Temporal Planning with a Non-Temporal Planner

Keith Halsey

Department of Computer Science,
University of Durham, UK
keith.halsey@durham.ac.uk

Introduction

This extended abstract looks at the work that I am
currently undertaking in the field of temporal planning.
Temporal planning is the same problem as classical
planning but, whereas in classical planning all actions are
considered to be instantaneous, in temporal planning time
is also modelled. One possible way to achieve this is to
introduce actions with duration. These durations can rely
on the parameters of the action (e.g. a plane takes longer to
fly the further the distance between its departure and
arrival cities). Relaxing this one assumption complicates
the problem, since now a new metric is introduced to judge
plans by; it is no longer the plan with the fewest actions
which could be seen as best, but that with the shortest total
duration. Concurrency can now be exploited within the
plan, where two or more actions can overlap and be
executed simultaneously. This replies on the capabilities of
the executive and, as described later, the expressiveness of
the description language. Concurrent actions must not
interfere with each other; this is another challenge for the
planner. Temporal planning can be seen as the merging of
classical planning and scheduling.

Whilst classical planning, with its simplifying
assumptions, is still a hard problem, good progress has
been made over recent years (see Weld 1999). This partly
led to the introduction of temporal planning (and planning
with resources) at the AIPS2002 planning competition
(Fox and Long 2002), and is seen as a current major
challenge. The purpose of this work is to exploit existing
classical planning technologies with some common solving
strategies from scheduling to solve temporal planning
problems, whilst exploiting any concurrency where it is
available in the problem.

Overview of the Architecture

I have designed a temporal planner that works by pre-
processing durative action descriptions into collections of
instantaneous actions, building a plan using these actions
with classical planning technology and then post-
processing the resulting plan into a concurrent plan.

Figure 1 shows an abstracted overview of how the
system works. Firstly, a temporal planning domain and

PDDIL2.1 PDDIL2.1
Domain file Problem file
Translator
Problem PDDL PDDL
Duration Problem Domain
file
Classical Planner
i Total Order Plan
Total Order to Partial Order Converter
¢ Partial Order Plan
L » Simple Temporal Network

Temporal Plan
Figure I - Architecture Overview

problem is passed through a translator which takes out the
temporal aspects, converting it to an equivalent STRIPS-
like domain that preserves all the key temporal
relationships. It stores the duration of the actions that it has
removed from the original files in a separate file. These
two STRIPS files are then passed through a classical
planner. This is where the ‘hard’ work is done, but should
be easier without the temporal information. The totally
ordered sequential plan is passed through a program that
produces a partially ordered plan, allowing actions that can
be executed together to be happen concurrently, keeping
only essential orderings in place. This partial ordering,
along with the duration file created by the translator, are
passed into a program that uses a simple temporal network
at its core. This calculates the relative and actual timings of
the actions, to produce a valid temporal plan. Each of the
four main systems will be looked at in detail in the
following section.

The System

The Translator and PDDL2.1

As with any planning technology, the choice of how the

problem is represented has a great impact on how the

problem is solved. What can be described can change
significantly how easy or hard the problem then becomes.

PDDL2.1 (Fox and Long 2001) seemed a natural choice of

description language for a number of reasons:

¢ It is an extension of PDDL (McDermott 1998), used in
previous planning competitions, which is the de facto
language for classical planning. Therefore, translation
between PDDL2.1 and PDDL is simple (as described
later).

* As with PDDL, it is domain independent, so no advice
is given to the planner as to how to solve the problem.

e PDDL2.1 is split into levels, corresponding to the
degree of expressiveness (and associated difficulty) of
the problem.

e It is simple yet descriptive as to what it allows to
happen concurrently. Conditions may hold at the start,
at the end and over the duration of the action.
Similarly, effects may happen at the start and end of
the action, whilst some levels allow effects to take
place over the duration of the action.

e PDDL2.1 was used in the AIPS2002 planning
competition, so not only are there a number of
domains readily available, but it is easy to compare
this system against other temporal planners that
entered the competition.

