
Improving the Temporal Flexibility of Position Constrained Metric Temporal Plans

Minh B. Do & Subbarao Kambhampati
Department of Computer Science and Engineering
Arizona State University, Tempe AZ 85287-5406

{binhminh,rao}@asu.edu

Abstract
In this paper we address the problem of post-processing po-
sition constrained plans, output by many of the recent effi-
cient metric temporal planners, to improve their execution
flexibility. Specifically, given a position constrained plan,
we consider the problem of generating a partially ordered
(aka “order constrained”) plan that uses the same actions.
Although variations of this “partialization” problem have
been addressed in classical planning, the metric and tem-
poral considerations bring in significant complications. We
develop a general CSP encoding for partializing position-
constrained temporal plans, that can be optimized under an
objective function dealing with a variety of temporal flexi-
bility criteria, such as makespan. We then propose several
approaches (e.g. coupled CSP, MILP) of solving this en-
coding.

1 Introduction
Of late, there has been significant interest in synthesizing and
managing plans for metric temporal domains. Plans for metric
temporal domains can be classified broadly into two categories–
“position constrained” (p.c.) and “order constrained” (o.c.).
The former specify the exact start time for each of the actions in
the plan, while the latter only specify the relative orderings be-
tween the actions. The two types of plans offer complementary
tradeoffs vis a vis search and execution. Specifically, constrain-
ing the positions gives complete state information about the par-
tial plan, making it easier to control the search. Not surprisingly,
several of the more effective methods for plan synthesis in met-
ric temporal domains search for and generate p.c. plans (c.f.
TLPlan[1], Sapa[4], TGP [22]). At the same time, from an exe-
cution point of view, o.c. plans are more advantageous than p.c.
plans –they provide better execution flexibility both in terms of
makespan and in terms of “scheduling flexibility” (which mea-
sures the possible execution traces supported by the plan [23;
20]). They are also more effective in interfacing the planner to
other modules such as schedulers (c.f. [15]), and in supporting
replanning and plan reuse [24; 13].

A solution to the dilemma presented by these complemen-
tary tradeoffs is to search in the space of p.c. plans, but post-
process the resulting p.c. plan into an o.c. plan. Although such
post-processing approaches have been considered in classical
planning ([14; 24; 2]), the problem is considerably more com-
plex in the case of metric temporal planning. The complications
include the need to handle the more expressive action represen-
tation and the need to handle a variety of objective functions for
partialization (in the case of classical planning, we just consider
the least number of orderings)

Our contribution in this paper is to first develop a Constraint
Satisfaction Optimization Problem (CSOP) encoding for con-
verting a p.c. plan in metric/temporal domains into an o.c. plan.
This general framework allows us to specify a variety of objec-
tive functions to choose between the potential partializations of
the p.c. plan. Among several approaches to solve this CSOP en-
coding, we will discuss in detail the one approach that converts
it to an equivalent MILP encoding, which can then be solved
using any MILP solver such as CPLEX or LPSolve to produce
an o.c. plan optimized for some objective function. Our intent
in setting up this encoding was not to solve it to optimum–since
that is provably NP-hard [2]–but to use it for baseline charac-
terization of greedy partialization algorithmsm, which is pre-
sented in the extended version of this paper ([5]). In that paper
(accepted to ICAPS03), the greedy value ordering strategy is
designed to efficiently generate solutions with good makespan
values for the CSOP encodings. We demonstrate the effective-
ness of our greedy partialization approach in the context of a
recent metric temporal planner named Sapa that produces p.c.
plans. In the extended version, we also empirically compare the
effects of greedy and optimal partialization using MILP encod-
ings on the set of metric temporal problems used at the Third
International Planning Competition.

The paper is organized as follows. First, we provide the def-
initions related to the partialization problem. Then, we discuss
the CSOP encoding for the partialization problem and focus on
how the CSOP encoding can be solved. Finally, we discuss the
related work.

2 Problem Definition
Position and Order constrained plans: A position constrained
plan (p.c.) is a plan where the execution time of each action is
fixed to a specific time point. An order constrained (o.c.) plan
is a plan where only the relative orderings between the actions
are specified.

