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Abstract
In this paperwe proposea new andintegratedap-
proachto solve planningproblemswith bothsym-
bolic and geometricaspects. Typical concerned
domainsare intricatemanipulationand taskplan-
ning problemsinvolving multiple robots in three
dimensionalworlds. Theapproachinvolvesa task
plannerthatguidesaprobabilisticroadmapmethod
usedto capturethe topology of the free spacein
variouscontexts. At eachstepof our hybrid plan-
neraSyMov bothsymbolicandgeometricdataare
taken into account.Specificpredicatesareusedto
link bothaspects.Preliminaryresultsobtainedby a
prototypeimplementationareshortlypresentedand
discussed.

1 Intr oduction
Oneparticularlychallengingclassof problemsthatwewould
like to address,involvesactionplanningwith stronginterac-
tion with 3D manipulationsandmotionsby several mobile-
robotsand“movable”objectsin a constrainedenvironment.

Task planning has often usedexamplesborrowed from
roboticslike,for instance,Pick&Placescenarii.However, the
effectiveuseof practicaltaskplannersin roboticshasalways
beenlimited to domainswhereit waspossibleto establisha
clearhierarchybetweenahigh-level taskplanneranda lower
levelwheregeometricproblemsaredealtwith. Thisis clearly
insufficient if onewantsto tacklerealisticroboticsproblems.

Efforts towards integration of task planning and motion
planning[Lozano-Prezet al., 1987] have facedvariousdif-
ficultiesdueto thelack of anoperationallink betweenthem.
Indeed,the topologyof the free spacemay changewhena
objectis moved(i.e. it mayblocka passage)or whena robot
graspsor releasesan object. Indeed,its shapechangesand
againthetopologyof thefreespacechanges.

We proposein this papera new approachto integratetask
planningand motion and manipulationplanning. This ap-
proach is namedhybrid becauseboth aspectsare treated
simultaneously. The task plannerguidesthe probabilistic
roadmapmethodsusedto capturethe topology of the free
spacein variouscontexts. At eachstepof the hybrid plan-
ningprocessbothsymbolicandgeometricdataaretakeninto
account.

The underlyingmotion planningis basedon Probabilis-
tic RoadmapMethods(PRMs)[Kavraki andLatombe,1994;

Siméonet al., 2000] thathavebeenadaptedto dealwith ma-
nipulation issues[Alami et al., 1994; Koga and Latombe,
1994;Ahuactzinet al., 1998].

Our contribution is twofold. The first issueconcernsthe
definitionof a setof typesandpredicatesthatallow to estab-
lish a powerful link betweenstatesandoperatorsusedby a
symbolic taskplanneranda motion andmanipulationplan-
ning library.

Thesecondissueinvolvesthecontrolof thesearchprocess.
Thehybridplannerdevelopsacontrolstrategy in which there
is a compromisebetween“learning more” given roadmaps
(associatedto astate)i.e. exploringmoredeeplyvariousways
to performagivenactionin agivenstate,or selectanotherac-
tion. Thisprocessis performed“inside” anintegratedplanner
andnotin asubsequentlowerlevelgeometricalplanningstep.

Wewill first presentourgeometrictools(section2) andthe
associatedsymbolicrepresentation(section3). Then,wewill
definethehybrid statecomposedof symbolicandgeometric
informations(section4) . Section5 will presenttheaSyMov
algorithm. We will finish this articlewith two illustratedex-
amples.

2 Geometricattrib utesand tools
In thissectionwefirst recallsomebasicmotionplanningdef-
initions and thenexplain someextensionsfor manipulation
andmulti-robotusedby aSyMov.

2.1 Somedefinitions
Envir onment: it is a 3D-world composedof staticcompo-
nentanddynamicone:RobotsandObjects.
Robots: A robotis definedby a setof solid bodieslinkedby
joints thatdefinetheir degreesof freedom(dof). An Object
is a specialrobotwhich doesnot controlits dofs.
Configuration: It is an instantiationof the valueof the dof
of agivensystem.ThePRMssearchis performedin thecon-
figurationspace.
Roadmap: In orderto capturethetopologyof thefreespace,
the motion plannercomputesan accessibilitygraph called
roadmap.The nodesrepresentconfigurationswithout colli-
sionandtheedgesarevalid robotmotions.
Connectedcomponents: A roadmapcan be composedof
several connectedcomponents.In eachone,thereis a valid
pathconnectingany two nodes.
PRM: PRMshave proved to be efficient for highly dimen-
sional motion planning problems[Kavraki and Latombe,



1994;Siméonetal., 2000]. They try to connectaninitial and
final nodesby randomsamplingof nodes.Whena new node
is created,they try to connectit to all theconnectedcompo-
nentsof theroadmap.If theinitial andfinal nodesarein the
samecomponent,thenasolutionis found.