There is one major subtly of the validity of PDDL2.1

plans. Unlike classical planning, it is not just the order of

the actions in the plan that ascertains its validity, but also

the times when the actions are scheduled to take place. A

temporal plan is a sequence of time stamped actions with

associated duration. It becomes unclear as to the validity of

a plan if the end of one action deletes or achieves the

precondition of the start of another action at the precise

moment that that action is scheduled to start. That is to say,

is it possible to have P and —P true at the same time? On a

more practical note, any executive will only be able to

execute the plan to a certain degree of accuracy with

regard to the timings. Therefore, PDDL2.1 introduces ‘g’,

or tolerance value: the minimum time between one action

achieving another. If it is less than this value then the plan
is invalid according to PDDL2.1 semantics (Fox and Long

2001).

In the level of PDDL2.1 that this systems uses

(level 3), continuous effects are not permitted in durative

actions. As mentioned earlier, PDDL2.1 durative actions

can have conditions that must hold at the start of the action
or at the end of the action. Effects can also occur at the
start or at the end. Invariants are propositions that must
hold for the duration of the action. This conveniently
allows a durative action to be split into three instantaneous

actions; one for the start with its preconditions and effects,
one for the end with its preconditions and effects, and one
to represent the checking of the invariant. This can be
shown in Figure 2. There are two extra propositions added
during the conversion process. The first, load-truck-inv, is
an effect of the start and invariant action and a condition of
the invariant and end action. The second, iload-truck-inv,
is an effect of the invariant action and a condition of the
end action. Both of these ensure not only that all three
actions are chosen during the planning process but also that
they appear in the correct order within the plan.

The translator converts durative actions in this
way. It was originally written for LPGP (Long and Fox
2002), a temporal graphplan based planner, and was only
altered very slightly so that it would work with the
classical planner described below. The durations file, for
the example in figure 2, would contain an entry indicating
that the LOAD-TRUCK action takes 2 time units. This
corresponds to the Simple Time domains used in the
competition. The translator can also translate actions
whose duration depends on some of the parameters (the
Time domain variants). In this case, it calculates the

(:durative-action LOAD-TRUCK
:parameters (?obj - obj ?truck - truck ?loc - location)
:duration (= ?duration 2)
:condition (and (over all (at ?truck ?loc))
(at start (at ?obj ?loc)))
:effect (and (at start (not (at ?0bj ?loc)))
(at end (in ?0bj ?truck))))

becomes

(:action LOAD-TRUCK-START
:parameter (?0bj - obj ?truck - truck ?loc - location)
:precondition (at ?obj ?loc)
-effect (and (not (at ?obj ?loc))
(load-truck-inv ?0bj ?truck ?loc)))

(raction LOAD-TRUCK-INV
:parameter (?0bj - obj ?truck - truck ?loc - location)
:precondition (and (at ?truck ?loc)
(load-truck-inv ?obj ?truck ?loc))
-effect (and (load-truck-inv ?obj ?truck ?loc)
(iload-truck-inv ?obj ?truck ?loc)))

(:action LOAD-TRUCK-END
:parameter (?0bj - obj ?truck - truck ?loc - location)
:precondition (and (iload-truck-inv ?obj ?truck ?loc)
(load-truck-inv ?obj ?truck ?loc)))
-effect (and (in ?0bj ?truck)
(not (load-truck-inv ?obj ?truck ?loc))
(not (load-truck-inv ?obj ?truck ?loc)))

Figure 2 - Translation from a Durative Action to 3
Instantaneous Actions

duration for all possible combinations of the depending
parameters and writes these to the duration file.

The Classical Planner

The classical planner used is FF. This is a successful
forward heuristic plan-space search planner that uses a
heuristic created from a relaxed plan graph. It takes in the
translated domain and problem description file and
produces a totally ordered plan. Again, FF had to be
altered slightly so that it not only prints out the actions that
form the plan, but also the preconditions and the add and
delete effects for each of those actions. This is necessary
for the next stage to find out what actions achieve and
threaten others. Also printed out are the goals of the
problem. Again, this is used in finding the partial order.

