
CPPlanner: A Temporal Planning System using Critical Paths

Tien Ba Dinh and Barbara Smith
University of Huddersfield, UK

t.b.dinh@hud.ac.uk, b.m.smith@hud.ac.uk

Introduction
The last few years have seen a lot of significant im-
provements in AI planning. One of the most well-known
advances is the Graphplan approach (Blum & Furst 1997),
which has been the basis of many planners, such as GP-CSP
(Do & Kambhampati 2001a), TGP (Smith & Weld 1999),
TPSYS (Garrido, Fox, & Long 2002), STAN (Fox & Long
2001), LPGP (Fox & Long 2002)... In TGP and TPSYS, it
has been extended to deal with temporal planning domains
to find the optimal solution.

In this paper, we describe our planning system, CPPlan-
ner, which is based on the Graphplan approach to find the
optimal solution in terms of time (makespan) for temporal
planning domains. Unlike TGP and TPSYS, CPPlanner
deals with richer temporal planning domains.

In TGP, actions are assumed to have effects only at the
end of the execution and the conditions hold throughout the
execution. In TPSYS, PDDL 2.1 (Fox & D.Long 2001a)
is used and actions can have effects at the beginning and at
the end of the execution. In CPPlanner, we have extended
the action representation to deal with effects which can
happen anywhere during the execution. With this extension,
the mutex relations are built up as constraints in the graph
expansion phase and they are re-checked in the solution
extraction.

The solution extraction phase uses “critical paths” to
prune irrelevant branches in the search tree earlier. At first,
it will get all the paths from the initial propositions lead-
ing to the goal propositions at the examining timepoint. It
considers them as the “critical path” candidates. Then, each
time, the planner will choose one of the candidates to be
the critical path for the solution extraction phase. Because
all the actions of the critical path are chosen before actu-
ally performing the search, other actions and propositions
are quickly eliminated if they are mutex.

Action representation
With the ambition of solving real world problems, our ac-
tion representation is mainly influenced by the PDDL+ (Fox
& D.Long 2001b) and the representation of the Sapa plan-
ner (Do & Kambhampati 2001b). Unlike TGP and TPSYS,

it has been extended to deal with actions that can have effects
at any time during the execution. Each action A has a dura-
tion DurA, a starting time StartA, and an ending time EndA

(= StartA + DurA). The duration DurA can be statically de-
fined for a domain, or dynamically calculated at the execu-
tion of the action. For example, the actionFly has duration
calculated based on the distance between the two places at
execution time. Action A has a set of conditions CondA,
which consists of a conjunction of tuples〈CondAi , dAi〉
(〈condition, duration〉). dAi for a certain CondAi means that
the CondAi needs to be true from the starting time of the
action A until (StartA + dAi). Similarly, action A has a set
of effects called EffA, which consists of tuples〈EffAj , dAj 〉
(〈effect, time〉). dAj for a certain EffAj means that the EffAj

happens at the time (StartA + dAj).
Therefore, an action A is presented as{DurA, CondA, EffA}
in which:

• DurA: the duration of the action A. (DurA > 0).

• CondA = {〈CondA1 ,dA1〉, ...,〈CondAk
, dAk

〉}
with ∀i ∈ [1, k] : 0 ≤ dAi ≤ DurA.

• EffA = {〈EffA1 , dA1〉, ...,〈EffAh
, dAh

〉}
with ∀i ∈ [1, h] : 0 ≤ dAi ≤ DurA.

Graph expansion
In AI planning, given the initial state, the goal state and a set
of actions, a solution of the problem is a sequence of actions
which takes the initial state to the goal state, i.e. a plan. In
CPPlanner, we assume that the actions in the solution must
complete and themakespanis the ending time of the latest
action in the plan even if the goal state has been achieved
as a result of effects taking place before the end of the
action. With this assumption, the expansion phase is much
more complicated than if plans can rely on uncompleted
actions. In the expansion, the planner has to wait for the
action to finish before taking its effects as conditions for
other actions. Furthermore, when an action is applied,
its starting time need not be the ending time of another
action, but the maximum of thetimestampsof its conditions.

