
MAPL: a Framework for
Multiagent Planning with Partially Ordered Temporal Plans

Michael Brenner
Institut für Informatik, Universität Freiburg, 79110 Freiburg, Germany

brenner@informatik.uni-freiburg.de

Abstract

This paper discusses the specifics of planning in multi-
agent environments. It presents the formal framework
MAPL (“maple”) for describing multiagent planning do-
mains. MAPL allows to describe both qualitative and quan-
titative temporal relations among events, thus subsuming
the temporal models of both PDDL 2.1 and POP. Other
features are different levels of control over actions, model-
ing of agents’ ignorance of facts, and plan synchronization
with communicative actions. For global planning in multi-
agent domains, the paper describes a novel forward-search
algorithm producing MAPL’s partially ordered temporal
plans. Finally, the paper describes a general distributed al-
gorithm scheme for solving MAPL problems with several
coordinating planners. The different contributions intend
to provide a simple, yet expressive standard for describing
multiagent planning domains and algorithms that in the fu-
ture might allow cross-evaluation of Multiagent Planning
algorithms on standardized benchmarks.

1 Introduction and related work
By Multiagent Planning (MAP), we denote any kind of plan-
ning in multiagent environments, meaning on the one hand that
the planning process can be distributed among several plan-
ning agents, but also that individual plans can (and possibly
must) take into account concurrent actions by several executing
agents. We do neither assume cooperativity nor competition
among agents, nor do we impose any relation among planning
and executing agents: in the general case, m planners plan for n
executing agents. In the specific, yet common case of n agents,
each having both planning and executing capabilities we speak
of autonomous agents.

H3

���
���
���
���

P
R01 F

H1

Loc0 Loc1
Loc2

Loc3

R12

R13

Figure 1: A multiagent planning problem

As a motivating example, fig. 1 shows a simple MAP prob-
lem as it appears in the RoboCupRescue simulation. There
are two autonomous agents: police force P and fire brigade
F . They have different capabilities: P clears blocked roads,
F extinguishes burning houses, both can move on unblocked
roads. Each action has a duration which may vary because of
specific execution parameters (e.g. location distance, motion
speed) and/or intrinsic unpredictability. For this example, we
assume a duration of 30 to 180 minutes for clear, 1 to 4 hours
for extinguish, and 2 to 4 minutes for move. The speed and thus
the duration of move is controlled by each agent while the du-
ration intervals for clear and extinguish can only be estimated.
The agents’ knowledge and goals are differing, too: P wants
the roads to be clear, but is unaware of the state of all roads
except R01. F wants all burning houses extinguished, knows
that H1 and H3 are burning, but also that it cannot reach H3
because road R13 is blocked.

Even in this trivial example, we can make some general ob-
servations about planning in MAS that will motivate the con-
cepts introduced in the rest of the paper.

(1) Concurrent acting is central to MAS (P can move to
Loc1 and start clearing R13 while F is extinguishing H1). (2)
Metric time is needed to realistically describe action durations
and their relations. (3) Synchronizing on actions of unknown
(at least to some agent) duration demands qualitative use of
time (e.g. “after P has cleared R13”). A specific usage of qual-
itative time in MAP is (4) synchronization on communicative
acts, for example “after P has informed me that R13 is now
clear”.

While many recent planning formalisms allow some degree
of concurrency, most fail in providing either (2) or (3). PDDL
2.1, for example, supports metric time but enforces planners to
assign exact time stamps and durations to all events [7]. In con-
trast, the concurrency model of [2] augments partial order plans
with concurrency, thus allowing flexible, synchronized execu-
tion, but makes no difference between plans that take seconds
and ones that take years. None of the planning models known
to us features property (4), plan synchronization with commu-
nicative acts. To address problems (1)-(3), we will formally
describe the Multiagent Planning Language MAPL (“maple”)
as an extension of PDDL in section 2. Synchronization with
speech acts is an important concept of our distributed planning
algorithm and will be presented in section 4. Fig. 2 shows part
of a MAPL description for the Rescue domain. Fig. 3 shows a
MAPL plan of agent F for the problem given in Fig. 1.