Total Order to Partial Order Conversion

To convert to the partial order plan, only those actions that
interact need be ordered. These arise in two cases; firstly,
where one action achieves another, and secondly, where
one action threatens another by deleting a precondition. A
greedy algorithm that works backwards through the plan,
looking for achieving and threatening actions is used and
described in figure 3 (Moreno et al 2002). Although this
will not find an optimal plan, that is to say one that
exploits all concurrency possible, it is complete and sound
(i.e. it will find a valid partial order plan).

for i =n down-to 1 do

1. for each procond € Preconditions(op;)
Find an operator opjin plan with effect precond
Add an ordering from op; to op;

2. for each del € Delete-Effects(op;)
Find all operators with precondition, a delete
effect of op;
Add an ordering from these to op;

3. for each add € PrimaryAdd(op;) (if it appears in
the goal or sub-goal chain)
Find all operators that delete any primary adds of
op;
Add an ordering from these to op;

Figure 3 - Total Order to Partial Order Algorithm

As can be seen from step 3 of the algorithm, the
goal and sub-goal chain are needed. Unfortunately these
are lost after the planning phase. However, by recursively
storing the preconditions of any actions that achieve a goal
or sub goal, these can soon be found out again.

The Simple Temporal Network

Simple Temporal Networks (STNs) (as described in
Dechter, Meiri and Pearl 1989) take a set of constraints of
the form:

by =sx-y=sb;

These describe the minimum (b;) and maximum (b,) time
between actions (x,y) and are put into a graph to allow
reasoning to occur, namely propagation of constraints, and
checking their satiability. The orderings from the partial
order plan are converted into this form. The maximum
time between two ordered actions is infinity and the
minimum 0.01 (or whatever ¢ is set to). So if LOAD-END
must precede DRIVE-START:

0.01 =DRIVE START—LOAD END < °

However, if the ordering is an invariant action before
another action, it is made between the corresponding end
action and the other action. If it is an invariant action that
occurs second, then the ordering is between that action and
the corresponding start action of the invariant action. In
both case, the minimum time allowed to elapse is set to
zero (i.e. the two actions could abut). This happens
because the invariant action is not actually an instant, but
the duration of the action. Therefore this does not need
scheduling, but rather anything preceding it, must happen
before or at the same time as the action starts, and anything
following it must happen after, or at the same time as the
durative action finishes. This is all necessary for the
protection of invariant conditions.

For this reason it is also important at this point to
match up the corresponding start, end and invariant
actions. It can be the case that there is more than one
durative action with the same name and parameters in the
plan. In this case there will be more than one of its
instantaneous actions. To match them up correctly (i.e. the
correct start with the correct end), a greedy approach is
taken whereby the first start is matched to the first
invariant found, which in turn is matched with the first end
action found for that combination of parameters. And so
forth through the plan. Identical actions in the must have
the same duration (even in Time domain variants) so it can
never be the case that the classical planner had interleaved
identical with the intention of one action occurring and
completing during the duration of the other. If this were the
case, the greedy approach would not work.

Lastly, the durations are expressed as constraints.
Once again it must be known which instantaneous actions
pair up to form durative actions. The constraints expressed
state that the minimum and maximum time between the
start and end action equals its duration. For example, if a
drive action has a duration of 8, then the following
constraint would be added to the STN:

8 = DRIVE END — DRIVE START <8

Each constraint can be seen as two edges on a
graph with the weights representing the minimum and

maximum time differences, and the vertices being the
instantaneous actions. In this system, the graph is
represented as an 2n+1 x 2n+l array, where n is the
number of durative actions (and so 2n is the number of
start and end actions, with the extra one as a special
timepoint to represent the start of the plan). By running
Floyd-Warshalls (Gallo and Pallottion 1988) algorithm on
this, the transitive closure of the graph is be calculated.

Extracting the Durative Action Times

Once the transitive closure of the graph has been
calculated, it is possible to look at the earliest and latest
possible times that any instantaneous action occurs. Figure
4 shows the greedy algorithm to find out the exact times at
which the durative actions occur (i.e. at what time the start
instantaneous actions occur). It continually finds the
potentially latest finishing action, and then sets that to the
earliest it could possibly finish. However, it then must re-
compute the transitive closure as changing this latest
possible finishing time may in turn change (although only
ever decrease) the latest possible finishing times of other
actions. Computing this transitive closure with Floyd-
Warshalls is O(n’) and this must be done at most once for
each durative action.