Starting from the first stage of the graph, in which
propositions are in the initial state withtimestamps0, the
graph is advanced in time step by step. The main idea is that
at anexamining timepoint t, we will advance the graph to

the next timepoint by choosing the next action, sayA, which
has the earliest ending time of all possible actions. After
choosingA, all of its effects are added to the graph with
their correspondingtimestampsand theexamining timepoint
t is advanced tot + DurA. This process is repeated until
all the goals appear. At this time, the solution extraction
is tried to look for a solution. If a solution extraction fails,
the process will be performed again to move to the next
possibletimepoint. Otherwise, the algorithm is terminated.

In the expansion phase of TGP, since an action only has
effects at the end of its execution, the examining timepointt,
at which at least one action completes, is also the time when
new effects appear (the effects of the completed actions).
Therefore, when all possible actions at the examining
timepoint t are applied,t is used as the starting time of
these possible actions. However, in CPPlanner, the starting
times of the possible actions are more complex, because
the effects of actions can happen anywhere during the
execution. We cannot use the examining timet as the
starting time for the possible actions, because some of these
actions may happen earlier thant. Instead, the starting
time for each possible action is calculated by the maximum
of the timestampsof its conditions. This leads to the fact
that propositions will be stored in the listPropswith new
timestampsif they appear again.

For example, in TGP, it is very simple that if we are
applying a possible actionA at the examining timet, the
starting time ofA will be t and the effects will be attached
with the timestamp= t + DurA. However, in CPPlanner,
because actions can have effects at any time during the
execution, an actionX may take some intermediate effects
of action Y as its conditions and start while actionY is
still under way. Note that at the examining timet, Y has
finishes already. So when we apply the actionX, if X has
several conditions, the starting time ofX will be calculated
as max{timestampCondX

}, not the examining time t. Note
that this value may less thant. Thetimestampsof X’s effects
are calculated based on this starting time.

Mutex relations
In TGP, actions are assumed to have effects only at the end
and preconditions must be hold through out the execution
of actions. In TPSYS, actions have effects only at the
beginning or at the end of their execution. As a conse-
quence of this, the mutex relations introduced by TGP or
TPSYS are calculated once in the expansion phase to know
whether proposition-proposition, proposition-action, or
action-action are mutex. These relations can be used again
in the solution extraction phase. For example, the mutex
relation of actionA and actionB is calculated as true. It
means that they cannot overlap with each other in the result
plan regardless the time that these actions start. Therefore,
in the solution extraction phase, when choosing actions and
propositions for the plan, if the mutex checking is required,
the planner just looks into the mutex relation that has been
calculated in the expansion phase earlier. However, in

// Put all initial props attached with
// timestamp 0 into the Queue
PropsQueue= {< p1, 0 >,< p2, 0 >, ..., < pn, 0 >}
// Set the examining timepoint 0
t = 0
Loop

while PropsQueue6= ∅
CurProp= the first prop in thePropsQueue
Remove the first proposition fromPropsQueue
Create mutex relations forCurPropwith
otherPropsandActions
PossibleActions={all actions havingCurPropas one
of their conditions, and the others from Props}
Apply PossibleActions
TmpProps← {Attach their effects withtimestamps}
// Add CurPropto the Graph
Props← CurProp;

end{while}
// move to the next possible timepoint where at
// least one action completes
t = timestamp of the next ending effect in theTmpProps
// add the completed actions to the Graph
Actions← {new completed actions after moving
to the next possible timepoint}
PropsQueue← all props inTmpProps
belonging to new completed actions att
Remove these propositions inTmpProps
If goals⊆ {Props∪ PropsQueue}and pairwise
nonmutex, do solution extraction.
If (solution extraction succeeds)

terminate the algorithm.
End{loop}

Table 1: Graph expansion algorithm

our planner, because actions may have effects during their
execution, the mutex relations depend on the time when
actions start or propositions become true. Therefore, in the
solution extraction phase, when actions and propositions
are assigned differenttimestampsfrom the expansion phase,
the mutex relations have to be re-checked to know whether
they are mutex.

The mutex relations of our planner are described as
follows:

• Proposition - proposition: propositions p and q are mu-
tex if (1) they are negations or (2) all actions supporting q
are mutex with p and vice versa.

• Action - proposition: action A and proposition p are mu-
tex if one of these holds

– (p and q are mutex)∧ (q∈ CondA) ∧
(p is true at t with t∈ [StartA, StartA+ dAq

]).
– (p and q are mutex)∧ (q∈ EffA) ∧

(p is true at t with t∈ [StartA + dAq
, EndA]).

