
Ph.D. Thesis Extended Abstract: Planning for Web Services

Mark James Carman
Univesità degli Studi di Trento

carman@irst.itc.it

Abstract

In this thesis I propose to develop a system capable of per-
forming automated planning and execution of web service
operations in order to achieve user defined goals. Web ser-
vices are services described in XML and made available over
the internet. The proposed system will use the information
available in ”standard” service descriptions and will not rely
on formal mark-up of such descriptions. I have performed
some preliminary work on XML Schema type matching and
an algorithm for automated service composition, which when
combined allow the user to perform intelligent information
retrieval. In this thesis I intend to extend on these techniques
to handle world-altering goals. I plan to investigate service
discovery based on meta-data descriptions and the matching
of service state-machine descriptions. I then plan to incorpo-
rate a learning framework capable of teaching the planner to
recognise the semantics of certain operations within the do-
main based on appropriate example documents.

Introduction
The wealth of information available on the internet is cur-
rently being complemented by an ever-increasing number of
services. These services offer the possibility not only to gain
more specific types of information but also to interact with
the sources of the information, changing the state of these
systems and causing real world processes to occur. Our aim
is to plan for the automated discovery, composition and ex-
ecution of such services in order to achieve user specified
goals. The ability to perform automated service composi-
tion would revolutionise a number of application areas in-
cluding e-commerce and systems integration. For example
in online travel, a planning system capable of discovering
and interacting with flight and accommodation booking ser-
vices could automatically arrange business trips based on
user preferences.

We are building a framework for automated service com-
position based on the information available in service direc-
tories and interface descriptions. In our framework we do
not rely on the existence of semantic mark-up in service de-
scriptions (as advocated by the Semantic Web), but take a
client side approach to the semantic interpretation of such
descriptions. At present the framework consists of a seman-
tic type matching algorithm and a planning and execution
algorithm. We envisage extending the system to handle ser-

vice matching and to learn to recognise the semantics of doc-
uments from examples.

Background
Web Services facilitate platform-independent application in-
tegration between enterprises. Other integration technolo-
gies (such as CORBA or Java RMI) require companies
to standardise on a common platform. Instead, by us-
ing XML Schema to format data in a self-describing and
programming-language independent manner, and SOAP to
encapsulate and send the data over a transport (e.g. HTTP),
companies can link applications without needing to stan-
dardise their platforms. Using the Web Services Description
Language (WSDL) they can describe the service interfaces
they provide and publish these descriptions in a service reg-
istry, so that other companies can discover and use them.

The Problem: Planning for Web Services
Services are made up of operations, which can be seen as ac-
tions that a planning system can perform on the world. Un-
fortunately, from a planning point of view, these actions are
not fully specified: their real world effects are unknown, as
are the preconditions on their input variables, and the con-
ditional effects on their output variables. The problem of
planning for web services is further complicated by the fact
that the information describing the domain is distributed (in-
finite), heterogeneous and incomplete. Heterogeneity is a
problem both in terms of the data that services input and
output, and the descriptions of the services themselves. The
problem of data heterogeneity is due to the fact that there
is no common high-level data model between services. In
some cases service providers will adopt a common set of in-
dustry specific datatypes. In most cases however, an amount
of heterogeneity in data descriptions will remain. The prob-
lem of service heterogeneity has to do with the fact that two
logically equivalent actions may be called differently in dif-
ferent services and require different patterns of interaction
prior to their execution. For example one might need to per-
form a “login” action followed by a “getCatalogue” action
in one service before executing “purchaseItem”, while in
another service the logically equivalent action “submitPur-
chaseOrder” can be executed without executing any prior
login procedure. In this thesis I propose to address both het-
erogeneity problems.

Different Approaches
One approach to solve these problems is to explicitly de-
scribe the semantics of service operations in the interface
documentation. In this case the service provider would an-
notate each service interface document with “real world”
preconditions and effects, (described using semantic web
standards such as OWL and DAML-S). For example, she
could state that the effect of the “buyBook” operation is to
make the ���������	�
����
 predicate true. Then a planner, which
has the goal of arriving in a state in which this predicate
holds, can conclude that it needs to execute the operation
“buyBook” by giving it the relevant inputs. Note that, if the
ontology (definition of �����) used to describe the service is
not the same as that used by the planner, then a matching
of these ontologies must also be created. Manually creating
such mappings is a non-trivial task, while automated map-
ping between different ontologies is very much still an area
for future research.