(:state-variables
(pos ?a - agent) - location
(connection ?p1 ?p2 - place) - road
(clear ?r - road) - boolean)

(:durative-action Move
:parameters (?a - agent ?dst - place)
:duration (:= ?duration (interval 2 4))
:condition

(at start (clear (connection (pos ?a) ?dst)))
:effect (and

(at start (:= (pos ?a) (connection (pos ?a) ?dst)))
(at end (:= (pos ?a) ?dst))))

Figure 2: Excerpt from a MAPL domain description

How can such a plan be found by an agent (or globally for all
agents?) We see that while P can reach its goal using only his
own actions, any plan reaching F ’s goal must involve actions
of both agents. If F knows about P ’s capabilities, F can find
such a plan. Even if F does not know P ’s actions and thus can-
not solve the problem alone, this failure can be the trigger for
cooperation and provide clues about where help is needed. We
see that (5) the capability for single-agent synthesis of multia-
gent plans is a basic requirement for MAP. Section 3 presents a
new single-agent algorithm for heuristic forward search in the
space of MAPL (and thus also POP and PDDL) plans. It will
not only find valid plans, but, in case of failure, also provide the
information necessary to trigger coordination.

For the case of distributed planning, the example shows
that cooperation is needed especially when (6) planners do not
know how to reach their goals alone. However, most MAP re-

1



search has assumed that planners can find plans or sets of plans
that are then coordinated or merged with those of others ([6]).
Distributed hierarchical planning ([5]) is a special case thereof
where the set of possible solutions is implicit in an abstraction
hierarchy that is refined distributedly. But coordination is indis-
pensable also when (7) individually valid plans are conflicting
(e.g. two ambulance teams trying to rescue the same refugee).
This problem resembles the detection of inconsistencies in Dis-
tributed CSPs [15]. The algorithm presented in section 4 is in-
spired by DCSP techniques. It addresses the problems (6) and
(7) by introducing the concept of state variable responsibility.

In the following section, we will present the formal seman-
tics of MAPL. Section 3 describes our single-agent planning
algorithm which is then used in the distributed planning algo-
rithm (section 4). In section 5, we will conclude with some
remarks on past and future MAP research.

2 Multiagent plans
One main feature distinguishing MAPL from PDDL is the use
of non-propositional state variables: in MAP we must dis-
miss the Closed-World Assumption (CWA) that everything not
known to be true is false – the truth value might also be sim-
ply unknown to an agent. Although such belief states could be
compiled to propositions (similarly to the removal of explicit
negation in [8]) we will not only allow ternary state variables
(with values true, false and unknown), but n-ary state variables.
Among others, Geffner[9] uses the same concept and gives an
extended formal description and justification. Still, compiling
away state variables is possible and no planner is forced to in-
ternally use them.

Definition 1 A planning domain is a tuple D = (T,O, V, type)
where T is a set of types, O a finite set of objects, V the set of
state variables. type : O∪V → T assigns a type to each
object and state variable. dom : V → P(O) with dom(v) :=
{o ∈ O|type(o) = type(v)} ∪ {unknown} gives the possible
values for state variable v. A state variable assignment is a
pair (v,o)∈V ×dom(v), also written (v=o).

2.1 Events and actions
Definition 2 An event1 e is defined by two sets of state variable
assignments: its preconditions pre(e) and its effects eff (e).
For assignments (v = o) in the preconditions [effects] of an
event we will also write (v==o) [(v :=o)].

Definition 3 A temporal constraint c = (e1, e2, I) associates
events e1, e2 with an interval I over the real numbers, describ-
ing the values allowed for the temporal distance between the
occurrence times te1

and te2
of the events: (e1, e2, I) is satis-

fied iff te2
− te1

∈I . I can be open, closed or semi-open.

We will use the abbreviation (e1 ≺ e2) ∈C for the expression
∀I. (e1, e2, I)∈C → I ⊆R

+, i.e. e1 occurs sometime before
e2. (e1�e2)∈C is defined similarly for sub-intervals of R

+
0 .

