
Properties of Planning with Non-Markovian Rewards ∗

Charles Gretton
charlesg@csl.anu.edu.au

Abstract

We examine technologies designed to solve decision pro-
cesses with non-Markovian rewards (NMRDPs). More
specifically, target decision processes exhibit Markovian dy-
namics, calledgrounded dynamics, and desirable behaviours
are modelled as state trajectories specified in a temporal logic.
Each technology operates by automatically translating NM-
RDPs into corresponding equivalent MDPs amenable to clas-
sical MDP solution methods. They do however differ in their
representations of grounded dynamics, the MDP and in the
class, structured or non-structured, of MDP solution meth-
ods to which they are suited. Therefore two temporal logics
and numerous translation procedures have been adopted. This
presentation is based on an integrated system for solving NM-
RDPs which implements these methods and several variants
under a common interface; we use it to compare the various
approaches and identify some problem features favouring one
over the other.

Introduction
Currently the de facto model for decision-theoretic planning
(DTP) is the Markov decision process (MDP) (Boutilieret
al. 1999). Recently efforts have been made to address weak-
nesses in this formalisms’ provision of a framework for de-
veloping plans in a decision-theoretic setting. For many ap-
plication domains the Markov assumption is a hindrance as
desirable control strategies require that reward is allocated
to behaviours or sequences of states. The model which has
been developed to address this is the non-Markovian re-
ward decision process (NMRDP) (Bacchuset al. 1996).
Corresponding frameworks provide for system dynamics
given by a grounded MDP and desirable behaviour spec-
ified using a linear temporal logic (Bacchuset al. 1996;
Thiébauxet al. 2002).

A number of solution methods for NMRDPs have been
proposed in the literature (Bacchuset al. 1996; Bacchus
et al. 1997; Thíebauxet al. 2002). These methods trans-
late NMRDPs into a corresponding equivalent MDP which
incorporates temporal variables capturing sufficient history
to make the reward Markovian. These methods differ in
both the types of MDP representations and hence solution
∗An extended version of this paper is to be presented at

ICAPS’03 Workshop on Planning under Uncertainty and Incom-
plete Information.

methods to which they are tied, and in the temporal logic
that is adopted for reward specification. For instance, meth-
ods which expressly enumerate the MDP states, expanded
states, use classic dynamic programming algorithms when
solving the expanded decision problem. In these cases two
logics are adopted, $FLTL, a future looking logic, for do-
mains where heuristic search (Hansen and Zilberstein 2001)
should prove favourable and PLTL, a temporal logic of the
past, for situations where dynamic programming over the
entire state space is preferred. In contrast to their state based
counterpartsstructuredmethods avoid state based enumer-
ation. These methods also adopt PLTL as the language for
expressing non-Markovian reward.

To date, these approaches do not appear to have been fully
implemented, and none of the three cited papers report any
experimental results. All, however, agree that the most im-
portant item for future work is the implementation and ex-
perimental comparison of the respective approaches, with
a view to identifying the features that favour one over the
other.

This abstract summarises our effort so far in this direction.
We begin with a review of NMRDPs and the three cited so-
lution methods. We then describe NMRDPP an integrated
system which implements, under a single interface, a family
of NMRDP solution methods based on the three approaches,
and reports a range of statistics about their performance. Us-
ing this system we compare how the methods fare under the
influence of various factors such as the class of rewards and
the syntax used to describe them, reachability, and relevance
of rewards to the optimal policy.

NMRDP Solution Methods
Extending MDPs

We start with some notation and definitions. Given a finite
setS of states, we writeS∗ for the set of finite sequences
of states overS, andSω for the set of possibly infinite state
sequences. Where ‘Γ’ stands for a possibly infinite state se-
quence inSω and i is a natural number, by ‘Γi’ we mean
the state of indexi in Γ, and by ‘Γ(i)’ we mean the prefix
〈Γ0, . . . ,Γi〉 ∈ S∗ of Γ.

DTP problems are typically modelled such that domain
statesS are characterised by propositionsP , numeric re-
ward is allocated to propositions/states according to their

associated desirability and the dynamics of the system is
given by stochastic actionsA. We typically writeA(s) to
denote actions applicable at states. A solution algorithm,
provided with a start states0 ∈ S, generates a stationary
policy π : S → A (mapping from states to actions) which
adherence to during system execution results in optimal be-
haviour over a discounted infinite horizon.

