To sum up, POMDP algorithms are able to evaluate only the
necessary plans but over an unnecessarily large space. On
the other hand, combinatorial probabilistic conformant plan-
ners like CfPplan (or MAXPLAN) must evaluate all

� ��� �
possible plans, but the tree-search approach leads to a sig-
nificant advantage in that it performs a dynamic reachability
analysis. In CfPplan, an assignment to all the state variables
at a particular step can be considered to be a state “node”.
Once such a node has been reached the CfPplan algorithm
will branch over all possible actions (through the

� �
vari-

able) and all possible probabilistic effects of these actions
(through the random variables �

�

) and will end up instanti-

ating all the state nodes that are reachable from the previous
one in one step. Therefore only these reachable nodes will
be expanded in the future search and the effects of actions
on all other (non-reachable) states will not be unnecessarily
considered.

Comparison with POMDPs
We were able to solve CfPP problems using a VI based
POMDP solver written by Cassandra (Cassandra 1999).
Cassandra’s solver implements (among others) the incre-
mental pruning algorithm described in (Cassandra, Littman,
& Zhang 1997).

Our experiment demonstrate a common structure: Cf-
Pplan is faster for shorter plans but POMDP eventually
“catches up”. The position of the intersection point (where

POMDP becomes faster than CfPplan) depends on three fac-
tors

1. The ratio of dynamically reachable states at any step to
the total number of states. The lower this ratio the better
CfPplan works.

2. The ratio of somewhere optimal � -vectors to the total
number of � -vectors. The lower this ratio the better it
is for POMDP algorithms.

3. How these two ratios compare.

Both algorithms have an exponential worst case complex-
ity. However, CfPplan’s complexity is always exponential
in the plan length, with the base of the exponent being deter-
mined by

�����
	���

, whereas, as noted above, the rate of growth

in the number of � -vectors in the POMDP algorithms tends
to slow down as plan length increases. This is partly due
to the finite precision with which the value of these vectors
is compared, in the POMDP implementation. It is because
of this slow down in growth rate that we eventually see an
intersection between the CfPplan and POMDP curves.

Current and Future Work
We have recently extended our research to both finite and in-
finite horizon CtPPs. The two resulting algorithms are very
similar to that of CfPplan in that they exploit the same type
of redundancies. The main difference is that the solution of a
fully observable problem is a mapping from states to actions,
indicating how to act in each state that can be encountered
from the initial state(s). The resulting caching mechanism
for CtPplan, our CtPP solver, requires very little memory
use, since we are storing values for each action instead of
each sequence of actions. Contingent probabilistic planning
problems are very similar to fully-observable MDPs. We
therefore evaluate CtPplan against SPUDD, an MDP solver
described in (Hoey et al. 1999).

From empirical results, we are able to draw similar con-
clusions to those from CfPP. As � -vectors provide a power
of abstraction over the belief state space to POMDP algo-
rithms, SPUDD uses Algebraic Decision Diagrams to effi-
ciently abstract the state space of an MDP.

In general, techniques from the decision-theoretic plan-
ning community rely very much on abstraction mechanisms,
whereas AI planning algorithms utilize dynamic reachabil-
ity properties. We believe an efficient algorithm for solving
large probabilistic planning problems must be able to take
advantage of both of these types of structure. We are cur-
rently exploring such techniques for CfPP ad CtPP and plan
to expand our work to the more general framework of par-
tially observable probabilistic planning.
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