Definition 4 A durative action is a tuple a = (es, ee, I, einv)
where es, ee are events (called the start and end event), I⊆R

+

is an interval representing the temporal constraint (es, ee, I) of
the form es � ee, and einv is an event with eff (e) = ∅, called
the invariant event. An instantaneous action is a durative action
a = (e, e, [0, 0], einv) where pre(einv) = eff (einv) = ∅. For a
set of actions Act, EAct denotes the set of start and events of
actions in Act.

1In this paper we assume ground events and actions. Instantiation
of actions schemas includes instantiation of the state variable schemas
(like pos(?a)) and requires some additions to the action precondi-
tions and effects. For space reasons, we omit the description of the
instantiation process from this paper.

There are two kinds of durative actions: those in which duration
is controlled by the executing agent (e.g. reading a book) and
those in which the environments determines the duration (e.g.
boiling water). In the former case, the agent can choose the de-
lay of the end event after executing the start event, in the latter
case the end event may happen at any time during the interval
given by the constraint. For any set of actions Acta of an agent
a we assume there is a control function ca : EAct → {a, env}
describing whether the agent or the environment controls the
occurrence time of an event. As agents can normally decide
at least the start time of an action we assume that ca(e) = a
for start events es. (A similar, more sophisticated concept is
developed in [13].)

2.2 Mutex events and variable locks
Concurrency is a key notion in MAS. In Multiagent Planning
it appears at two levels: as concurrent actions in a plan (or
distributed over several plans by different agents) and as con-
current planning. Both levels are closely related: concurrency
conflicts at the plan level must be detected and resolved during
planning. For the plan level we define:

Definition 5 Two events are mutually exclusive (mutex) if one
affects a state variable assignment that the other relies on or
affects, too. mutex(e1, e2) :⇔

(∃(v :=o)∈eff (e1) ∃(v,o′)∈pre(e2) ∪ eff (e2)) ∨
(∃(v :=o)∈eff (e2) ∃(v,o′)∈pre(e1) ∪ eff (e1))

This definition corresponds to mutex concepts in single-
agent Planning, e.g. in Graphplan[1]. From a Distributed Sys-
tems point of view, however, the mutex definition describes a
read-write lock on the state variable v that causes the conflict.
To solve lock conflicts during planning, section 4 introduces
the concept of state variable responsibility.

2.3 Plans
Definition 6 A multiagent plan is a tuple P = (A,E,C, c)
where A is a set of agents, E a set of events, C a set of temporal
constraints over E, and c : E → A is the control function
assigning to each event an agent controlling its execution.

To simplify the next definitions we assume the set C to be al-
ways complete, i.e. ∀e1, e2 ∈E∃I. (e1, e2, I)∈C. This is no
restriction because we can assume C to contain the trivial con-
straints (e, e, [0, 0]) for all events e∈E and (e1, e2, (−∞,∞))
for unrelated events e1 6= e2.

Definition 7 A set of temporal constraints C is consistent if
¬∃e1, e2, . . . , en.(e1 ≺ e2)∈C ∧ (e2 ≺ e3)∈C ∧ · · · ∧ (en ≺
e1) ∈ C. A multiagent plan P = (A,E,C, c) is temporally
consistent if C is consistent.

This is a reformulation of the consistency condition for Simple
Temporal Networks (STNs) [4] as (E,C) is in fact an STN2.
Using the Floyd-Warshall algorithm [3], consistency of an STN
can be checked in O(n3). In planning, new events and con-
straints are repeatedly added to a plan while consistenty must
be kept. To check this, we use an incremental variant of the
algorithm (omitted from this paper) that checks for consistency
violations caused by a constraint newly entered into the plan.
This algorithm is in O(n2) (for every addition of a constraint).