The standard MDP formulation is state based, comprising
a finite set of statesS and actionsA. Actions induce stochas-
tic state transitions, wheres, t ∈ S, a ∈ A andPr(s, a, t)
gives the probability of a transition from states to t given
actiona is executed at states. Also present is a real-valued
reward functionR : S → <. The value of a stationary pol-
icy π at states0, V (π), is given by Equation 1 whereβ is a
discount factor usually close to1.

V (π) = lim
n→∞

E
[n∑
i=0

βiR(Γi) | π,Γ0 = s0

]
(1)

We consider a policyπ∗ optimal if, for allπ, we have that
V (π∗) ≥ V (π).

The formulation for NMRDPs is identical up to the re-
ward function whose domain is extended toS∗, e.g. R :
S∗ → <. As before, the value ofπ, which we seek to
maximise, is the expectation of the discounted cumulative
reward over an infinite horizon:

V (π) = lim
n→∞

E
[n∑
i=0

βiR(Γ(i)) | π,Γ0 = s0

]
(2)

As introduced, NMRDP solution methods facilitate gen-
eration of an optimal policy by first expanding the NMRDP
into an equivalent MDP, and then applying either traditional
or structured MDP solution algorithms to the resulting con-
struct. Before we summarise the three solution algorithms
we formally define what it is for an MDP to be an extension
of a corresponding NMRDP. MDPD′=〈S′, s′0, A′,Pr′, R′〉
is an expansion of NMRDPD = 〈S, s0, A,Pr, R〉 if there
exists a mappingτ : S′ 7→ S such that:

1. τ(s′0) = s0.
2. For alls′ ∈ S′,A′(s′) = A(τ(s′)).
3. For all s1, s2 ∈ S, if there is a ∈ A(s1) such that

Pr(s1, a, s2) > 0, then for alls′1 ∈ S′ such thatτ(s′1)=s1,
there exists a uniques′2∈S′, τ(s′2)=s2, such that for all
a ∈ A′(s′1), Pr′(s′1, a, s

′
2)=Pr(s1, a, s2)

4. For any feasible1 state sequenceΓ for D and any feasible
state sequenceΓ′ forD′ such thatΓ0 = s0 and∀i τ(Γ′i) =
Γi, we have:∀i R′(Γ′i) = R(Γ(i)).
Items 1–3 ensure that there is a bijection between feasible

state sequences in the NMRDP and feasible expanded state
sequences in the MDP. Therefore, a stationary policy for the
MDP can be reinterpreted as a non-stationary policy for the
NMRDP. Furthermore, item 4 ensures that the two policies
have identical values, and that consequently, solving an NM-
RDP optimally reduces to producing an equivalent MDP and
solving it optimally (Bacchuset al. 1996).

1All transitions along the sequence have non-zero probability.

PLTLMIN and FLTL

We usePLTLMIN to refer to methods which were presented
in (Bacchuset al. 1996) whileFLTL is the name given to
that in (Thíebauxet al. 2002). Each of these methods are
tied to, and responsible for, an explicit enumeration of the
expanded state space, yet while the former have adopted a
linear logic of the past PLTL (see (Bacchuset al. 1996) for
a formal semantics) for expressing desirable behaviours, the
latter choose $FLTL (see (Thiébauxet al. 2002) for a formal
semantics) a logic which, unlike PLTL, is suited to on-line
translation. ForPLTLMIN calculation of an optimal policy
for the resulting MDP is left to classic dynamic program-
ming techniques (Howard 1960) while forFLTL this is left
to heuristic search methods such as LAO* (Hansen and Zil-
berstein 2001) or labelled RTDP (Bonet and Geffner 2003).
The logic PLTL includes the modalities� (previously),S
(since),♦- f ≡ >Sf (previously) and�f ≡ ¬♦- ¬f (always
in the past) while $FLTL includes©φ (next), U (weak un-
til), �φ ≡ φU⊥ (always), and a propositional constant$
(receive reward now)2.

