CPPlanner: A Temporal Planning System using Critical Paths

Tien Ba Dinh and Barbara Smith
University of Huddersfield, UK
t.b.dinh@hud.ac.uk, b.m.smith@hud.ac.uk

Introduction it has been extended to deal with actions that can have effects
The last few years have seen a lot of significant im- atany time during the execution. Each action A has a dura-
provements in Al planning. One of the most well-known tion Dury, a starting time Stagt, and an ending time End
advances is the Graphplan approach (Blum & Furst 1997), (= Starty + Dury). The duration Dug can be statically de-
which has been the basis of many planners, such as GP-CSFfined for a domain, or dynamically calculated at the execu-
(Do & Kambhampati 2001a), TGP (Smith & Weld 1999), tion of the action. For example, the actibty has duration
TPSYS (Garrido, Fox, & Long 2002), STAN (Fox & Long calculated based on the distance between the two places at
2001), LPGP (Fox & Long 2002)... In TGP and TPSYS, it execution time. Action A has a set of conditions Cand

has been extended to deal with temporal planning domains Which consists of a conjunction of tuplé€ondy;, da,)
to find the optimal solution. ({condition, duratiol). d, for a certain Cond, means that

the Cond,, needs to be true from the starting time of the
In this paper, we describe our planning system, CPPlan- action A until (Starg + dy,). Similarly, action A has a set
ner, which is based on the Graphplan approach to find the of effects called Eff, which consists of tuplegEff 4., da,)

optimal solution in terms of timenakespahfor temporal ((effect, timg). d., for a certain Effy; means that the EIf,

planning domains. Unlike TGP and TPSYS, CPPlanner happens at the time (Start- dy;,).

deals with richer temporal planning domains. TheL?f%fe- an action A is presented{@ur,, Conds, Eff4 }
in which:

In TGP, actions are assumed to have effects only at the o Dur,: the duration of the action A. (Dur> 0).
end of the execution and the conditions hold throughout the _
execution. In TPSYS, PDDL 2.1 (Fox & D.Long 2001a) * 0Nt ={(Conds, da,), ...{Condy,, ds,)}
is used and actions can have effects at the beginning and at With Vi € [L.] : 0 < da, < Dura.
the end of the execution. In CPPlanner, we have extended e Eff 4 = {(Eff4,, da,), ..., (Eff4,, da,)}
the action representation to deal with effects which can ~ with Vi € [1,h] : 0 < da, < Dur,.
happen anywhere during the execution. With this extension,

the mutex relations are built up as constraints in the graph Graph expansion
expansion phase and they are re-checked in the solution |y Al planning, given the initial state, the goal state and a set
extraction. of actions, a solution of the problem is a sequence of actions

)) N which takes the initial state to the goal state, i.e. a plan. In
The solution extraction phase uses “critical paths” to cpplanner, we assume that the actions in the solution must
prune irrelevant branches in the search tree earlier. At first, complete and thenakesparis the ending time of the latest
it will get all the paths from the initial propositions lead- action in the plan even if the goal state has been achieved
ing to the goal propositions at the examining timepoint. It 35 3 result of effects taking place before the end of the
considers them as the “critical path” candidates. Then, each sction. With this assumption, the expansion phase is much
time, the planner will choose one of the candidates to be more Complicated than if p|ans can rely on uncompleted
the critical path for the solution extraction phase. Because actions. In the expansion, the planner has to wait for the
all the actions of the critical path are chosen before actu- action to finish before taking its effects as conditions for
ally performing the search, other actions and propositions other actions. Furthermore, when an action is applied,
are quickly eliminated if they are mutex. its starting time need not be the ending time of another
. . action, but the maximum of themestamp®f its conditions.
Action representation
With the ambition of solving real world problems, our ac- Starting from the first stage of the graph, in which
tion representation is mainly influenced by the PDDL+ (Fox propositions are in the initial state witimestamp<, the
& D.Long 2001b) and the representation of the Sapa plan- graph is advanced in time step by step. The main idea is that
ner (Do & Kambhampati 2001b). Unlike TGP and TPSYS, at anexamining timepoint,twe will advance the graph to

the next timepoint by choosing the next action, sawhich

has the earliest ending time of all possible actions. After
choosingA, all of its effects are added to the graph with
their correspondingimestampsnd theexamining timepoint

t is advanced td + Dury. This process is repeated until
all the goals appear. At this time, the solution extraction
is tried to look for a solution. If a solution extraction fails,
the process will be performed again to move to the next
possibletimepoint Otherwise, the algorithm is terminated.