In my work I do not assume that semantic mark-up is
present in the service descriptions, because in the short term
at least, there is little economic motivation for the providers
of web services to create such mark-up. Semantic descrip-
tions would make sense in a closed environment (such as a
particular vertical industry), where all parties can agree on
a common ontology. There has been some previous work
on planning for web services based on semantic service de-
scriptions. In (McIlraith & Son 2002), the authors investi-
gate the problem of instantiating different precompiled plans
based on user preferences, while in (McDermott 2002) the
planning domain description language PDDL, is extended to
handle information producing actions.

A different approach to automated service composition
was presented in (Thakkar et al. 2002), where services are
modeled as web information sources for which a common
data model is already known. A common data model means
that database query planning and transformation techniques
can be used for plan synthesis and optimisation. The authors
envisage a scenario, in which automated wrapper generating
software is used to create standard service interfaces to in-
formation provided on different web sites. Thus the problem
of data heterogeneity is left to the wrapper software, and the
standard service interface means that service heterogeneity
is also not a problem.

Our Approach
Our approach to planning for web services is a pragmatic
one based on the information that is currently available in
service interface definitions. We do not require that ser-
vice providers describe their interfaces using semantic mark-
up, nor that they limit themselves to the use of “a standard
data-model”. Instead we attempt to perform planning based
solely on the information that is already available in the ser-
vice descriptions:

1. operation input/output data signatures
2. service process descriptions
3. service description meta-data (business taxonomies)

The set of operations provided by a service can be found in
its WSDL description. The i/o signature of each operation

tells us what type of document needs be provided in order
to execute it, as well as the types of documents that will be
returned upon successful and unsuccessful execution. The
signature also gives us information on possible compositions
of services. For example, if a particular service has an oper-
ation “buyBook”, which takes as input an “isdnCode”, and
another operation “getISDN” (from a different service) out-
puts values of the same type, then the planner may try to
execute the latter in order to generate input for the former.

The i/o characteristics of operations in a service give only
a static description of the functionality of the service. One
can describe the fact that “selectItem” and “purchaseItem”
are both operations provided by the service, but not the re-
striction that the former should proceed the latter during ex-
ecution. Service process definitions (described using emerg-
ing choreography standards such as WSCI and BPEL4WS)
can provide such procedural information to the planner.

Service classification information is found in UDDI ser-
vice registries, in which services are classified according to
industry-segment, provider, location, etc. If standard clas-
sification indices are used to describe the services, then the
meta-data becomes useful to the planner when searching for
relevant services and for inferring similarity between them.

According to our alternative approach, we do not have any
description of the real-world effects of service operations.
Thus we need some way of expressing goals in the system
that is independent of these effects. We can do so by describ-
ing goals as information requirements - as a type of docu-
ment that the planning system needs to create. By placing
restrictions on the values of fields within the requested doc-
ument, one can express a goal such as ���������	�
����
 as: cre-
ate a “purchaseOrderConfirmation” document within which
the value of the “purchaseItem” field is the name of the de-
sired book. In order to satisfy the goal, the system needs to
provide a document (an output from a service), which is of
similar type to the goal and adheres to the given constraints.
These constraints could be equalities such as “bookName”
equals “Harry Potter and the Philosopher’s Stone” or nu-
merical inequalities such as that the “price” field has value
“ ����� Euro”.

A planning problem is then a combination of a goal with
some “local information”, which is available to the planner
to use as input when executing services. An example of such
local information could be the name, address, and credit card
details of the person requesting the goal. The local data to-
gether with the goal value restrictions can be seen in some
way as defining the initial state of the planner.

Progress to Date

In this section I outline briefly the work I have been doing
thus far toward the goal of automated planning for web ser-
vices. This work is important in so far as it provides the basis
for the research work proposed in the next section. The work
is divided into two parts: work on a type matching algorithm
capable of discovering semantic equivalence between simi-
lar datatypes, and a service composition algorithm for use in
composing services to achieve information goals.

Type Matching
In order to compose services from their operation defini-
tions, we need to be able in some way to match different
datatypes, such as the goal with various service outputs. The
ability to discover matches between identical types is not
sufficient for our purposes as we cannot guarantee (indeed it
almost certainly not the case) that the required services will
input and output types from a common schema. Thus we
need to tackle the problem of data heterogeneity, which is
to decide if under some mapping the data described by one
datatype can be substituted for that described by another. I.e.
if we can take the output produced by one service, map it,
and use it as input for another service.