There are two types of position constrained plans: serial and
parallel. In a serial position constrained plan, no concurrency is
allowed. In a parallel position constrained plan, actions are al-
lowed to execute concurrently. Examples of the serial p.c. plans
are the ones returned by classical planners such as AltAlt[19],
HSP[3], FF[10]. The parallel p.c. plans are the ones returned
by Graphplan-based planners and the temporal planners such
as Sapa [4], TGP[22], TP4[9]. Examples of planners that out-
put order constrained (o.c.) plans are Zeno[21], HSTS[18],
IxTeT[15].

Figure 1 shows, on the left, a valid p.c. parallel plan con-
sisting of four actions A1, A2, A3, A4 with their starting time

T4 T2T3 T1

{Q} {G} {Q} {G}

R
Q

S
~R

R
S

R
G

A4:A3:

A1: A2:

Q
R

~R
S

S
R

R
G

Figure 1: Examples of p.c. and o.c. plans

points fixed to T1, T2, T3, T4, and on the right, an o.c plan con-
sisting of the same set of actions and achieving the same goals.
For each action, the marked rectangular regions show the du-
rations in which each precondition or effect should hold during
each action’s execution time. The shaded rectangles represent
the effects and the white ones represent preconditions. For ex-
ample, action A1 has a precondition Q and effect R and action
A3 has no preconditions and two effects ¬R and S.

It should be easy to see that o.c. plans provide more execu-
tion flexibility than p.c. plans. In particular, an o.c. plan can
be “dispatched” for execution in any way consistent with the
relative orderings among the actions. In other words, for each
valid o.c. plan Poc, there may be multiple valid p.c. plans that
satisfy the orderings in Poc, which can be seen as different ways
of dispatching the o.c. plan.

While generating a p.c. plan consistent with an o.c. plan
is easy enough, in this paper, we are interested in the reverse
problem–that of generating an o.c. plan given a p.c. plan.
Partialization: Partialization is the process of generating a
valid order constrained plan Poc from a set of actions in a given
position constrained plan Ppc.

We can use different criteria to measure the quality of the o.c.
plan resulting from the partialization process (e.g. makespan,
slack, number of orderings). One important criterion is a plan’s
“makespan.” The makespan of a plan is the minimum time
needed to execute that plan. For a p.c. plan, the makespan is the
duration between the earliest starting time and the latest ending
time among all actions. In the case of serial p.c. plans, it is easy
to see that the makespan will be greater than or equal to the sum
of the durations of all the actions in the plan.

For an o.c. plan, the makespan is the minimum makespan
of any of the p.c. plans that are consistent with it. Given an
o.c. plan Poc, there is a polynomial time algorithm based on
topological sort of the orderings in Poc, which outputs a p.c.
plan Ppc where all the actions are assigned earliest possible start
time point according to the orderings in Poc. The makespan of
that p.c. plan Ppc is then used as the makespan of the original
o.c. plan Poc.

3 Formulating a CSOP encoding for the
partialization problem

In this section, we develop a general CSOP encoding for the
partialization problem. The encoding contains both continuous
and discrete variables. The constraints in the encoding guaran-
tee that the final o.c plan is consistent, executable, and achieves
all the goals. Moreover, by imposing different user’s objective
functions, we can get the optimal o.c plan by solving the encod-
ing.

3.1 Preliminaries
Let Ppc, containing a set of actions A and their fixed starting
times st

pc
A

, be a valid p.c. plan for some temporal planning
problem P . We assume that each action A in Ppc is in the stan-

dard PDDL2.1 Level 3 representation [8].1 To facilitate the dis-
cussion on the CSOP encoding in the following sections, we
will briefly discuss the action representation and the notation
used in this paper:

• For each (pre)condition p of action A, we use [stp
A, et

p
A] to

represent the duration in which p should hold (stp
A = et

p
A

if p is an instantaneous precondition).

• For each effect e of action A, we use ete
A to represent the

time point at which e occurs.