Here translation from an NMRDP into a corresponding
MDP is based on the fact that a PLTL, resp. $FLTL, wffφ
can be regressed (Bacchus and Kabanza 2000), resp. pro-
gressed, to a formula which identifies what must hold in the
past, resp. future, forφ to hold in a current state. Given this
progression/regression operator, methods annotate grounded
states to form expanded states with formulae (temporal vari-
ables) which are sufficient to determine the reward alloca-
tion at any such state reachable froms0. Indeed, methods
are characterised by the properties of the equivalent MDP
which they generate.PLTLMIN attempts to generate the min-
imal MDP required to allocate reward given specified be-
haviours andFLTL produces a blind minimal MDP which is
as small as possible given that the entire MDP may never be
generated. Intuitively, a blind minimal MDP is the smallest
MDP achievable by any on-line translation suited to heuris-
tic search.

PLTLSTR and PLTLSTR(A)

The approach in (Bacchuset al. 1997), which we callPLTL-
STR, targets structured MDP representations: the transition
model, policies, reward and value functions are represented
in a compact form, e.g. as trees or algebraic decision dia-
grams (ADDs)(Boutilieret al. 1995; Hoeyet al. 1999). The
reward specification language adopted by this approach, as
with PLTLMIN , is PLTL. Here reward formulae and regres-
sions of these are calledtemporalvariables3. The structured
approaches have advantages, transition information is of-
ten compactly represented in terms of effects on variables.
The primary intuition behind this approach stems from the
idea that factoring the state space, both grounded and ex-
panded, into abstract/aggregate states reduces the number

2See the respective papers for a comprehensive summary of the
two logics.

3The truth of temporal variables at any state are given by a
boolean function over temporal variables and state characterising
propositions in any predecessor.

of expected values that are calculated during the Bellman
backup.

Essentially in this case translation amounts to augment-
ing the compact representation of the grounded domain with
new temporal variables together with the compact represen-
tation of (1) their dynamics, e.g. as a tree over the previ-
ous values of the relevant variables, and (2) of the non-
Markovian reward function in terms of the variables’ cur-
rent values. After translationstructured policy iterationor
the SPUDD algorithm (Hoeyet al. 1999) is applied to the
resulting factored MDP.PLTLSTR(A) is identical toPLTL-
STR except it applies constraints to action dynamics which
ensure that states which are not reachable froms0 are not
considered.

PLTLSTR and PLTLSTR(A) do not pay any attention to
minimality during translation. However the structured solu-
tion algorithms that are called upon after this phase have the
ability to automatically detect the irrelevance of variables
during policy construction. Hence structured methods over
time are able to dynamically detect the irrelevance of some
states.

The NMRDP Planner
The first step towards a comparison of the different ap-
proaches is to have an integrated implementation of them
all. We developed the non-Markovian reward decision pro-
cess planner, NMRDPP which is such a system. NMRDPP
is controlled by a command language, which is parsed ei-
ther from a file or interactively. Commands support different
phases of the algorithms, inspection of the resulting policy
and value functions, e.g. with rendering via DOT (AT&T
Research Labs), as well as timing and memory usage. The
input language for specifying domains is compatible with
available systems with a similar purpose. Most notably, the
format for the action specification is essentially the same as
in the SPUDD system (Hoeyet al. 1999).

NMRDPP is implemented in C++, and makes use of a
number of supporting libraries. In particular, the struc-
tured algorithms rely heavily on the CUDD library support
for ADDs. The non-structured algorithms make use of the
MTL—Matrix Template Library for matrix operations. We
believe that our implementations of MDP solution methods
are comparable with the state of the art. For instance, we
found that our implementation of SPUDD is comparable in
performance (within a factor of 2) to the reference imple-
mentation (Hoeyet al. 1999).4

Experimental Observations
Altogether, we are faced with three substantially different
approaches which are not easy to compare, as their perfor-
mance will depend on domain features as varied as the type,
syntax, and length of the temporal reward formula, the avail-
ability of good heuristics and control-knowledge, etc, and
on the interactions between these factors. In this section
we summarise key observations made in our investigation
into the influence of some of these factors. All results were

4The small difference in performance may be due to our use of
high-level C++ CUDD bindings.

obtained using a Pentium4 2.6GHz GNU/Linux 2.4.20 ma-
chine with 500MB of ram.