In the expansion phase of TGP, since an action only has
effects at the end of its execution, the examining timeppint
at which at least one action completes, is also the time when
new effects appear (the effects of the completed actions).
Therefore, when all possible actions at the examining
timepointt are applied,t is used as the starting time of
these possible actions. However, in CPPlanner, the starting
times of the possible actions are more complex, because
the effects of actions can happen anywhere during the
execution. We cannot use the examining tinas the
starting time for the possible actions, because some of these
actions may happen earlier than Instead, the starting
time for each possible action is calculated by the maximum
of the timestampf its conditions. This leads to the fact
that propositions will be stored in the liBrops with new
timestampdf they appear again.

For example, in TGP, it is very simple that if we are
applying a possible actioA at the examining time, the
starting time ofA will be t and the effects will be attached
with the timestamp=t + Dur4. However, in CPPlanner,
because actions can have effects at any time during the
execution, an actioxXX may take some intermediate effects
of actionY as its conditions and start while actionis
still under way. Note that at the examining timeY has
finishes already. So when we apply the actignf X has
several conditions, the starting time Xfwill be calculated
as max{timestampy,,q, }, not the examining time t. Note
that this value may less thanThetimestamp®f X’s effects
are calculated based on this starting time.

Mutex relations

/[Put all initial props attached with

[/l timestamp 0 into the Queue

PropsQueue {< p1,0 >, < p2,0 >,..., < pp,0 >}
/I Set the examining timepoint 0

t=0

Loop

while PropsQueuet ()
CurProp= the first prop in thé>ropsQueue
Remove the first proposition frolropsQueue
Create mutex relations f@urPropwith
otherPropsandActions
PossibleActions{all actions havingCurPropas one
of their conditions, and the others from Pryps
Apply PossibleActions
TmpProps— {Attach their effects withimestamp}s
// Add CurPropto the Graph
Props« CurProp

end{while}

/I move to the next possible timepoint where at

/ least one action completes

t = timestamp of the next ending effect in thempProps

/l add the completed actions to the Graph

Actions— {new completed actions after moving

to the next possible timepoiht

PropsQueue— all props inTmpProps

belonging to new completed actionstat

Remove these propositionsTimpProps

If goals C {PropsU PropsQueuégand pairwise

nonmutex, do solution extraction.

If (solution extraction succeeds)
terminate the algorithm.

In TGP, actions are assumed to have effects only at the end End{loop}

and preconditions must be hold through out the execution
of actions. In TPSYS, actions have effects only at the
beginning or at the end of their execution. As a conse-
guence of this, the mutex relations introduced by TGP or
TPSYS are calculated once in the expansion phase to know
whether proposition-proposition, proposition-action, or
action-action are mutex. These relations can be used again
in the solution extraction phase. For example, the mutex
relation of actionA and actionB is calculated as true. It
means that they cannot overlap with each other in the result
plan regardless the time that these actions start. Therefore,
in the solution extraction phase, when choosing actions and
propositions for the plan, if the mutex checking is required,
the planner just looks into the mutex relation that has been
calculated in the expansion phase earlier. However, in

Table 1: Graph expansion algorithm

our planner, because actions may have effects during their // Attach the goal propositions with timestarp
execution, the mutex relations depend on the time when G0&IS={<pi,t¢ >, <ps;tg >, ... < pn,tc >}
actions start or propositions become true. Therefore, in the CheckifGoalsis a subset of initial state,

solution extraction phase, when actions and propositions stop the algorithm and print the solution.
are assigned differetitnestampg$rom the expansion phase, Sett=tg. . . .
the mutex relations have to be re-checked to know whether Candidates= proposition-action paths leading g
they are mutex. while Candidates# 0 _
CriticalPath < get one fromCandidates
The mutex relations of our planner are described as Delete it romCandidates y
follows: ActionPlan= all actions of the critical path
. . . with their timestamps

» Proposition - proposition: propositions p and q are mu- Remove propositions supported by the critical path

texif (1) they are negations or (2) all actions supporting q from Goals

are mutex with p and vice versa. Add all conditions of actions in the critical path to
e Action - proposition: action A and proposition p are mu- Goalswith their timestamps

tex if one of these holds /I Note: excluding the conditions are effects of other

/[actions in the critical path
While can chooselNextActior= one of the actions
which supports p such thagGoals and doesn't

— (pand g are mutex). (q € Conds) A
(pis true at t with tc [Starts, Starty+ dg,]).