Definition 8 A multiagent plan P = (A,E,C, c) is logically
valid if the following conditions hold:

1. No mutex events e′, e′′∈E can occur simultaneously:
∀e′, e′′∈E.mutex(e′, e′′) → (e′≺e′′)∈C ∨ (e′′≺e′)∈C

2We are aware that STN consistency is not adequate for plans with
uncontrollable action durations. We are working to integrate the con-
cept of dynamic controllability into our framework [13].

2



For any assignment (v == o) in the precondition of any event
e∈E there is a safe achieving event e′∈E:

2. (e′≺e)∈C ∧ (v :=o)∈eff (e) (achieving event)

3. ∀e′′ ∈ E ∀(v := o′) ∈ eff (e′′). o′ 6= o → (e′′ ≺ e′) ∈
C ∨ (e≺e′′)∈C (safety)

Conditions 2 and 3 define plans as valid if there are no open
conditions and no unsafe links, an approach well-known from
partial order planning[12; 14]. Condition 1 (similarly used in
GraphPlan[1]) describes threats caused by conflicting effects
that do not necessarily cause unsafe links. This happens espe-
cially when events violate invariants of durative actions. Due
to space restrictions extensive discussion of this topic must be
omitted from this paper.

Definition 9 A planning problem for an agent a is a tuple
Proba = (Act, ca, e0, e∞) where Act is a set of actions, ca

is the control function for Act, and e0, e∞ are special events
describing the initial and goal conditions.

Definition 10 A multiagent plan P = (A,E,C, c) is valid if it
is both temporally consistent and logically valid. A plan P is
a solution to a problem Proba =(Act, ca, e0, e∞) of agent a if
the following conditions are satisfied

1. c is consistent with ca: ca(e)=x → c(e)=x and
∀(es, ee, I, einv) ∈ Act.

[c(ee)=a → ∀(es, ee, I
′) ∈ C. I ′ ⊆ I] ∧

[c(ee)=env → ∀(es, ee, I
′) ∈ C. I ′ = I]

2. ∀(es, ee, I, einv) ∈ Act.
es ∈ E → (ee∈E ∧ einv ∈E) ∧
(es≺einv)∈C ∧ (einv ≺ee)∈C

3. for C ′ = C ∪
⋃

e∈E{(e0, e, R
+), (e, e∞, R+)}

P ′ = (A,E ∪ {e0, e∞}, C ′, c) is valid.

So, a plan solves a problem if (1) it uses actions controlled
by the agent as specified in the problem, (2) durative actions
and their invariants are used as defined, (3) executing the plan
in the initial state reaches the goals.

Note that the solution plan is not required to contain only
actions from Act: a plan can solve an agent’s problem even if
it contains not a single action of that agent!

3 Single agent search for multiagent plans
In the following we look at a basic capability of agents: to plan
alone (if possible). To that end we develop a forward search
algorithm on partially ordered temporal plans.

A minimal condition for a plan to satisfy a set of goals is
that every goal is achieved at some point in the plan and is not
removed again after that point. Instead of testing goal satis-
faction, we will use this condition to describe if actions can be
added to a plan “at the end”.

For a given plan P = (A,E,C, c) we will use the following
abbreviation: achieves(e, (v ,o)) :⇔ (v,o)∈eff (e) ∧
∀e′∈E\{e} ∀(v,o′)∈eff (e′). o′ 6=o → (e′≺e)∈C

Definition 11 The frontier FP of a plan P = (A,E,C, c) is
the set of achieved state variable assignments

FP = {(v,o) | ∃e∈E. achieves(e, (v ,o))}

Corollary 1 For each assignment (v,o)∈FP in a valid plan P
there is a unique achiever e(v,o) with achieves(e(v ,o), (v ,o)).

Definition 12 The set of enabled actions for a given plan P
and a set of possible actions Act is

enabledP,Act = {(es, ee, I, einv)∈Act | pre(es)⊆FP }

Enabled actions can be added to the plan “at the frontier”, i.e.
after all events achieving their preconditions. But there is po-
tential for conflict: even if no event changes an assignment after
the achiever, events later in the plan might “read” that assign-
ment, i.e. it appears in their preconditions although not in their
effects. If the newly added action changes the assignment it
threatens the “reader” events. E.g. actions extinguish and move
can both be enabled in plan frontier FP 3 (isAt(F ) = Loc1),
but both can only be applied by first apply extinguish and then
add move after the reader event extinguish. By doing so, we
automatically prevent the plan from becoming invalid as extin-
guish and move are mutex.