Influence of Reward Types
The types of reward significantly affect the size of the MDP:
certain rewards only make the size of the minimal MDP in-
crease by a constant number of states or a constant factor,
while others make it increase by a factor exponential in the
length of the formula. Table 1 illustrates this. The third col-
umn reports the size of the minimal MDP induced by the
formulae on the left hand side.5

A legitimate question is whether there is a direct corre-
lation between size increase and (in)appropriateness of the
different methods. For instance, we might expect the state-
based methods to do particularly well given reward types
inducing a small MDP and otherwise badly in comparison
with structured methods. Interestingly, this is not always the
case, as is demonstrated in Table 1 whose last two columns
report the fastest and slowest methods over the range of do-
mains where||S|| = n2 and1 ≤ n ≤ 12 and whose first
row contradicts such an expectation. Moreover, although
PLTLSTR prevails in the last row, for larger values ofn (not
represented in the table), it aborts through lack of memory,
unlike the other methods.

Before we continue we remark thatPLTLSTR typically
scales to larger state spaces, inevitably leading it to outper-
form state-based methods. However, this effect is not uni-
form: structured solution methods sometimes impose exces-
sive memory requirements which renders them uncompeti-
tive in certain cases, for example where�nφ, for largen,
features as a reward formula.

The most obvious result arising out of these experiments
is thatPLTLSTR is nearly always the fastest—until it runs out
of memory. More interesting results are those in the second
row, which exposes the inability of methods based on PLTL
to deal with rewards specified as long sequences of events.
In converting the reward formula to a set of subformulae
(temporal variables), they lose information about the order
of events, which then has to be recovered at great expense
during the dynamic programming phase. $FLTL progres-
sion in contrast takes the events one at a time, preserving the
relevant structure at each step. Further experimentation led
us to observe that all PLTL based algorithms perform poorly
where reward is specified using formulae of the form�kφ,
∨ki=1�

iφ, and∧ki=1�
iφ (φ has been truek steps ago, within

the lastk steps, or at all the lastk steps).

Influence of Syntax
Not surprisingly, for all solution methods we find that the
syntax used to express rewards can determine execution
time. A typical example of this effect is captured in Fig-
ure 1. This graph demonstrates how re-expressingprvOut≡
�n(∧ni=1pi) asprvIn≡ ∧ni=1�

npi, thereby creatingn times
more temporal subformulae in PLTL, alters the running time

5The reported increase in size is not necessarily valid for non-
completely connected reflexive NMRDPs, however we found that
altering the grounded dynamics did not usually change the reported
hierarchy.

n
2 2.5 3 3.5 4 4.5 5 5.5

A
ve

ra
ge

 C
P

U
 ti

m
e

(s
ec

)

200

400
600

1000

Fig 1: Changing the syntax

All APPROACHES prvIn

All APPROACHES prvOut

n
0 2 4 6 8 10 12 14

S
ta

te
 c

ou
nt

/(
2^

n)

1

3

5

7

9

11

Fig 2: Effect of Multiple Rewards on MDP Size

PLTLMIN

FLTL

n
0 2 4 6 8 10 12 14

T
ot

al
 C

P
U

 ti
m

e
(s

ec
) 500

1000
1500

Fig 3: Effect of Multiple Rewards on Run Time

FLTL

PLTLSTRUCT

PLTLMIN

PLTLSTRUCT(A)

n
2 4 6 8 10 12 14

T
ot

al
 C

P
U

 ti
m

e
(s

ec
)

50

100
150

250
350

Fig 4: Guard with Unachievable Goal

FLTL

PLTLSTRUCT

PLTLMIN

PLTLSTRUCT(A)

n
1 3 5 7 9 11

T
ot

al
 C

P
U

 ti
m

e
(s

ec
)

50

100
150

250
350

Fig 5: Guard with Unachievable Condition

FLTL

PLTLSTRUCT

PLTLMIN

PLTLSTRUCT(A)

r
0 50 100 150 200 250 300 350

T
ot

al
 C

P
U

 ti
m

e
(s

ec
)

50

100
150
200

Fig 6: Guard with Unrewarding Goal

PLTLMIN

FLTL
PLTLSTRUCT

PLTLSTRUCT (A)

r
0 50 100 150 200 250 300 350

A
ve

ra
ge

 C
P

U
 ti

m
e

(s
ec

)

50

100
150
200

Fig 7: Guard with Unrewarding Condition

PLTLMIN

PLTLSTRUCT

FLTL

PLTLSTRUCT(A)

type formula size fastest slowest

first time allpis (∧ni=1pi) ∧ (¬� ♦- ∧ni=1 pi) O(1)||S|| PLTLSTR(A) PLTLMIN

pi sequence froms0 (∧ni=1 �
i pi) ∧�n¬�> O(n)||S|| FLTL PLTLSTR

two consecutivepis ∨n−1
i=1 (�pi ∧ pi+1) O(nk)||S|| PLTLSTR FLTL

all pisn times ago �n ∧ni=1 pi O(2n)||S|| PLTLSTR PLTLMIN

Table 1: Influence of reward type on MDP size and method performance

of all methods. Figure 1 plots the average running time over
all the methods for both cases, for a fully connected reflexive
grounded dynamics.