A datatype has a set of values that can be considered as
representing different possible states of the world. For ex-
ample when receiving a message of type “Person” with the
field “name” equal to “Peter” and “age” equal to “21”, we
can interpret the message as saying that there exists a person
called Peter who is 21 years of age. And if another message
arrives, this time of type “UniversityStudent” with name and
age as before, we can interpret it as saying that there exists
a person Peter who’s 21 and goes to university. The second
message describes a smaller set of possible worlds (inter-
pretations) than the first, i.e. the cases where Peter is not a
school student nor a worker, but a university student. Now if
we needed to fulfill a goal (or provide an input to a service)
of type “Person”, then an instance of the message “Universi-
tyStudent” can be used to provide the required information.
If however we require an input of type “UniversityStudent”
and have a message of type “Person” the reverse is not pos-
sible as we do not know whether or not the instance to which
the message refers is a university student or a school student,
and so on. Thus in order to be able to map from one datatype
to another we require that the latter describes a superset of
the possible worlds that can be described by the former. I.e.
that the target type is a more generic version of the source
(under a given mapping).

Now in our algorithm, when we compare the goal type���������
, to a particular service output type

����	�

, we require that� �������
��� � ��	�

, which is to say that all documents conform-
ing to the output type also conform (form a subset of those
conforming) to the goal type after a certain mapping � has
been applied to them. For example, a goal such as:

<Weather>
<Temperature type="decimal"/>
<Location type="string"/>

</Weather>

with a restriction that value of field “Location” should be
“Adelaide”, should match against a schema such as:

<DailyWeather>
<LocalConditions>
<AmbientTemperature type="decimal"/>
<Rainfall type="decimal"/>

</LocalConditions>
<Address>
<City type="CityNames"/>
<State type="StateNames"/>

</Address>

</DailyWeather>

where:

<simpleType name="CityNames">
<restriction base="string">
<enumeration value="Adelaide"/>
<enumeration value="Melbourne"/>
<enumeration value="Perth"/>
....

</restriction>
</simpleType>

This is because the information required by the first can be
found from within the second. I.e. the values for “Ambi-
entTemperature” and “City” in the second can be mapped to
“Temperature” and “Location” in the first. Note also the fact
that the value “Adelaide” (which is a restriction on the field
“Location” in the goal), is one of the possible values of the
type “CityNames” in the output type. I.e. some instances of
the output type adhere to the value restrictions in the goal.

We use WordNet (Fellbaum 1998) as a lexical resource
for performing matching of labels within the type struc-
tures. We first use it to match synonyms like “car” and
“automobile”, as most documents which refer to an in-
stance of car are also referring to an instance of automo-
bile. We then try to take advantage the other relations
which exist in WordNet. One can do so in a qualitative or
quantitative manner, we take the qualitative approach, using
the WordNet noun hierarchy to find generalisation relation-
ships such as “car”

�
“vehicle” (car is a type of vehicle) or

“city”
�

“location”. As part of my thesis work thus far, I have
developed an algorithm which uses these relations to decide
whether one schema type can be seen as a generalisation of
another under a given mapping. Details of the algorithm can
be found in (Carman, Serafini, & Traverso 2003).

Service Composition Algorithm
Having discussed an algorithm capable of matching and
mapping data between heterogeneous type structures, we
outline an algorithm that exploits this capability to compose
and execute service operations to retrieve desired informa-
tion. Whenever we execute an operation within a service we
cannot guarantee that it will execute properly, providing the
desired output (e.g. where “location” equals “Adelaide”). So
we are forced to interleave search and execution in order to
overcome this problem of incomplete knowledge regarding
the domain.

The algorithm takes as input the goal to be achieved and
searches a UDDI directory for all services which are capa-
ble of outputting documents of sufficient similarity to the
goal, using the type matching algorithm described previ-
ously. The service interface with the most similar output
is selected first. If there is more than one implementation
of that interface, the algorithm will select one of them based
on meta-data values. It then attempts to execute the partic-
ular service operation that produces the desired output. Be-
fore doing so, it must create the required input document. It
starts by using the immediately available information, such
as that given in the goal, the local information, and past in-
put and output documents if they exist. If the available in-

formation is not sufficient, the algorithm must again search
the outputs of other services, i.e. the procedure calls itself
recursively. Generally, not all of the data required to fill the
input document will be contained in a single source, thus
the process repeats on sub-elements of the input document
until a complete document is produced or a search limit is
exceeded. Having generated an input document, the algo-
rithm attempts to invoke the operation. If it does not produce
the desired output, the algorithm rolls back certain decisions
made when creating the input and tries again. The heuristic
guiding this search can be based on the confidence the al-
gorithm had in its decision at each point, i.e. the quality of
the match. If after a “reasonable number” of attempts, the
operation still can’t be executed, then the problem may be
the data given as input to the previous (successfully com-
pleted) operation. Thus the system either tries to re-execute
the previous operation with different inputs, or gives up on
the service altogether and searches for a new way of achiev-
ing the goal.