2.2 “Pur e” Manipulation Planning
A manipulation problem involves two types of motions
[Alami etal., 1994], thetransferof anobjecttakenby arobot
andthe transitmotionof a robotbetweentwo graspingposi-
tions. A solutionto a manipulationproblemis a sequenceof
transitandtransfermotions.

Manipulation for onerobot and oneobject
Recentresults[Sahbaniet al., 2002] have shown the impor-
tanceof anothersearchspaceGrasp � Placementwherea
robotis graspinganobjectin astableposition1. Thiswork al-
lows to chooseintermediatepositionsandto solveefficiently
complex “onerobotonemovableobject”manipulationtasks.

Manipulation for multi-r obots
We will usehereour extensionof themethod[Gravot et al.,
2002]. Themainpointsof thisapproachis thenotionof robot
compositionandtheuseof severalspecializedroadmaps.The
robot compositionenablesto build new robots(or objects)
from other robots(or objects). For instancea table can be
composedof a boardanda leg for assemblyproblems,anda
robotcarryinganobjectis composedof arobotandanobject.
With thisdefinition,atransfermotionis avalid motionfor the
composedrobotandwebuild aroadmapfor transfermotions.
Consequently, for multi-robotsmanipulationplanningprob-
lemswe defineseveralspecializedroadmapsfor eachtypeof
motion. Naturally thereare links betweentheseroadmaps.
Suchlinks correspondto the robot composition.For exam-
ple, a nodein grasp � placementroadmapcanbe divided
into a nodefor the objectroadmapanda nodefor the robot
alone(transit), or canleadto anodefor thetransferroadmap.
This methodwill have a stronginfluenceon thedefinitionof
thepredicatesof thetaskplanner( � 3).

Limitations
For onerobotandoneobject,only the transitmotioncanbe
difficult becausetherobotroadmapdoesnottakeinto account
the object. A specificalgorithmmustbe usedto validateor
locally changea trajectoryto avoid collision with theobject.
But with multiple robotsall the roadmapsbuilt have to be
checked to take into accountthe other movable objectsor
robots.This is themaindifficulty raisedby manipulationfor
multiple robots. We will seein � 5.4 how we take this point
into accountin thesearchprocess.

The seconddifficulty is obviously the size of the search
space. We needa methodto choosewhich roadmapto in-
creaseandhow to do this.

Weclaimthatasymboliclevel canguidethesearchprocess
( � 5.3). Indeed,a taskplannercanproposedifferentactions
(andtheassociatedmotions)neededto reachagivengoalsit-
uation. For example,even if thereareseveral robotsin the
environment,a task plannermay find a plan in which only
onerobot is usedto transportan object to its goal position.

1 �����
	�� is thesetof configurationswherea robotgraspsor can
graspa givenobject. �� ������������� is thesetof configurationswhere
a movableobjectcanbeput.

In sucha case,the geometricpart of the searchwill be lim-
itedto therobotandobjectgrasp � placementroadmaps,and
no expensive searchwill be performedin the other robots’
roadmaps.

Anotheradvantagein integratingsymbolicandgeometric
modelsis the possibility to enrich the manipulationcontext
with all theaspectsthatcanbeexpressedby actionplanning.
Thenext sectiondealswith theproposedsymbolicrepresen-
tation.

3 A symbolic representationlink ed to the
geometry

Thesymbolicrepresentationhastwo goals.first it is to pro-
videasymbolicrepresentationof thedifferentrobots,objects
androadmapsto guidethe searchfor a solution. Second,to
increasethe expressivenessof the systemwith purely sym-
bolic actionsandpredicates.

For ourrepresentationweusethePDDL 2.1language[Fox
andLong, 2001] in orderto be ableto usea stateof the art
task planner. In the following, we call a basic problem,a
planningproblemthat hasonly geometricalconstraints.We
defineherethe minimal setof specificpredicatesfor sucha
type of problem. Thesepredicatesrequirea specifictreat-
ment.