Our most serious concern in relation to the PLTL ap-
proaches is their handling of reward specifications contain-
ing multiple reward elements. Most notably we found that
PLTLMIN does not necessarily produce the minimal MDP in
this situation. To demonstrate, we consider the set of reward
formulae{φ1, φ2, . . . , φn}, each associated with the same
numeric rewardr. Given this, PLTL approaches will dis-
tinguish unnecessarily between past behaviours which lead
to identical future rewards. This may occur when the re-
ward at an expanded state is determined by the truth value
of φ1 ∨ φ2. This formula does not necessarily require that
an expanded space distinguish between the cases in which
{φ1 ≡ >, φ2 ≡ ⊥} and{φ1 ≡ ⊥, φ2 ≡ >} hold; how-
ever, given the above specification,PLTLMIN shall make
this distinction. For example, takingφi = �pi, Figure 2
shows thatFLTL leads to an MDP whose size is at most 3
times that of the NMRDP. In contrast, the relative size of
the MDP produced byPLTLMIN is linear in n, the num-
ber of rewards and propositions. These results are typical
of all domains where such distinction is not required. Fig-
ure 3 shows the run-times as a function ofn. FLTL dom-
inates and is only overtaken byPLTLSTR(A) for large val-
ues ofn, when the MDP becomes too large for explicit ex-
ploration to be practical. To obtain the minimal MDP us-
ing PLTLMIN , a bloated reward specification of the form
{� ∨ni=1 (pi ∧nj=1,j 6=i ¬pj) : r, . . . ,� ∧ni=1 pi : n ∗ r} is
necessary, which, by virtue of its exponential length, is not

an adequate solution.

Influence of Reachability
All approaches, claim to have some ability to ignore vari-
ables which are irrelevant because the condition they track is
unreachable:PLTLMIN detects them through preprocessing,
PLTLSTR exploits structured solution methods dynamic de-
tection of variable relevance, andFLTL ignores them when
progression never exposes them. However, given that the
mechanisms for avoiding irrelevance are so different, we ex-
pect corresponding differences in their effects. We found
that the differences in performance are best illustrated by
looking at guard formulae, which assert that if a trigger
conditionc is reached then a reward will be received upon
achievement of the goalg in, resp. within,k steps. In PLTL,
this is writteng ∧ �kc, resp.g ∧ ∨ki=1 �

i c, and in $FLTL,
�(c→ ©k(g → $)), resp.�(c→ ∧ki=1

©i(g → $)).
Where thegoal g is unreachable, PLTL approaches per-

form well asg does not lead to behavioural distinctions. On
the other hand, while constructing the MDP,FLTL consid-
ers the successive progressions of©kg without being able
to detect that it is unreachable until it actually fails to hap-
pen. This is exactly what the blindness of blind minimal-
ity amounts to. Figure 4 illustrates the difference in per-
formance as a function of the numbern of propositions in-
volved in a hightly structured grounded domain, when the
reward is of the formg ∧�nc, with g unreachable.

FLTL shines when thetrigger c is unreachable:�(c →
©k(g → $)) will always progress to itself, and the goal,
however complicated, is never tracked in the MDP. In this

situation PLTL approaches still consider�kc and its sub-
formulae, only to discover, after expensive preprocessing
for PLTLMIN , after reachability analysis forPLTLSTR(A),
and never forPLTLSTR which accommodates every possi-
ble starting state, that these are irrelevant. This is illustrated
in Figure 5, where the grounded domain is identical to that
of Figure 4 and reward is of the formg ∧ �nc, with c un-
reachable.

Dynamic Irrelevance
(Bacchuset al. 1997; Thíebauxet al. 2002) claim that
one advantage ofPLTLSTR andFLTL over PLTLMIN is that
the former perform a dynamic analysis of rewards capable
of detecting irrelevance of variables to particular policies,
e.g. to the optimal policy. Our experiments confirm this
claim. However, as for reachability, whether the goal or the
triggering condition in a guard formula becomes irrelevant
plays an important role in determining whether aPLTLSTR
or FLTL approach should be taken:PLTLSTR is able to dy-
namically ignore the goal, whileFLTL is able to dynamically,
via heuristic search, ignore the trigger.