Algorithm 1 apply(a,P)
E′ := E ∪ {es, ee einv}
C′ := C ∪ {(es, ee, I), (es, einv, R+), (einv, ee, R

+)}
for all assignments (v,o) ∈ pre(es) do

readers := {e ∈ E | (v,o) ∈ pre(e)}
if (readers = ∅) or (¬∃(v := o′)∈eff (es)∪eff (ee)) then

// there are no readers of (v,o) or a is a reader itself
C′ := C ′ ∪ {(e(v,o), es, R

+)}
else

C′ := C ′ ∪
⋃

e∈readers
{(e, es, R

+)}
return P ′ = (A, E′, C′, c)

Algorithm 1 enters an enabled action a into a plan at the ear-
liest possible position that causes no safety or mutex threats.
Open conditions cannot be produced either3 because the old
plan was valid and the new action was enabled, i.e. precondi-
tions satisfied. Without proof, we can therefore state:
Theorem 2 If P is a valid plan and a ∈ Act is enabled in P ,
i.e. a∈enabledFP ,Act then apply(a,P) returns a valid plan.

We can now describe single-agent algorithms that search for
(multi-agent) plans in the space of plans (like POP algorithms):
for every state (=plan), enabled gives us a set of possible tran-
sitions (=actions) and apply describes the transition function
from one state to a successor state. That means we can use any
state-space search technique to find valid plans.

The simplest method, Breadth First Search, produces plans
with minimal number of actions. For concurrent temporal plans
this is unintuitive because concurrency and action duration is
ignored. A better criterion for plan quality is makespan (min-
imal duration of the execution) of a plan. The calculation of
a plan’s makespan is a side product of the consistency check
with the Floyd-Warshall algorithm: makespan corresponds to
the length of the longest path in the plan assuming minimal pos-
sible duration for durative actions. An even more reasonable
quality metrics for MAP is to assume maximal duration for un-
controlled actions. We will call this metrics min-max makespan
and denote with mmdur(a) the minimal (maximal) duration of
a controlled (uncontrolled) action.

Quality metrics are used in a search method by sorting the
search queue according to the metrics. This corresponds to
A∗ search with heuristic function 0. However, we need not do
without heuristics. Goal distance can be estimated in various
ways; the following method is based on the FF[11] heuristic.

To relax a planning problem we assume that assignments to
state variables made anywhere in a plan remain true throughout
the plan. Algorithm r-apply(a,P) is derived from apply(a,P)
by simply not checking for “readers” and adding the new ac-
tion after all its preconditions are achieved, i.e. by adding

3We assume pre(ee) ⊆ pre(es) ∪ eff (es) and pre(einv) ⊆
pre(es) ∪ eff (es). Any other choice would make the semantics of
durative actions problematic, e.g. non-terminating durative actions
would be possible.

3



(e(v,o), es, R
+) to C for all (v, o) ∈ pre(es). But Corollary 1

does not hold for relaxed plans: when mutex events are allowed
there is not necessarily a unique achiever (e(v,o) for an assign-
ment. To be sure to find the relaxed plans with minimal (min-
max) makespan we must make sure that the earliest achiever
is used when constraints with the precondition achievers of a
new action are added to the plan. This can be accomplished
by building the relaxed plan with a simple BFS-like algorithm
(omitted for space reasons).

The “state” a relaxed plan P R
P is built on is the frontier of

a non-relaxed (partial) plan P . This way, the relaxed plan can
be used to provide a heuristic evaluation of P . The min-max
makespan of the relaxed plan including its non-relaxed prefix
can then be used as an admissible heuristic for the goal dis-
tance of plan P . However, the heuristic is not very informative
(the reason being that unnecessary actions in a plan can usually
be executed concurrently with necessary ones and thus will not
increase the makespan). We are currently experimenting with
variants of this heuristic in combination with different forward
search algorithms based on the techniques presented in this sec-
tion.