• Action - action: action A, B are mutex if one of these
holds

– (p and q are mutex)∧ (p∈ CondA) ∧ (q∈ CondB) ∧
(StartA + dAp ≥ StartB)

– (p and q are mutex)∧ (p ∈ CondA) ∧ (q ∈ EffB) ∧
(dAp ≥ dBq)

– (p and q are mutex)∧ (p∈ EffA)∧ (q∈ EffB) ∧
(EndB ≥ StartA + dAp)

We store the mutex relation as constraints between nodes
in the graph. There are two types of mutex. One is the
static mutex which we can know after reading the planning
domain. It is always mutex regardless of the time, e.g. nega-
tions of propositions. The other is the dynamic one which
depends on the time of propositions or actions. Therefore,
when checking whether this proposition or action is mutex
with another one, we will know immediately if it is static
mutex. Otherwise, we have to check the mutex constraint
between them at the examining time.

Solution extraction
When we have expanded the planning graph to an examin-
ing timepointtG where all the goals appear, we try to find an
executable plan which will achieve all the goals at timetG -
this is the solution extraction phase. In the planning graph,
a proposition-action path is a path with sequence of propo-
sition and action nodes. Each action node in the path has the
previous proposition node as one of its conditions and the
next proposition node as one of its effects. The path starts
with a proposition node and also ends with a proposition
node. In the expansion phase, when the graph is expanded
to time tG, there is at least one proposition-action path
which starts from the propositions in the initial state to the
propositions attached with the timestamptG. We trace the
graph to get all of these paths and consider them as “critical
path” candidates. When we do the solution extraction, we
choose a path from these candidates and use it as the critical

// Attach the goal propositions with timestamptG
Goals= {< p1, tG >,< p2, tG >, ..., < pn, tG >}
Check ifGoalsis a subset of initial state,

stop the algorithm and print the solution.
Sett = tG.
Candidates= proposition-action paths leading totG
while Candidates6= ∅

CriticalPath← get one fromCandidates
Delete it fromCandidates
ActionPlan= all actions of the critical path

with their timestamps
Remove propositions supported by the critical path
from Goals
Add all conditions of actions in the critical path to
Goalswith their timestamps
// Note: excluding the conditions are effects of other
// actions in the critical path
While can choose (NextAction= one of the actions
which supports p such that p∈Goals, and doesn’t
mutex withActionPlanandGoals).

SlideNextActionas late as possible, but its ending
time not exceeding t.
Add NextActioninto theActionPlan.
Delete its effects in theGoals.
Add its conditions to theGoalswith timestamps.
If the timestamp of any propositions< 0,
then fail and try anotherNextAction
Checking ifGoalsis a subset of initial state,
print the solution and terminate the algorithm.
Update the time t = ending time of the chosen action

End{while}
End{while}
If cannot find a solution, graph expansion phase is
run again by theLoop

Table 2: Solution extraction algorithm

path of our search. All the actions along this path will be
chosen before we actually do the solution extraction search.
With the chosen actions, other actions or propositions will
be quickly eliminated in the search later on if they are mutex.

In this algorithm, we calltG the examining timepoint
where we are looking for a solution. Firstly, to expand to
tG, the graph expansion phase has known actions finished
at the timetG. Based on the graph, we trace back to
get all proposition-action paths leading totG (because
perhaps several actions finish attG). Note that we only
trace proposition-action paths of sub-goals which have
the timestamptG, because there are other subgoals which
have the timestamp less thantG that we failed to find a
solution earlier. We consider these proposition-action paths
as critical-path candidates. CPPlanner then takes one by one
from the candidates to look for a solution. With the critical
path, some actions will be added to theActionPlanbefore
the backtracking search for solution extraction is actually
performed. It will help to prune irrelevant branches in the

search tree earlier by stopping other propositions or actions
which are mutex withActionPlanfrom being selected.