• For each resource r that is checked for preconditions or
used by some action A, we use [str

A, etrA] to represent the
duration over which r is accessed by A.

• The initial and goal states are represented by two new ac-
tions AI and AG. AI starts before all other actions in the
Ppc, it has no preconditions and has effects representing
the initial state. AG starts after all other actions in Ppc, has
no effects, and has top-level goals as its preconditions.

• The symbol “≺” is used through out this section to denote
the relative precedence orderings between two time points.

Note that the values of st
p
A, et

p
A, eteA, strA, etrA are fixed in the

p.c plan but are only partially ordered in the o.c plan.

3.2 The CSOP encoding for the partialization
problem

Let Poc be a partialization of Ppc for the problem P . Poc must
then satisfy the following conditions:

1. Poc contains the same actions A as Ppc.

2. Poc is executable. This requires that the (pre)conditions of
all actions are satisfied, and no pair of interfering actions
are allowed to execute concurrently.

3. Poc is a valid plan for P . This requires that Poc satisfies all
the top level goals (including deadline goals) of P .

4. (Optional) The orderings on Poc are such that Ppc is a legal
dispatch (execution) of Poc.

5. (Optional) The set of orderings in Poc is minimal (i.e., all
ordering constraints are non-redundant, in that they cannot
be removed without making the plan incorrect).

Given that Poc is an order constrained plan, ensuring goal
and precondition satisfaction involves ensuring that (a) there is
a causal support for the condition and that (b) the condition,
once supported, is not violated by any possibly intervening ac-
tion. The fourth constraint ensures that Poc is in some sense an
order generalization of Ppc [14]. In the terminology of [2], the
presence of fourth constraint ensures that Poc is a de-ordering
of Ppc, while in its absence Poc can either be a de-ordering or a
re-ordering. This is not strictly needed if our interest is only to
improve temporal flexibility. Finally, the fifth constraint above
is optional in the sense that any objective function defined in
terms of the orderings anyway ensures that Poc contains no re-
dundant orderings.

In the following, we will develop a CSP encoding for finding
Poc that captures the constraints above. This involves speci-
fying the variables, their domains, and the inter-variable con-
straints.
Variables: The encoding will consist of both continuous and

1PDDL2.1 Level 3 is the highest level used in the Third Interna-
tional Planning Competition.

discrete variables. The continuous variables represent the tem-
poral and resource aspects of the actions in the plan, and the
discrete variables represent the logical causal structure and or-
derings between the actions. Specifically, for the set of actions
in the p.c. plan Ppc and two additional dummy actions Ai and
Ag representing the initial and goal states,2 the set of variables
are as follows:
Temporal variables: For each action A, the encoding has one
variable stA to represent the time point at which we can start
executing A. The domain for this variable is Dom(stA) =
[0, +∞).
Resource variables: For each action A and the resource r ∈
R(A), we use a pseudo variable3 V r

A to represent the value of r
(resource level) at the time point str

A.
Discrete variables: There are several different types of discrete
variables representing the causal structure and qualitative order-
ings between actions:

• Causal effect: We need variables to specify the causal link
relationships between actions. Specifically, for each con-
dition p ∈ P (A) and a set of actions {B1, B2.....Bn}
such that p ∈ E(Bi), we set up one variable: S

p
A where

Dom(Sp
A) = {B1, B2....Bn}.

• Interference:Two actions A and A′ are in logical interfer-
ence on account of p if p ∈ Precond(A) ∪ Effect(A)
and ¬p ∈ Effect(A′). For each such pair, we introduce
one variable I

p
AA′ : Dom(Ip

AA′) = {≺,�} (A beforep A′,
or A afterp A′). For the plan in Figure 1, the interference
variables are: IR

A1A3
and IR

A2A3
. Sometimes, we will use

the notation A ≺p A′ to represent I
p
AA′ =≺.

• Resource ordering: For each pair of actions A and A′ that
use the same resource r, we introduce one variable Rr

AA′

to represent the resource-enforced ordering between them.
If A and A′ can not use the same resource concurrently,
then Dom(Rr

AA′) = {≺,�}, otherwise Dom(Rr
AA′) =

{≺,�,⊥}. Sometimes, we will use the notation A ≺r A′

to represent R
p
AA′ =≺.