For the purpose of this paper we can disregard the exact
heuristic function for relaxed plans and use only one basic in-
formation it provides: the relaxed (un-)solvability of a prob-
lem. Like FF, our relaxed planning algorithm terminates if ei-
ther no more new actions are applicable in P or if the goals
are achieved at the relaxed frontier which is defined F R

P =
{(v, o)|∃e∈E. (v, o)∈eff (e)}. It is clear that if a relaxed plan
cannot be found then the non-relaxed problem is also unsolv-
able. In single-agent planning (e.g. [1], FF[11]), this property
is used to prove a problem unsolvable and terminate search. In
MAP, we will interpret it as a trigger for cooperation with other
agents!

While our algorithm is proven sound by theorem 2, it is, in
this simple form, not complete, i.e. for some MAPL problems
the algorithm does not find a solution although it exists. The
solutions missed can be characterized and found by an extended
algorithm that we are currently developing. Discussion of this
issue will be left to another paper.

4 Multiagent planning
In a multiagent environment, non-coordinating agents will
probably run into one of the following problems: (1) they won’t
know how to solve their planning problem or (2) they will find
a plan but run into execution conflicts (mutex or safety threats)
with other agents’ plans. In a competitive environment this
might be acceptable or even intended; in all other cases it is not.
For the rest of the paper we will therefore assume agents willing
to coordinate at least as much as to produce a set of conflict-free
plans to make plan execution predictable. This does not mean
that one common, conflict-free plan must be built. The method
proposed is intended to minimize synchronization of both plan-
ners and plans.

We will tackle the problem of unsolvability and the problem
of conflicting plans with the same concept: responsibility for
state variables. The agent responsible for a state variable is the
one who is asked when another cannot reach a goal involving
that variable. And the responsible agent will decide who is
allowed to manipulate a variable when actions planned by two
agents use a variable in a conflict-producing way.

Currently, MAPL and our algorithmic framework are only
at the beginning of development. For now, we therefore make
strong simplifying assumptions about responsibility:

(1) Responsibility for state variables is described by a func-
tion resp : V → A. (2) The function resp is fixed during the
planning process. (3) The agent resp(v) and only he must know

e_init

<

<

s:move(F,L3)

e_goal

s:ext(F,H1)

e:ext(F,H1)

s:ext(F,H3)

s:ext(F,H3)

[60,240]

< [60,240] [2,4]
<

e:move(F,L3)

<

told(P):blocked(R13)=clear

Figure 3: F’s plan (including a communicative action by P)

controlled actions that manipulate v. (4) The agent responsible
for a state variable v knows the initial value of v.

In future work, these assumptions will be relaxed as follows:
(1) We will allow a set of responsible agents negotiating about
changes to the variable. (2) We will allow dynamic change of
the responsible agent to better reflect who really is “using” the
state variable during the course of the planning process. (3) (4)
will both not be enforced any more, but be an effect of dynamic
change of the responsible agent.

The responsible agent records the changes to “his” state vari-
able in an access history. Thus he can give agents accessing
the variable informations about the changes and they can create
plans consistent with the access history.

Definition 13 An access history Hv = (A,Ev, Cv, cv) is a
plan where all preconditions and effects ev ∈ Ev use only as-
signments of one state variable v.

Hv is an access history for a plan P iff there is a bijective
mapping m from Ev to the set {e ∈ E|∃o.(v, o) ∈ pre(e) ∪
eff (e)} such that for all ev, e′v ∈ E:

(v, o) ∈ pre(ev) ↔ (v, o) ∈ pre(m(ev)) ∧
(v, o) ∈ eff (ev) ↔ (v, o) ∈ eff (m(ev)) ∧
(ev, e′v, I) ∈ Cv → (m(ev),m(e′v), I) ∈ C ∧
cv(ev) = c(m(ev))
By Hv;write [Hv;read ] we denote the sub-plan of Hv that con-

tains only events e where eff (e) 6= ∅ [pre(e) 6= ∅].