- f"md qare mytexf) (q € Effa) A mutex withActionPlanandGoals.
(pis true attwith t€ [Starty +da,, Enda]). Slide NextActionas late as possible, but its ending
e Action - action: action A, B are mutex if one of these time not exceeding t.
holds Add NextActioninto theActionPlan

Delete its effects in th&oals
B ggg?g izz‘e rguéeiﬁé? € Condy) A (g € Conds) A Add its conditions to th&oalswith timestamps.

If the timestamp of any propositiors 0,
= (p and g are mutex) (p € Conds) A (g € Effp) A then fail and try anotheNextAction

(da, > dg,) Checking ifGoalsis a subset of initial state,
— (p and g are mutex) (p € Eff 4)A (q € Effz) A print the solution and terminate the algorithm.
(Endg > Starty +dy,) Update the time t = ending time of the chosen action

We store the mutex relation as constraints between nodes _ End{while}

in the graph. There are two types of mutex. One is the End{while} . . _

static mutex which we can know after reading the planning If cannot find a solution, graph expansion phase is

domain. Itis always mutex regardless of the time, e.g. nega- fun again by thé-oop

tions of propositions. The other is the dynamic one which

depends on the time of propositions or actions. Therefore,) i i

when checking whether this proposition or action is mutex Table 2: Solution extraction algorithm

with another one, we will know immediately if it is static

mutex. Otherwise, we have to check the mutex constraint

between them at the examining time. path of our search. All the actions along this path will be
chosen before we actually do the solution extraction search.
With the chosen actions, other actions or propositions will

Solution extraction be quickly eliminated in the search later on if they are mutex.
When we have expanded the planning graph to an examin-
ing timepointts where all the goals appear, we try to find an In this algorithm, we calltz the examining timepoint
executable plan which will achieve all the goals at tithe where we are looking for a solution. Firstly, to expand to

this is the solution extraction phase. In the planning graph, t¢q, the graph expansion phase has known actions finished
a proposition-action path is a path with sequence of propo- at the timet¢;. Based on the graph, we trace back to
sition and action nodes. Each action node in the path has theget all proposition-action paths leading te: (because
previous proposition node as one of its conditions and the perhaps several actions finish #@f). Note that we only
next proposition node as one of its effects. The path starts trace proposition-action paths of sub-goals which have
with a proposition node and also ends with a proposition the timestamp, because there are other subgoals which
node. In the expansion phase, when the graph is expandedhave the timestamp less thas that we failed to find a

to time tg, there is at least one proposition-action path solution earlier. We consider these proposition-action paths
which starts from the propositions in the initial state to the as critical-path candidates. CPPlanner then takes one by one
propositions attached with the timestamp We trace the from the candidates to look for a solution. With the critical
graph to get all of these paths and consider them as “critical path, some actions will be added to tAetionPlanbefore
path” candidates. When we do the solution extraction, we the backtracking search for solution extraction is actually
choose a path from these candidates and use it as the criticalperformed. It will help to prune irrelevant branches in the

search tree earlier by stopping other propositions or actions on some temporal planning domains. However, because of
which are mutex withActionPlanfrom being selected. the richer action representation, the mutex constraints are
checked again in the solution extraction. Therefore, CP-
The backtracking process of the solution extraction is also Planner has poorer performance than TGP and TPSYS. We
different from the one used by TGP and TPSYS. In TGP or are going to improve the algorithm so that the solution ex-
TPSYS, the goals are dequeued one by one following a pre- tract phase can re-use some mutex relations between actions
defined order. For each goal, each of the possible supporting which only have effects at the beginning or at the end of their
actions is tried. The new subgoals which are preconditions execution. The performance of the planner will be improved
of the action will be added to the list. This work continues because of not wasting time re-checking the mutex relations
until a solution is found or all possible cases have been ex- for all actions in the solution extraction.
plored. With this approach, in order to check all possible
cases, the algorithm has to try all possible actions as well References