Weusethreeprincipaltypesof symbolicobjects:robot,obj
(a particulartypeof robot)andposition.Thefollowing fixed
predicatesdescribelinks betweenthosesymbolicobject.
� compose?r1 ?r2 ?r3: the compositionof two robots

?r1and?r2is possibleandformsa third robot?r3.
� belongs-to?p ?r ?road-type: a position?p belongsto

theroadmapof type?road-typeof arobot?r. The?road-
type variablecanbe instantiatedby transit, transferor
grasp � placement.

� is-specific-pos?p ?pos-type: to declarethe specificity
of a position?p. Different?pos-typeof specificityare
possible: In fact the goal and init positionarespecific
becausethey can representan uniqueconfigurationof
therobot’s degreeof freedom.Moreover, this predicate
is usedto specifyareasin whicharobotmustbeto apply
a puresymbolicaction.

� path ?p1 ?p2: it is possibleto find a valid path be-
tweentwo positions?p1 and ?p2 which belongto the
sameroadmap.

� connection?p1 ?p2: it is possibleto find a connection
betweentwo positions?p1and?p2which doesnot be-
long to thesameroadmap.

Only onefluentpredicateis necessary.
� on ?r ?p: therobot?r is situatedatthesymbolicposition

?p.

With this setof predicates,we candevelopactionswhich
add or remove “on” predicates. Generally, we work with
threemainactions:goto (motion),pick (composition),place
(decomposition).Note that theseactionsarenot hard-coded
but areonly theresultof theapplicationof thepredicatesde-
scribedabove.



Othersymbolicpredicatescanbeaddedandassociatedto
actions� that have no effect at the geometriclevel. For in-
stance,apredicate“have-magnetic-key” canbeusedasapre-
conditionto anopen-dooraction.

4 Stateand geometricpositions
We discussin this sectionhow the statedescriptionthat we
proposetakesinto accountsymbolicaswell asgeometricrep-
resentations.

4.1 State
The statecanbe divided into threeparts. The first is purely
symbolic; it consistsof all the symbolicpredicatesthat are
not describedin � 3. Thesecondis the interfacebetweenthe
taskplannerandthemotionplannercomposedof the (on ?r
?p) predicates.It allows to describewheretherobotsareat a
symboliclevel: the robotpositionscorrespondto setsof po-
sitionsthatsatisfyanumberof attributes.Thethird partis the
correspondinggeometricpositionof therobotsandobjectsin
the3D world.

Theuseof symbolicpositionsin thestatedescriptionpro-
videsflexibility to the plannerandallows a progressive re-
finementprocess.

4.2 Symbolicposition
A symbolicpositionrepresentstheattributesthata robot (or
object)positionhasto satisfy. For example:

(belongs-to P1 R1 transit)
(link P1 P2)
(composed R1-carry-O1 R1 O1)
(belongs-to P2 R1-carry-O1 grasp)
(link P2 P1)

P1 describesapositionof robotR1 thatallowsit to takethe
objectO1 (andconsequentlyto switchfrom atransitroadmap
to transferroadmap).Thispositionis usedany timeR1wants
to take or droptheobjectO1. So if P1 appearsseveral time
in theplanit cancorrespondto differentconfigurationsin the
environment.

It is alsopossible,for asamemotiontype,to defineseveral
symbolic positions. For instance,in order to help the geo-
metric planner, onecandefinea symbolicpositionfor each
roomandusethe(path ?p1 ?p2) to givea connectivity
graph.In our case,we usethis capacityonly whensymbolic
constraintsarealsousedto changetheposition,for example,
thenumberof robotsin eachroom,or thefact that therobot
musthaveakey to openadoor.. .

4.3 Geometricposition
Whenever the symbolic position changes,a new geometric
positionis created.This is donethroughanaccessibilitylist
anda list of constraints.The accessibilitylist representsall
the nodesthat canbe reachedfrom the previous state. The
constraintslist representsall thenon-collisionconstraintsthat
mustbesatisfiedfor theposition. To have a valid geometric
position,weneedto find at leastonenodein theaccessibility
list thatsatisfiesall theconstraints.

This descriptionallows to changethe configurationwhen
new constraintsare added,or when the accessibilitylist is
changeddueto theroadmaplearningprocess.For instance,if
theplanningprocesshaschosento placeanobjectat a valid

nodeN1, but this nodeforbidsfurthermotion,we canswitch
to an anothervalid nodeN2 in the accessibilitylist that lets
robotsmove. This changeis donein thegeometriclevel and
hasno influencein thestatesymboliclevel.