Algorithm 2 MA Planning (agent a, current partial Plan P )
Received no message:

P R := relaxed plan upon current plan frontier FP

unachievable = {(v, o)∈pre(e∞)|(v, o) 6∈ F R
P }

if unachievable 6= ∅ then
choose (v, o) ∈ unachievable
investigate(v, o)

else if found Plan P then
if ∃v accessed in P for which Hr

v;write is unknown then
send ask(v) to resp(v)

else if Hr
v;write is consistent with P ∀v accessed in P then

send tell(Hv) to resp(v)
output P
terminate (if not responsible for a state variable)

Received tell(Hr
v;write ) from agent r = resp(v):

choose (v, o) for which ∃e ∈ Hr
v;write . (v, o)∈eff (e)

apply(P,TOLDv,o)

Received unachievable(v,o) from agent r = resp(v):
backtrack

Procedure investigate(v,o):
if (v == unknown) ∈ F R

P then
send ask(v) to resp(v)

else if ¬∃a∈Act. (v, o) ∈ eff(es)∪eff(ee) then
send askFor(v,o) to resp(v)

else
choose (v′, o′) 6∈ F R

P by regression on (v, o)
investigate(v′, o′)

4



An agent using a fact in his plan need not know how, why
or by whom it has been achieved. In temporally uncertain do-
mains the agent must even plan not knowing when exactly the
fact will become true. We achieve this by introducing reference
events into a plan: One that will be only briefly mentioned is
etr, the temporal reference point lying before all other events.
All agents know etr and thus can describe absolute times as
constraints with etr. The other type of reference event are the
communicative events TOLDv,o where pre(TOLDv,o) = ∅ and
eff (TOLDv,o) = {(v, o)}. By entering new information into
the current plan with TOLD agents can use it like any effects
of other events: as preconditions of new actions and as tem-
poral reference in constraints. It is the latter use that is es-
pecially helpful: the TOLD event provides automatic synchro-
nization with another agents plan. E.g. fig. 3 shows how the
fire brigade synchronizes on the police clearing a road without
knowing when or how this is done.

We will now explain the basic distributed planning algorithm
for MAPL. For space reasons, alg. 2 shows only the reactions
of a planning agent to various messages and his behavior when
no messages are received. We have omitted the part of the algo-
rithm describing the behavior of an agent responsible for a vari-
able. Of course an agent may have both roles (or even respon-
sibility for more than one variable). To simplify presentation,
the algorithm is described using the nondeterministic choose
operator that also defines backtrack points. These are begin-
ning points for future research: how can the nondeterministic
choices be heuristically guided?

The idea of the algorithm is simple: by building a relaxed
plan, the planning agent detects goals involving state variables
he does not know about, cannot manipulate or could if only
some earlier condition were satisfied. He contacts the responsi-
ble agents to receive more information or delegate a subgoal
concerning the variable. The responsible agent answers the
question or adopts a temporary goal to help the asking agent.
For this simplified version of the algorithm, we assume that
the responsible agent can always help. In general, this is of
course not true, and when the responsible agent fails to help
asynchronous backtracking [15] is triggered; but this is out of
the scope of this paper.

There are three possibilities for termination: either an agent
can backtrack no more, or an agent not responsible for a vari-
able has found a plan, or a responsible agent gets information
that all other agents have terminated or found a plan so that
he can terminate, too, without “shirking” his responsibility to
inform other agents about his variable.

5 Conclusion and future work
We have presented a new representation for MAP domains and
solutions along with basic single- and multi-agent planning
algorithms. The algorithms have been implemented in Java;
agents are modeled as threads communicating via pipes. The
implementation is preliminary, in particular, we are still in de-
velopment of a parser to automatically read in problems. At
the moment, only hand-coded toy problems (like the Rescue
example) are solved by the planners.