as their possible start times. It will lead to some redundant gjum A. L.. and Furst. M. L. 1997. Fast planning through

search because they cannot use any bound for the next step pjgnning Graph AnalysisArtificial Intelligence 90:281—
(next proposition) in searching. Besides, with this search- 30

ing process, it is very difficult to apply other techniques like
conflict-directed backjumping to improve the performance. . A S . X .
In CPPlanner, we are using the examining time t to act as a Staint Satisfaction: Solving the planning graph by compil-
bound for the next choice of action in order to avoid some "9 ItiNto CSP.Artificial Intelligence132:151-182.
symmetry in searching for solutions. It means that chosen Do, M. B., and Kambhampati, S. 2001b. Sapa: A Domain-
actions have a chronological order in their ending times. The Independent Heuristic Metric Temporal Planneririiero-
earlier it is chosen in the searching process, the later ending ceedings of European Conference on Planning

time it has. With this backtracking process, it can be easily Fox, M., and D.Long. 2001a. PDDL2.1: An extension
developed to apply the conflict directed backjumping which to PDDL for expressing temporal planning domains . In

Do, M. B., and Kambhampati, S. 2001a. Planning as Con-

is described in more detail in the next section. Technical Report, Dept of Computer Science, University of
Durham
Discussion and further development Fox, M., and D.Long. 2001b. PDDL+: An extension to

The performance of Graphplan-based planning systems de- PDDL2.1 for modelling planning domains with continu-
pends much on the solution extraction phase. In order to ©0us time-dependent effects. Technical Report, Dept of
prune more irrelevant branches in the search tree, we will Computer Science, University of Durham

apply conflict-directed backjumping (Prosser 1993) (Kamb- Fox, M., and Long, D. 2001. Hybrid STAN: Identifying
hampati 2000). In our solution extraction, because we find and Managing Combinatorial Optimisation Sub-problems
actions one by one supporting the current sub-goal proposi- in Planning. Inin Proceedings of IJCAI

tions, we can store the conflict list for t#é" action, called Fox, M., and Long, D. 2002. Fast Tem-
as level k. For example, we are looking for thi¢ action in poral Planning in a Graphplan Framework
the extraction phase. We try actiopand see whether it is www.dur.ac.uk/computer.science/research/stanstuff/planpage.htr

mutex with any previous chosen propositions and actions, if Garrido, A.; Fox, M.; and Long, D. 2002. Temporal Plan-
we find out that it is mutex with another actian that we - oot S . AL

have chosen in an earlier level, we will store the leveld.of ning with PD[,’Lz'l' Inin Proceedmg of ECAI'02)
in the conflict-list for the level k. Then, we will try another Kambhampati, S. 2000. Planning Graph as a (dynamic)
actiona;. Also, if this actiona; is mutex with another ac- CSP: Exploiting EBL, DDB, and other CSP search tech-
tion, saya,,, we add its level to the conflict-list. At thistime, ~ Niques in Graphplamrtificial Intelligence Research2:1-
supposing that all the actions have been tried, we will sort 34.

the conflict list and backtrack to the previous level appear- Prosser, P. 1993. Domain filtering can degrade intelligent
ing next in the list. This will help us to jump directly back backtracking search. lim Proceedings of IJCAI

to the source of the conflict instead of wasting time looking smith, D., and Weld, D. 1999. Temporal Planning with
around. Mutual Exclusion Reasoning. Im Proceedings of IJCAI

Conclusion

We have described our Graphplan-based temporal planning
system, CPPlanner, to find an optimal solution for temporal
planning domains. Unlike other Graphplan-based planning
systems, it has richer action representation in which the ef-
fects can happen anywhere. The solution extraction phase
uses the critical paths provided by the expansion phase to
prune irrelevant search branches earlier. The searching pro-
cess can be easily extended with the conflict-directed back-
jumping in the future. We have implemented and tested it