Following are the necessary constraints to represent the rela-
tions between different variables:

1. Causal link protections: If B supports p to A, then every
other action A′ that has an effect ¬p must be prevented
from coming between B and A:
S

p
A = B ⇒ ∀A′, ¬p ∈ E(A′) : (Ip

A′B
=≺) ∨ (Ip

A′A
=�)

2. Constraints between ordering variables and action start
time variables: We want to enforce that if A ≺p A′ then
et

p
A < st

p
A′ . However, because we only maintain one

continuous variable stA in the encoding for each action,
the constraints need to be posed as follows:

I
p

AA′ =≺⇔ stA + (et¬p
A − stA) < stA′ + (stp

A′ − stA′).

I
p

AA′ =�⇔ stA′ + (etp

A′ − stA′) < stA + (st¬p
A − stA).

R
p

AA′ =≺⇔ stA + (etr
A − stA) < stA′ + (str

A′ − stA′).

Rr
AA′ =�⇔ stA′ + (etr

A′ − stA′) < stA + (str
A − stA).

2Ai has no preconditions and has effects that add the facts in the
initial state. Ag has no effect and has preconditions representing the
goals.

3We call V a pseudo variable because the constraints involving V
are represented not directly, but rather indirectly by the constraints in-
volving Ur

A; see below.

Notice that all values (st
p/r
A −stA), (et

p/r
A −stA) are con-

stants for all actions A, propositions p, and resource r.

3. Constraints to guarantee the resource consistency for all
actions: Specifically, for a given action A that has a re-
source constraint V r

str
A

> K, let Ur
A be an amount of re-

source r that A produces/consumes (U r
A > 0 if A pro-

duces r and U r
A < 0 if A consumes r). Suppose that

{A1, A2,An} is the set of actions that also use r and
Initr be the value of r at the initial state, we set up a con-
straint that involves all variables Rr

AiA
as follows:

Initr +
∑

Ai≺rA

Ur
Ai

+
∑

Ai⊥rA,Ur
Ai

<0

Ur
Ai

> K (3)

(where Ai ≺r A is a shorthanded notation for Rr
AiA

=≺).
The constraint above ensures that regardless of how the ac-
tions Ai that have no ordering relations with A (Rr

AiA
=⊥)

are aligned temporally with A, the orderings between A
and other actions guarantee that A has enough resource
(V r

str
A

> K) to execute.

4. Deadlines and other temporal constraints: These model
any deadline type constraints in terms of the temporal vari-
ables. For example, if all the goals need to be achieved be-
fore time tg , then we need to add a constraint: stAg

≤ tg.
Other temporal constraints, such as those that specify that
certain actions should be executed before/after certain time
points, can also be handled by adding similar temporal
constraints to the encoding (e.g L ≤ stA ≤ U).

5. Constraints to make the orderings on Poc consistent with
Ppc (optional): Let TA be the fixed starting time point of
action A in the original p.c plan Ppc. To guarantee that Ppc

is consistent with the set of orderings in the resulting o.c
plan Poc, we add a constraint to ensure that the value TA is
always present in the live domain of the temporal variable
stA.

3.3 Objective function
Each satisficing assignment for the encoding above will corre-
spond to a possible partialization of Ppc, i.e., an o.c. plan that
contains all the actions of Ppc. However, some of these assign-
ments (o.c. plans) may have better execution properties than
the others. We can handle this by specifying an objective func-
tion to be optimized, and treating the encoding as a Constraint
Satisfaction Optimization (CSOP) encoding. The only require-
ment on the objective function is that it is specifiable in terms
of the variables of the encodings. Objective functions such as
makespan minimization and order minimization readily satisfy
this requirement. Following are several objective functions that
worth investigating:
Temporal Quality:
• Minimum Makespan: minimize MaxA(stA + durA)

• Maximize summation of slacks:

Maximize
∑

g∈Goals

(stgAg
− et

g
A) : S

g
Ag

= A

• Maximize average flexibility:
Maximize Average(Domain(stA))

Ordering Quality:
• Fewest orderings: minimize #(stA ≺ stA′)

4 Solving the partialization encoding
Given the presence of both discrete and temporal variables in
this encoding, the best way to handle it is to view it as a lev-
eled CSP encoding, where in the satisficing assignments to the
discrete variables activate a set of temporal constraints between
the temporal variables. These temporal constraints, along with
the deadline and order consistency constraints are represented
as a temporal constraint network [6]. Solving the network in-
volves making the domains and inter-variable intervals consis-
tent across all temporal constraints [23]. The consistent tempo-
ral network then represents the o.c. plan. Actions in the plan
can be executed in any way consistent with the temporal net-
work (thus providing execution flexibility). All the temporal
constraints are “simple” [6] and can thus be handled in terms of
a simple temporal network. Optimization can be done using a
branch and bound scheme on top of this.

Although the leveled CSP framework is a natural way of
solving this encoding, unfortunately, there are no off-the-shelf
solvers which can support its solution. Because of this, for the
present, we convert the encoding into a Mixed Integer Linear
Programming (MILP) problem, so it can be solved using exist-
ing MILP solvers, such as LPSolve and CPLEX. In the follow-
ing, we discuss the details of the conversion into MILP.

4.1 Optimal Post-Processing Using MILP Encoding
Given the CSOP encoding discussed in the previous section,
we can convert it into a Mixed Integer Linear Program (MILP)
encoding and use any standard solver to find an optimal solu-
tion. The final solution can then be interpreted to get back the
o.c plan. In this section, we will first discuss the set of MILP
variables and constraints needed for the encoding, then, we con-
centrate on the problem of how to setup the objective functions
using this approach.

MILP Variables and Constraints
For the corresponding CSOP problem, the set of variables and
constraints for the MILP encoding is as follows:
Variables: We will use the the binary integer variables (0,1) to
represent the logical orderings between actions and linear vari-
ables to represent the starting times of actions in the CSOP en-
coding.

• Binary (0,1) Variables:

1. Causal effect variables: X
p
AB = 1 if S

p
A = B,

X
p
AB = 0 otherwise.

2. Mutual exclusion (mutex) variables: Y
p
AB = 1 if

I
p
AB =≺, Y

p
BA = 1 if I

p
AB =�,

3. Resource interference variables: Xr
AA′ = 1 if A ≺r

A′ (i.e. etrA < strA′). Nr
AA′ = 1 if there is no or-

der between two actions A and A′ (they can access
resource r at the same time).4

• Continuous Variable: one variable stA for each action A
and one variable stAg

for each goal g.

Constraints: The CSP constraints discussed in the previous
section can be directly converted to the MILP constraints as fol-
lows:

• Mutual exclusion: Y
p
AB + Y

p
BA = 1

4In PDDL 2.1, two actions A and B are allowed to access the same
function (resource) overlappingly if: (1) A do not change any function
that B is checking as its precondition; (2) A and B using the functions
to change the value of r in a commute way (increase/decrease only).

• Only one supporter: ∀p ∈ Precond(A) : ΣX
p
BA = 1

• Causal-link protection:
∀A′,¬p ∈ Effect(A′) : (1−X

p
AB)+(Y p

A′A+Y
p
BA′) ≥ 1

• Ordering and temporal variables relation:
M.(1−X

p
AB) + (stpB − et

p
A) > 0; where M is a very big

constant.5

• Mutex and temporal variables relation:
M.(1 − Y

p
AB) + (stpB − et

p
A) > 0

• Resource-related constraints: Let U r
A be the amount of re-

source r that the action A uses. U r
A < 0 if A consumes

(reduces) r and U r
A > 0 if A produces (increases) r. For

now, we assume that U r
A are constants for all actions A in

the original p.c plan.