This is illustrated in Figures 6 and 7. In both figures, the
domain considered is a slightly stoachastic domain suited
to structured representation in which||S|| = 36, the guard
formula isg ∧�nc as before, here with bothg andc achiev-
able. This guard formula is assigned a fixed reward. To
study the effect of dynamic irrelevance of the goal, in Fig-
ure 6, achievement of¬g is rewarded by the valuer. In
Figure 7, on the other hand, we study the effect of dynamic
irrelevance of the trigger and achievement of¬c is rewarded
by the valuer. Both figures show the runtime of the methods
asr increases.

Achieving the goal, resp. the trigger, is made less at-
tractive asr increases up to the point where the guard for-
mula becomes irrelevant under the optimal policy. When
this happens, the run-time ofPLTLSTR resp.FLTL, exhibits
an abrupt but durable improvement. The figures show that
FLTL is able to pick up irrelevance of the trigger, while
PLTLSTR is able to exploit irrelevance of the goal. As ex-
pected,PLTLMIN whose analysis is static does not pick up
either and performs consistently badly. Note that in both
figures,PLTLSTRprogressively takes longer to compute asr
increases because dynamic programming requires additional
iterations to converge.

Conclusion and Future Work
NMRDPP proved a useful tool in the experimental analysis
of approaches for decision processes with Non-Markovian
rewards. Both the system and the analysis are the first
of their kind. We were able to identify a number of gen-
eral trends in the behaviours of the methods and to indicate
which are best suited to certain circumstances.

We foundPLTLSTRandFLTL preferable to the state-based
PLTL approach in most cases. In all cases, attention should
be paid to the syntax of the reward formulae and in particu-
lar to minimising its length.FLTL is the technique of choice
when the reward requires tracking a long sequence of events
or when the desired behaviour is composed of many ele-
ments with identical rewards. For guard formulae, we advise

the use ofPLTLSTR if the probability of reaching the goal is
low or achieving the goal is very risky, and conversely, of
FLTL if the probability of reaching the triggering condition
is low or if reaching it is very risky.

This abstract has focused on current technologies. Future
work should examine an adaption of these technologies to
situations where reward allocation as well as dynamics is
stochastic. Also of importance for the future, the importing
of FLTL to the structured paradigm as well as the specifi-
cation of heuristics for planning problems with temporally
extended goals.

References
AT&T Research Labs. Graphviz.
http://www.research.att.com/sw/tools/graphviz/.
F. Bacchus and F. Kabanza. Using temporal logic to ex-
press search control knowledge for planning.Artificial In-
telligence, 116(1-2), 2000.
F. Bacchus, C. Boutilier, and A. Grove. Rewarding behav-
iors. InProc. AAAI-96, pages 1160–1167, 1996.
F. Bacchus, C. Boutilier, and A. Grove. Structured solution
methods for non-markovian decision processes. InProc.
AAAI-97, pages 112–117, 1997.
B. Bonet and H. Geffner. Labeled RTDP: Improving the
convergence of real-time dynamic programming. InProc.
ICAPS-03, 2003.
C. Boutilier, R. Dearden, and M. Goldszmidt. Exploiting
structure in policy construction. InProc. IJCAI-95, pages
1104–1111, 1995.
C. Boutilier, T. Dean, and S. Hanks. Decision-theoretic
planning: Structural assumptions and computational lever-
age. InJournal of Artificial Intelligence Research, vol-
ume 11, pages 1–94, 1999.
E. Hansen and S. Zilberstein. LAO∗: A heuristic search
algorithm that finds solutions with loops.Artificial Intelli-
gence, 129:35–62, 2001.
J. Hoey, R. St-Aubin, A. Hu, and C. Boutilier.
SPUDD: stochastic planning using decision diagrams.
In Proc. UAI-99, 1999. SPUDD is available from
http://www.cs.ubc.ca/spider/staubin/Spudd/.
R.A. Howard. Dynamic Programming and Markov Pro-
cesses. MIT Press, Cambridge, MA, 1960.
S. Thíebaux, F. Kabanza, and J. Slaney. Anytime state-
based solution methods for decision processes with non-
markovian rewards. InProc. UAI-02, pages 501–510,
2002.