The plan finally produced, along with the original
problem and domain file, can be passed into the validator
(Howey and Long 2003) to check on its validity.

Find the latest possible instantaneous action where its
latest possible time does not equal its earliest possible
time.

1. Set this action’s latest possible time to equal
its earliest possible time.

2. Re-compute transitive closure.

Loop until all actions latest and earliest possible times
are equal.

Figure 4 - Algorithm for Setting the Durative Action
Times

Initial Results

To gain some initial results, the quality of the plans
produced and the time it takes to produce the plans were
compared against LPG (Gerevini and Serina 2002) and
MIPS (Edelkamp and Helmert 2000) on the Driverlog
domain, both the Simple Time and Time variants, as used
in the AIPS2002 planning competition (Fox and Long
2002). LPG is a planner based on local search and planning
graphs and was awarded “Distinguished Performance of
the First Order* at the competition. The version used here
trades time spent planning to produce better quality plans.
MIPS works similar to this planner as it splits up durative
actions, and then combines symbolic and explicit heuristic

search planning. It received the “Distinguished
Performance” award. Table 1 compares the three planners
in the Simple Time Driverlog domain, and table 2
compares them in the Time Driverlog domain.

This Planner LPG MIPS
Time Quality Time Quality | Time Quality
1 360 91.05 30 91.082 110 302.1
2 580 100.03 90 92.073 260 246.22
3 450 40.02 10 40.021 110 173.1
4 670 89.03 1740 52.033 330 250.18
5 1080 109.04 40 51.042 160 163.2
6 780 64.04 340 52.052 239 238.14
7 700 51.03 20 40.021 260 287.15
8 2620 151.06 12940 52.052| 11380 320.28
9 313580 284.15 47100 92.073 349 403.24
10| 2730 91.04 15300 38.037 440 231.23
11 3590 74.01 123020 65.064 689 306.23
Table I - Driverlog Simple Time Domain

This Planner LPG MIPS

Time Quality Time Quality | Time Quality

1 340 302.05 10 302.008 100 302.1
2 610 341.03 15130 246.023] 140 246.22
3 460 173.02 10 173.011f 110 173.1
4 660 392.03 800 249.017| 349 250.18
5 1130 306.04 12130 102.022] 149 163.2
6 800 260.04 30 168.011 330 238.14
7 690 268.01 13820 200.02| 250 287.15
8 2610 527.06| 104800 206.029, 3470 320.28
9| 309450 1065.15 4420 345.026| 330 403.24
10 2760 259.04| 48640 93.037| 409 231.23
11 3980 430.01 50 232.024 400 306.23

Table 2 - Driverlog Time Domain

As these are only initial results, and are only indicative, no
formal analysis has been preformed on them. In the simple
time domain, this planner would seem to scale better than
LPG although at first slower. It is slower than MIPS, but
scales at a similar rate. Whilst no optimisation has been
performed on any of the code I have written, the time to
execute this code is insignificant, with most of the time
being spent planning by FF. This planner consistently
produces better quality plans than MIPS, but equal or
worse in quality than LPG.

In the time variant, the picture is less clear. Whilst
it is generally slower than MIPS, its performance varies
compared to LPG. With regard to quality, it is generally
the slowest out of the three planner, although is still
competitive.

Conclusions

I have achieved writing a version of “TemporalFF” for
Simple Time, Time and, as described below, soon,
Complex domains. The idea is similar to MIPS (Edelkamp
and Helmert 2000) as it uses pre and post processing of the
domain and plan. But the planner described here is

potentially more powerful as it has the ability to exploit
start effects of actions. This is because the translation
phase is structure preserving. Originality in this planner
lies in its ‘plug-ability’ as the language translator gives
generality. As can be seen from Figure 1, it is possible to
replace any of the components, most importantly the
classical planner, with a functionally similar program. This
distinguishes it from MIPS which any changes affect the
whole algorithm. As is described next, replacing the
planner with one with increased capabilities results in this
planner inheriting those capabilities without any other
changes required. If the planner is replaced by a partial
order planner, there would be no need to lift a partial order
plan, reducing the effort needed.