– Only one legal ordering between two actions:
Xr

AA′ + Xr
A′A + Nr

AA′ = 1

– Resource ordering and temporal ordering relations:
M.(1 − Xr

AA′) + (strA′ − etrA) > 0

– Constraints for satisficing resource-related precondi-
tions:

Initr +
∑

Xr
A′A.Ur

Ai
+

∑

Ur
B

<0

Nr
AB.Ur

B > K (4)

if the condition to execute action A is that the resource
level of r when A starts executing is higher than K.6

• Constraints to enforce that all actions start after Ainit and
finish before Agoal:
∀A : stA − stAinit

≥ 0, stAgoal
− (stA + durA) ≥ 0.

• Goal deadline constraints: stAg
≤ Deadline(g)

Note that in the equation (4) listed above, we assume that U r
A

are all constants for all resource-related functions r and actions
A. The reason is that if U r

A are also variables (non-constant),
then equation (4) is no longer a linear equation (and thus can
not be handled by a MILP solver).

MILP Objective Functions
Starting from the base encoding above, we can model a variety
of objective functions to get the optimal o.c. plans upon solving
MILP encoding as follows:
Minimum Makespan:

• An additional (continuous) variable to represent the plan
makespan value: Vms

• Additional constraints for all actions in the plan:
∀A : stA + durA ≤ Vms

• MILP Objective function: minimize Vms

5The big constant M enforces the logical constraint: X
p
AB = 1 ⇒

et
p
A < st

p
B . Notice that if X

p
AB = 0 then no particular relation is

needed between et
p
A and st

p
B . In this case, the objective function would

take care of the actual value of et
p
A and st

p
B . The big M value can be

any value which is bigger than the summation of the durations of all
actions in the plan.

6This constraint basically means that even if the actions that has
no ordering with A (Nr

AA′ = 1) align with A in the worst possible
way, the A has enough r at its starting time. Notice also that the initial
level of r can be considered as the production of the initial state action
Ainit, which is constrained to execute before all other actions in the
plan.

Maximize minimum slack7 value:

• An additional (continuous) variable to represent the mini-
mum slack value: Vms

• Additional constraints for all goals:
∀g∀A : Vms − (M.X

g
AAg

+ (stAg
− et

g
A)) ≥ 0, M is a

very big constant.

• MILP objective function: minimize Vms

Minimum number of orderings:

• Additional binary ordering variables for every pair of ac-
tions: OAB

• Additional constraints:
∀A, B, p : OAB − X

p
BA ≥ 0, OAB − Y

p
AB ≥ 0

• MILP objective function: minimizeΣOAB

5 Related Work
The complementary tradeoffs provided by the p.c. and o.c.
plans have been recognized in classical planning. One of the
earliest efforts that attempt to improve the temporal flexibil-
ity of plans was the work by Fade and Regnier [7] who dis-
cussed an approach for removing redundant orderings from the
plans generated by STRIPS system. Later work by Mooney [17]
and Kambhampati and Kedar [14]characterized this partializa-
tion process as one of explanation-based order generalization.
Backstrom [2] categorized approaches for partialization into
“de-ordering” approaches and “re-ordering” approaches. The
order generalization algorithms fall under the de-ordering cate-
gory. He was also the first to point out the NP-hardness of max-
imal partialization, and to characterize the previous algorithms
as greedy approaches.

The work presented in this paper can be seen as a principled
generalization of the partialization approaches to metric tempo-
ral planning. Our novel contributions include: (1) providing a
CSP encoding for the partialization problem and (2) character-
izing the greedy algorithms for partialization as specific value
ordering strategies on this encoding. In terms of the former, our
partialization encoding is general in that it encompasses both
de-ordering and re-ordering partializations–based on whether
or not we include the optional constraints to make the order-
ings on Poc consistent with Ppc. In terms of the latter, the work
in [24] and [14] can be seen as providing a greedy value order-
ing strategy over the partialization encoding for classical plans.
However, unlike the greedy strategies presented in this paper,
their value ordering strategies are not sensitive to any specific
optimization metric.