A lot of exciting work is possible now: we are already ex-
perimenting with different heuristics and search methods on all
levels of the algorithms. Dynamic responsibility hierarchies
will improve flexibility and performance of the algorithm (com-
parably to dynamic agent hierarchies in Asynchronous Weak-
Commitment Search [15]). We will also develop a set of bench-
mark problems and apply the distributed algorithm in a realistic
application (RobocupRescue).

MAP has been a topic of interest in AI for quite some time.
However, not much work has been published, neither in the

field of Multiagent Systems (MAS) nor in Planning; further-
more, what has been published is mostly stand-alone work that
has not led to a steady development in MAP research. In our
view, this is due to an unfavorable separation of the (single-
agent) planning phase and the (multi-agent) coordination and
execution phase that has lead AI Planning researchers to con-
centrate exclusively on the former while MAS researchers al-
most as exclusively deal with the latter. This separation is only
possible with strong assumptions that narrow the generality of
the proposed approaches, for example the assumption that ac-
tual planning of each agent can either be easily done before
coordinating in a “classical” way or is eased by a given hierar-
chical task decomposition. It seems obvious to us that such a
separation is artificial: planning and coordination should be in-
terleaved to enable agents both to find plans at all and to detect
probable execution conflicts of their (partial) plans as early as
possible.

With PDDL 2.1, the AI planning community has only re-
cently fully acknowledged the need for sophisticated models of
concurrency (earlier exceptions include most notably work by
M. Ghallab[10]). MAPL is an attempt to extend that represen-
tation in a way that allows flexible execution after and easy co-
ordination during the planning process. The single- and multi-
agent algorithms we propose are only first steps and hopefully
not the only possible ways to synthesize MAPL plans. We
hope that our representation will allow to conveniently describe
largely differing MAP domains for which researchers can pro-
pose and cross-evaluate very different algorithmic approaches,
thus promoting the field of Multiagent Planning.

References
[1] A. Blum and M. Furst. Fast planning through planning graph

analysis. Artificial Intelligence, 90(1-2), 1997.
[2] Craig Boutilier and Ronen Brafman. Partial order planning with

concurrent interacting actions. JAIR, 2001.
[3] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algo-

rithms. MIT Press, 1992.
[4] Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint

networks. Artificial Intelligence, 49, 1991.
[5] E. Durfee and T. Montgomery. Coordination as distributed

search in hierarchical behavior space. IEEE Transactions on Sys-
tems, Man, and Cybernetics, 1991.

[6] Eithan Ephrati and Jeffrey S. Rosenschein. Divide and conquer
in multi-agent planning. In Proc. AAAI-94, 1994.

[7] Maria Fox and Derek Long. PDDL 2.1: an Extension to PDDL
for Expressing Temporal Planning Domains, 2002.

[8] B. Gazen and C. Knoblock. Combining the expressiveness of
UCPOP with the efficiency of Graphplan. In ECP ’97, 1997.

[9] H. Geffner. Functional STRIPS: a more flexible language for
planning and problem solving. In Jack Minker, editor, Logic-
Based Artificial Intelligence. Kluwer, 2000.

[10] M. Ghallab and H. Laruelle. Representation and control in Ix-
TeT, a temporal planner. In Proc. of AIPS ’94, 1994.

[11] Jörg Hoffmann and Bernhard Nebel. The FF planning system:
Fast plan generation through heuristic search. JAIR, 14, 2001.

[12] XuanLong Nguyen and Subbarao Kambhampati. Reviving par-
tial order planning. In Proc. IJCAI ’01, 2001.

[13] T. Vidal and H. Fargier. Handling contingency in temporal con-
straint networks. Journal of Experimental and Theoretical Arti-
ficial Intelligence, 11, 1999.

[14] Daniel Weld. An introduction to least commitment planning. AI
Magazine, 15(4), 1994.

[15] M. Yokoo and K. Hirayama. Algorithms for distributed con-
straint satisfaction: a review. Autonomous Agents and Multi-
Agent Systems, 3(2), 2000.

5