The search tree created by the above algorithm can be
seen as an AND-OR tree, where the “OR” branches rep-
resent different ways of creating an input, and the “AND”
branches represent combinations of service outputs that to-
gether produce an input. Leaves in the tree represent data
found to be available locally. The execution algorithm de-
scribed above performs a bounded best-first search through
the tree, where the bound sets a limit on the number of failed
execution attempts allowed for completing a given sub-tree.
The execution bound is decremented for each level of decent
in the tree.

This algorithm assumes that all of the operations within
each service are atomic, and that the service to which they
belong is stateless. I.e. there are no ordering constraints on
the executions of operations within a given service. In some
cases this assumption may be false, and the exact ordering
of operations may be critical for the correct execution of ser-
vices. For example a service might require that a “login”
operation is performed prior to executing a “getStockQuote”
operation. The algorithm described above would never try to
invoke the former operation and thus would never be able to
successfully execute the latter. In some cases such informa-
tion may be available however in the form of service process
descriptions. Such process descriptions may even provide
additional information regarding the flow of data between
operations within a service (i.e. fields in input and output
documents that refer to the same value). In (Carman & Ser-
afini 2003), we describe a more complicated algorithm that
takes service process descriptions into account when execut-
ing services.

Research Plan
I propose four areas of work in this Ph.D. thesis. The first
two areas involve extending and improving the type match-
ing and execution algorithms described previously. My goal
in this case is to produce a working system for intelligent
information retrieval. The third and fourth areas involve ex-
tending the general framework with enhanced service dis-
covery and matching capabilities, and with a learning frame-
work for recognising the semantics of service operations au-

tomatically. The aim of the latter two work areas is to pro-
duce a planning system capable of handling “world altering”
goals such as to “buy a particular book”.

Type Matching
There is a large amount of information available in WordNet,
and by using the noun hierarchy we have only touched the
surface of what is possible. I intend to investigate the use of
other relationships found in WordNet, such as the meronym
(part of) and the antonym relations. For example, if it were
the case that “stock symbol” and “company” were related
though an inherited “part of” relation, then one could per-
form the match “company”

�
“stock symbol” by inferring

that an instance of the concept “company” must exist in the
second type in order that an instance of one of its parts can
be referred to. (This is equivalent to introducing a “com-
pany” node above “stock symbol” in the more specific type).
Use of this “part of” relation is complicated, however, by
the problem of mapping between the data values, restricting
its use to cases where a service capable of performing such
mapping has been discovered.

I plan to investigate the use of statistical techniques (based
on relative frequency of words and senses) in the matching
algorithm. For example, it would make sense to place more
importance on the matching of less-common words, like
“hydroflurocarbon”, than more common ones like “chem-
istry”. By doing so one could improve the type matching
algorithm by making it more robust against miss-matches
due to words which carry multiple senses.

A third area for improvement would be to extend the
type matching algorithm to take instance-level data into ac-
count, when discovering matches. For example, it would
make sense to use the fact that the instance value “Ade-
laide” is also found in WordNet and is found to be a type of
“city” thus making the substitution of “city” for “location”
all the more plausible. This type of instance level reasoning
/ consistency-checking could be very useful during service
composition when partially instantiated documents become
available.

Service Composition Algorithm
As regards the service composition algorithm, I plan to in-
vestigate more complex search patterns to improve the per-
formance and reliability of the system. Techniques such as
“limited discrepancy search” could be used to improve back-
tracking performance. We could also investigate the use
of “wider” search patterns with the aim of minimising the
number of steps (operation invocations) in the information
gathering plans before execution is attempted. The intuition
here, is that a plan with fewer steps is more likely to ex-
ecute properly with less modifications. Furthermore, since
we are performing information gathering, we could attempt
to execute a number of different plans in parallel. Parallel
execution makes sense in an internet environment where the
time needed to execute individual service operations is large.

At present the planning system operates without any se-
mantic “understanding” of the effects of operator execution.
We could encode the goal “buy book” using a certain “pur-
chase order confirmation” document schema, by restricting

values on certain fields in the document, but the trial and
error execution system might end up buying 100 books be-
fore it gets the right one! It would do so, because it has
no knowledge of the “real world” effects of its actions. A
partial solution to this problem would be to make use of in-
formation regarding the transactional behaviour of a service,
if it is available in the service process description. If a ser-
vice states that the execution of a particular operation can be
undone, then the planner knows it is safe to continue with
its execution. In the case where an undesired output is pro-
duced (i.e. the planner purchases the wrong book), the plan-
ner can simply roll-back the execution of that operation and
try again. Thus in order to prevent unintended purchases, it
would be sufficient to limit the amount of money available to
the planner. Such a spending limit could be described with-
out the use of a domain ontology by placing restrictions on
values of fields in the set of output documents created during
plan execution.