It is interesting to note that our encoding for partialization is
closely related to the so-called “causal encodings” [12]. Unlike
casual encodings, which need to consider supporting a precon-
dition or goal with every possible action in the action library,
the partialization encodings only need to consider the actions
that are present in Ppc. In this sense, they are similar to the en-
codings for replanning and plan reuse described in [16]. Also,
unlike causal encodings, the encodings for partialization de-
mand optimizing rather than satisficing solutions. Finally, in
contrast to our encodings for partialization which specifically
handle metric temporal plans, causal encodings in [12] are lim-
ited to classical domains.

7The objective function of maximize maximum slack and maximize
summation of slack can be handled similarly.

References
[1] Bacchus, F. and Ady, M. 2001. Planning with Resources and

Concurrency: A Forward Chaining Approach. Proc IJCAI-2001.

[2] Backstrom, C. 1998. Computational Aspects of Reordering Plans
Journal of Artificial Intelligence Research 9, 99-137.

[3] Bonet, B., Loerincs, G., and Geffner, H. 1997. A robust and fast
action selection mechanism for planning. Proc AAAI-97

[4] Do, M., and Kambhampati, S. 2001. Sapa: A Domain-
Independent Heuristic Metric Temporal Planner. Proc ECP-01

[5] Do, M., and Kambhampati, S. 2003. Improving the Temporal
Flexibility of Position Constrained Metric Temporal Planning. To
appear in Proc. ICAPS-03.

[6] Dechter, R., Meiri, I., and Pearl, J. 1990. Temporal Constraint
Network. Artificial Intelligence Journal 49.

[7] Fade, B. and Regnier, P. 1990 Temporal Optimization of Linear
Plans of Action: A Strategy Based on a Complete Method for the
Determination of Parallelism Technical Report

[8] Fox, M. and Long, D. 2001. PDDL2.1: An Extension to PDDL
for Expressing Temporal Planning Domains. Technical Report.

[9] Haslum, P. and Geffner, H. 2001. Heuristic Planning with Time
and Resources. Proc ECP-2001

[10] Hoffmann, J. 2000. http://www.informatik.uni-freiburg.de/ hoff-
mann/ff.html

[11] ILOG Solver Suite. http://www.ilog.com/products/solver/

[12] Kautz, H., McAllester, D. and Selman B. Encoding Plans in
Propositional Logic In Proc. KR-96.

[13] Ihrig, L., Kambhampati, S. Design and Implementation of a Re-
play Framework based on a Partial order Planner. Proc. AAAI-96.

[14] Kambhampati, S. & Kedar, S. 1994. An unified framework for
explanation-based generalization of partially ordered and partially
instantiated plans. Artificial Intelligence Journal 67, 29-70.

[15] Laborie, P. and Ghallab, M. Planning with sharable resource con-
straints. Proc IJCAI-95.

[16] Mali, A. Plan Merging and Plan Reuse as Satisfiability Proc
ECP-99.

[17] Mooney, R. J. Generalizing the Order of Operators in Macro-
Operators Proc. ICML-1988

[18] Muscettola, N. 1994. Integrating planning and scheduling. Intel-
ligent Scheduling.

[19] Nguyen, X., Kambhampati, S., and Nigenda, R. 2001. Planning
Graph as the Basis for deriving Heuristics for Plan Synthesis by
State Space and CSP Search. In AIJ.

[20] Nguyen, X., and Kambhampati, S. 2001. Reviving Partial Order
Planning. Proc IJCAI-01.

[21] Penberthy, S. and Weld, D. 1994. Planning with Continous
Changes. Proc. AAAI-94

[22] Smith, D. & Weld, D. Temporal Planning with Mutual Exclusion
Reasoning. Proc IJCAI-99

[23] Tsamardinos, I., Muscettola, N. and Morris, P. Fast Transforma-
tion of Temporal Plans for Efficient Execution. Proc. AAAI-98.

[24] Veloso, M., Perez, M, & Carbonell, J. 1990. Nonlinear plan-
ning with parallel resource allocation. Workshop on Innovative Ap-
proaches to Planning, Scheduling and Control.

[25] Wolfman, S. and Weld, D. 1999. The LPSAT system and its
Application to Resource Planning. In Proc. IJCAI-99.