5 aSyMov: an hybrid planner algorithm
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Figure1: asyMov globalsearchprocess

The aSyMov (a Symbolic Move3d) plannerneedsthree
input files: a geometricdescriptionof the environment, a
PDDL2.1domainandproblemdescriptionanda description
of the links betweenthe symbolicand the geometricrepre-
sentations.

5.1 Global principles
aSyMov is a forward searchplannerin the statespace(fig.
1). When the goal is reached,a stepof post-processingis
performedin order to extract, optimize and coordinatethe
trajectoriesusinggeometrictools.Beforethatit selectastate
in the front search(generallythe last statereached). This
stepis importantbecausethe roadmaplearningprocesscan
changethe interestof the states,so backtrackin early stage
canbeuseful.Thenwe will try to reacha new statefrom the
selectedstate(fig 2).
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Figure2: Extendstatein searchprocess

At eachstep, the plannerselectsapplicableactionsand
computescostsandheuristics(� 5.2). Thecostsof applicable
actionscanbe realisticallyestimated,basedon pathslength
provided by the motion planner. The cost of the learning
actiondependson the computationtime taken by the corre-
spondingroadmapextensionfunctionsand is basedon the
successratefor nodesampling.

Action selectionis performedusing costsand heuristics.
Moreover this selectiontakesinto accounta randompart to



keeptheprobabilisticcompletenesspropertyof thewholeal-
gorithm.� At the beginning of the searchprocess,when the
roadmapsareempty, their heuristicsandcostsarevery low,
in order to favor an initial learningof the variousroadmap
topologies. If the selectedaction is not the learningaction,
and if it is valid, the planneraddsa new stateto the front
search.

Even if we will not develop the algorithmof front search
handlerin this paper, we mustunderlineonebig difference
with classicaltask planning: an action that is not currently
applicablemaybecomeapplicableafteraroadmapextension.
So, the front searchmust also attachto eachstatethe list
of non-currentlyapplicablegeometricactions.This list will
re-considerif their correspondingconnectedcomponentsare
modified (as a resultof a learningaction)making the state
selectableagain(fig 1).

5.2 A hybrid heuristic
Theplannerusesahybridheuristicthatcombinesinformation
from bothtaskandmotionplanners.

The informationusedfrom the taskplanneris the estima-
tion of the plan length to reachthe goal from a given state
(i.e. thesymbolicstateaftertheactionapplication).Because
oursymbolicproblemsaresimplewecanuseplansproduced
by a stateof theart taskplanner(currentlyMetric-FF[Hoff-
mann,2002]). For morecomplex description,we will usea
relaxedproblemlike in theMetric-FFheuristic.

Theinformationusedfrom themotionplanneris basedon
theroadmapsconnectivity. For instance,if a final geometric
stateis connectedto the currentstate,we candeterminethe
minimalnumberof roadmapsthatmustbecrossedto link the
two states.

5.3 Learning
When the searchstarts,the roadmapscorrespondingto the
differentstatesare“empty”. We talk aboutlearningbecause
roadmapcanbeseenaslearningstructureof theenvironment
whichcanbereusefor otherprobleminstance.Whenalearn-
ing actionis chosen,wemustextendtheroadmapsby theran-
domsamplingof new nodes.This samplingmustlet usgain
a betterknowledgeof the environmentin order to make an
actionchoiceat the next step. To do so,we have developed
differentextensionstrategiesbasedon thetaskplanner.

The first strategy consistsin developinga symbolic plan
from the currentstateto the goal. All geometricaction in-
volved in the plan needoneor moreroadmapsthat arecan-
didatesto further extension. The secondstrategy gives the
sameweight to all actionsthat areapplicablein the current
state. In our currentimplementation,the strategy is chosen
by theuser. We will implement,in thefuture,a choiceof the
bestadaptedstrategy dependingonthecontext. For example,
the first strategy seemsmoreappropriatewhenthe environ-
mentis not too constrainedgeometrically.

5.4 Validation and adaptation
In orderto limit theconstructionof expensive roadmaps,we
first considereachrobot(or composedrobot)asif it wasalone
in thestaticenvironment. It is the role of thevalidationstep
to test if thereis a collision with the otherobjectsor robots
andto adaptthetrajectoriesappropriately, if they exist.