Opportunities for Improvement

There are two main opportunities for improving the quality
of the plans produced. The first is in the algorithm which
lifts the partial order from the total order. As already
observed, whilst this greedy approach is sound and
complete, it may be the case that better partial order plans,
which better exploit concurrency, could be found with
some search. There would obviously be a speed trade off
here.

The second opportunity is that of withdrawing the
times from the STN. Rather than setting the latest possible
action to the same time as its earliest possible time, it could
be set to the next latest possible time in the network. A
shorter plan could be found but this may take longer to
find.

One idea to improve the efficiency of the system
is to discard the need to send the invariant checking actions
to FF without a reduction of expressiveness or soundness.
The advantage of this would be two fold. Firstly, the
search space would be smaller, and secondly, FF would
need to do less work instantiating the actions (one
observed problem with this planner). This would require
more post processing as conditions and effects of the
invariant would have to be moved to the start action and
then removed afterwards.

Potential Further Work

As already observed, one potential change to the system is
simply to change the classical planner. There are two
obvious choices here. One is to use MetricFF, a variant of
FF which would allow the use the resources and other
numeric values in the domain, and so tackle Complex
domains. The second is to use a partial order planner. This
would of course get rid of the need to lift the partial order
plan as it could be taken straight from the planner.
Currently, as all temporal information is taken out
the problem for FF, it cannot know the cost of the actions
it is using. It may well be the case that it is better to use a
few short duration actions, rather than one long one.
However, FF’s heuristic will choose the longer one as it

tries to minimise the total number of actions, not the total
duration. By incorporating the durations into the heuristic,
this could improve the quality of the plans.

References

Dechter R., Meiri J. & Pearl J. 1989. Temporal Constraint
Networks. In Proceedings from 83-93 Principles of
Knowledge Representation and Reasoning: 83-93.
Toronto, Canada.

Edelkamp S. & Helmert M. 2000. On the Implementation
of Mips. In Proceedings from the Fourth Artificial
Intelligence Planning and Scheduling (AIPS), Workshop
on Decision-Theoretic Planning. 18-25 Breckenridge,
Colorado: AAAI-Press.

Fox M. & Long D. 2001. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains,
Technical Report, Department of Computer Science,
University of Durham.

Fox M. & Long D. 2002. The third International Planning
Competition: Temporal and Metric Planning. In
Proceedings from the Sixth International Conference on
Artificial Intelligence Planning and Scheduling. 115-117

Gallo G. & Pallottion S. 1988. Shortest Path Algorithms.
In Annals of Operations Research 13:38-64.

Gerevini A. & Serina 1. 2002. LPG: a Planner based on
Local Search for Planning Graphs. In Proceedings of the
Sixth Int. Conference on Al Planning and Scheduling
(AIPS'02). AAAI Press.

Howey R. & Long D. 2003 VAL's Progress: The
Automatic Validation Tool for PDDL2.1 used in The
International Planning Competition. Forthcoming.

Long D. & Fox M. 2002. Fast Temporal Planning in a
Graphplan Framework. In Proceedings from the Sixth
International Conference on Artificial Intelligence
Planning and Scheduling.

McDermott D. & the AIPS’98 Planning Competition
Committee 1998. PDDL — The Planning Domain
Definition Language. Technical Report, Department of
Computer Science, Yale University.

McDermott D. 2000. The 1998 AI Planning Systems
Competition. A Magazine 2(2):35-55.

Moreno D., Oddi A., Borrajo D., Cesta A. & Meziat D.
2002. Integrating Hybrid Reasoners for Planning and
Scheduling. In Proceeding of the twenty-first workshop of
the UK Planning and Scheduling Special Interest Group,
179-189.

Weld, D. S. 1999. Recent Advances in Al Planning. A7
Magazine 20(2).