The backtracking process of the solution extraction is also
different from the one used by TGP and TPSYS. In TGP or
TPSYS, the goals are dequeued one by one following a pre-
defined order. For each goal, each of the possible supporting
actions is tried. The new subgoals which are preconditions
of the action will be added to the list. This work continues
until a solution is found or all possible cases have been ex-
plored. With this approach, in order to check all possible
cases, the algorithm has to try all possible actions as well
as their possible start times. It will lead to some redundant
search because they cannot use any bound for the next step
(next proposition) in searching. Besides, with this search-
ing process, it is very difficult to apply other techniques like
conflict-directed backjumping to improve the performance.
In CPPlanner, we are using the examining time t to act as a
bound for the next choice of action in order to avoid some
symmetry in searching for solutions. It means that chosen
actions have a chronological order in their ending times. The
earlier it is chosen in the searching process, the later ending
time it has. With this backtracking process, it can be easily
developed to apply the conflict directed backjumping which
is described in more detail in the next section.

Discussion and further development
The performance of Graphplan-based planning systems de-
pends much on the solution extraction phase. In order to
prune more irrelevant branches in the search tree, we will
apply conflict-directed backjumping (Prosser 1993) (Kamb-
hampati 2000). In our solution extraction, because we find
actions one by one supporting the current sub-goal proposi-
tions, we can store the conflict list for thekth action, called
as level k. For example, we are looking for thekth action in
the extraction phase. We try actionai and see whether it is
mutex with any previous chosen propositions and actions, if
we find out that it is mutex with another actionax that we
have chosen in an earlier level, we will store the level ofax

in the conflict-list for the level k. Then, we will try another
actionaj . Also, if this actionaj is mutex with another ac-
tion, sayay, we add its level to the conflict-list. At this time,
supposing that all the actions have been tried, we will sort
the conflict list and backtrack to the previous level appear-
ing next in the list. This will help us to jump directly back
to the source of the conflict instead of wasting time looking
around.

Conclusion
We have described our Graphplan-based temporal planning
system, CPPlanner, to find an optimal solution for temporal
planning domains. Unlike other Graphplan-based planning
systems, it has richer action representation in which the ef-
fects can happen anywhere. The solution extraction phase
uses the critical paths provided by the expansion phase to
prune irrelevant search branches earlier. The searching pro-
cess can be easily extended with the conflict-directed back-
jumping in the future. We have implemented and tested it

on some temporal planning domains. However, because of
the richer action representation, the mutex constraints are
checked again in the solution extraction. Therefore, CP-
Planner has poorer performance than TGP and TPSYS. We
are going to improve the algorithm so that the solution ex-
tract phase can re-use some mutex relations between actions
which only have effects at the beginning or at the end of their
execution. The performance of the planner will be improved
because of not wasting time re-checking the mutex relations
for all actions in the solution extraction.

References
Blum, A. L., and Furst, M. L. 1997. Fast planning through
Planning Graph Analysis.Artificial Intelligence90:281–
300.
Do, M. B., and Kambhampati, S. 2001a. Planning as Con-
straint Satisfaction: Solving the planning graph by compil-
ing it into CSP.Artificial Intelligence132:151–182.
Do, M. B., and Kambhampati, S. 2001b. Sapa: A Domain-
Independent Heuristic Metric Temporal Planner. InIn Pro-
ceedings of European Conference on Planning.
Fox, M., and D.Long. 2001a. PDDL2.1: An extension
to PDDL for expressing temporal planning domains . In
Technical Report, Dept of Computer Science, University of
Durham.
Fox, M., and D.Long. 2001b. PDDL+: An extension to
PDDL2.1 for modelling planning domains with continu-
ous time-dependent effects. InTechnical Report, Dept of
Computer Science, University of Durham.
Fox, M., and Long, D. 2001. Hybrid STAN: Identifying
and Managing Combinatorial Optimisation Sub-problems
in Planning. InIn Proceedings of IJCAI.
Fox, M., and Long, D. 2002. Fast Tem-
poral Planning in a Graphplan Framework.
www.dur.ac.uk/computer.science/research/stanstuff/planpage.html.
Garrido, A.; Fox, M.; and Long, D. 2002. Temporal Plan-
ning with PDDL2.1. InIn Proceeding of ECAI’02.
Kambhampati, S. 2000. Planning Graph as a (dynamic)
CSP: Exploiting EBL, DDB, and other CSP search tech-
niques in Graphplan.Artificial Intelligence Research12:1–
34.
Prosser, P. 1993. Domain filtering can degrade intelligent
backtracking search. InIn Proceedings of IJCAI.
Smith, D., and Weld, D. 1999. Temporal Planning with
Mutual Exclusion Reasoning. InIn Proceedings of IJCAI.