Service Discovery and Matching
I intend to investigate taxonomy matching algorithms for
use during service discovery. The ability to find equiva-
lent instance values from different classification structures
(such as UN-SPSC and NAICS codes) could be useful both
for discovering matching meta-data service descriptions and
for discovering matches between input and output document
types. For example a particular company may be classified
as “software and hardware vendor” under one scheme and
“software supplier” under another, in which case the planner
should know that the two classifications can be considered
equivalent.

Secondly, to handle the semantic problem described in the
previous section, I intend to enable the planner with a local
partial model of the domain (described in terms of a simple
local ontology) and use a technique similar to type match-
ing but of services process descriptions to handle the ser-
vice heterogeneity problem. The idea here would be to find
matching operations in process diagrams describing two dif-
ferent services, where for one of the services some of the
“semantics” of operations is already known (in terms of for-
mal preconditions and effects). In order to find such match-
ing operations their names, input and output datatypes, and
positions within process graphs would be compared. Once a
matching operation has been found, the semantic description
of the original operation could in some way be “inherited”
by the second. The details of such an inheritance need to be
investigated. This idea of “schema matching” can be seen
as a generalisation of the idea of replace-ability of web ser-
vices described in (Mecella, Pernici, & Craca 2001), where
the authors find exact equivalence between services by per-
forming bisimulation and matching (identical) labels.

Learning from Examples
Thus far in our attempt to perform planning for web ser-
vices we have used the information available in the ser-
vice descriptions and have augmented that with informa-
tion available in the lexical resource WordNet. Another
source of information which is available a-priori to the plan-
ner is the ever increasing set of standards for describing

e-commerce interactions between companies. There are a
number of standard protocols (such as UBL, xCBL, cXML,
etc.), which describe a standard set of documents that must
be sent between trading partners during a business exchange.
One idea would be to prime the planner with some knowl-
edge (formal semantics) regarding these standards, so that
if it does happen to interact with a service described using
a standard it can take advantage of that information. More
importantly, however, may be the possibility of generalis-
ing some of this knowledge, so that when the planner in-
teracts with a service described using labels that are similar
to those used in one of the standards, it may automatically
draw some conclusions about the meaning of the interface
being presented.

One way to do this would be to find common parts to the
documents described by the different standards and attach a
common semantic to these sub-structures in terms of a local
ontology. One could use the type matching algorithm de-
scribed above to discover semantically equivalent structures
in different documents, (such as the “address” field in a pur-
chase order document). Classifiers could then be trained to
recognise certain types of documents based on the substruc-
tures they contain. I.e. the system could distinguish between
a “login form”, a “purchase order” and a “purchase confir-
mation” document. It could then conclude which operation
performs the “purchase action”, and only execute that oper-
ation if it is sure that the inputs are correct. I.e. we could
train a classifier to recognise important operations for which
there is a clear semantics.

References
Carman, M., and Serafini, L. 2003. Planning for web ser-
vices the hard way. In Workshop on Service Oriented Com-
puting, International Symposium on Applications and the
Internet (SAINT-2003). IEEE Computer Society Press.
Carman, M.; Serafini, L.; and Traverso, P. 2003. Web ser-
vice composition as planning. In Workshop on Planning
for Web Services, 13th International Conference on Auto-
mated Planning and Scheduling (ICAPS 2003).
Fellbaum, C., ed. 1998. WordNet: An Electronic Lexical
Database. The MIT Press.
McDermott, D. 2002. Estimated-regression planning for
interactions with web services. In AI Planning Systems
Conference.
McIlraith, S., and Son, T. 2002. Adapting golog for com-
position of semantic web services. In Proceedings of the
Eighth International Conference on Knowledge Represen-
tation and Reasoning (KR2002). Morgan Kaufmann.
Mecella, M.; Pernici, B.; and Craca, P. 2001. Compat-
ibility of e-services in a cooperative multi-platform envi-
ronment. In 2nd VLDB Workshop on Technologies for e-
Services (VLDB-TES 2001). Springer.
Thakkar, S.; Knoblock, C. A.; Ambite, J. L.; and Shahabi,
C. 2002. Dynamically composing web services from on-
line sources. In Workshop on Intelligent Service Integra-
tion, The Eighteenth National Conference on Artificial In-
telligence (AAAI).