This validation is basedon the accessibilityand the con-
straintsof the geometricposition ( � 4.3). Whenwe needto
changea positioninstantiation(i.e. a valid node),for exam-
ple to reachanew nodebelongingto anotherroadmap,anew
accessibilitylist is computedandusedto choosea nodethat
satisfiesthe new constraints.If no nodeis found, it is also
possibleto try to re-considertheold instantiationof theother
robotsand/orobjectspositions.

6 Examplesand first results
The presentedexamplesinvolve (fig. 3) a simplestaticen-
vironmentcomposedof a wall andfurniture. Therearetwo
identicalrobots: forklift-1 and forklift-2 initially situatedon
theleft andtheright sides.Theproblemis to bring theobject
namedflat-boxto its goalposition(fig. 3 (a),(e)).

In problem1 (fig. 3 (a)),thefreepathto thegoalis blocked
by anotherobjectnamedbig-box. Thisvariantbelongsto the
basicproblemsclass.Its PDDL domainandproblemaregen-
eratedautomaticallyfrom a meta-description.Dependingon
thelearningsteps,two solutionsmaybefoundby theplanner:
in the first case(fig. 3 (b)), forklift-1 picks the big-boxand
putsit on an intermediateposition,while forklift-2 takesthe
flat-boxandcrossesthefreedpassagetowardsthegoal. Fol-
lowing theprogressiveinstantiationprocessdescribedabove,
the final configurationfor big-box is in fact changedwhen
a new constraintis addedwhen forklift-2 wantsto enterthe
otherroom.Thereis noway for forklift-2 to reachits desired
positionuntil the big-box accessibility, after a put action, is
largeenoughto find anew configurationto avoid collision

In the secondsolution, forklift-2 gives the flat-box to
forklift-1 throughthe“window” in thewall (d).

Problem2 is a variant that involvesa “purely” symbolic
aspect:a have-magnetic-key predicate,two specificpositions
(key-positionanddoor-position), a get-the-key actionandan
open-dooraction. Thepathto thegoal is blockedby a door
that mustbe opened.Onesolutioncanbe simply (d). An-
othersolutionthat involvesforklift-1 which will get the key
andthenreachdoor-positionin orderto useit for openingthe
door(f): thepathis freedfor forklift-2 (g). This variantem-
phasizesthepossibleintricaciesbetweengeometricallycon-
strainedandpurelysymbolicactions.

To validateour approach,we comparethe averageresults
(cpu time on a 1.6 Ghz pentium4) obtainedwith andwith-
out heuristic on ten resolutionswithout learning (i.e static
roadmaps)andwith a heuristiconly basedon the symbolic
planlength.

problem with heuristic without heuristic gain
nb step/ time nb step/ time

1 388/ 2.4 1120/ 16.6 2.88/ 7
2 92 / 0.04 401/ 0.08 4.35/ 2

Thesecondproblemis more“symbolic” thanthefirst one.
As expected,the symbolicplan lengthbasedheuristichasa
bettergain in numberof searchstep. The bettergain in cpu
timefor thefirst onecanbeexplainby thefactthattheplanner
hasto domorevalidationwithoutheuristicandthevalidation
is a costlyprocess.

7 Conclusionand futur e work
We have presentedan integratedplannerthat combinestask
andmotionplanningcapabilitiesto solve realisticrealworld
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manipulationproblems. Indeed,in suchapplicationssym-
bolic and geometricconstraintsare often intricately linked
andcannotbetreatedby a two stephierarchicalsystem.

Theimplementationis nearto befinished,only thelearning
part is in construction.Thefirst resultareencouraging.It is
ableto dealwith “simple” problems(but not resolved in the
currentstateof theart).

The next stepis to investigatemeansto constructa more
efficient heuristics.This will bedoneto allow theplannerto
facemorecomplex tasksandenvironments.

aSyMov handlesa real world modelwhich takesinto ac-
countgeometric,topologicandrelationdata.Thetoplogy is
catchby thePRMsandtherelationon“things” whichnotare
necessaryplacesarerepresentedby predicates.Thusit pro-
videsplanswith a rich expressivness.Theplanspointoutnot
only anactionsseriesbut alsoaphysicalway to realizethem.
To applysuchtypeof planin a roboticapplication,it will be
necessaryto useadditionalspecificsystemsto furtherresolve
sometaskslikemanipulationat a lower level.
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