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Abstract

Despite major progress in AI planning over the last few
years, many interesting domains remain challenging for cur-
rent planners. This document presents a model for reducing
planning complexity by using topological abstraction. The
model performs a clustering of the problem representation
space, aiming to catch local relationships inside clusters and
keep interactions between clusters as limited as possible. In
effect, the initial problem is decomposed into a two level hi-
erarchy of subproblems, each much simpler than the initial
one. We present some application domains, pointing out the
generality of the model. We also show the current status of
our work and what we plan to achieve in the future.

Introduction
AI planning has recently achieved significant progress in
both theoretical and practical aspects. The last few years
have seen major advances in the performance of planning
systems, in part stimulated by the planning competitions
held as part of the AIPS series of conferences (McDermott
2000; Bacchus 2001; Fox & Long 2002). However, many
hard domains still remain a great challenge for the current
capabilities of planning systems.

Abstraction is a natural approach to simplify planning
in complex problems. For instance, humans often create
abstract plans that they try to follow during their search.
In this paper we present LAP (Local Abstraction in Plan-
ning), a technique for reducing complexity of planning do-
mains. Our approach abstracts the problem state represen-
tation, grouping related low-level features in local clusters.
This type of abstraction is particularly useful for domains
where the world is represented as a spatial structure such as
a map or a maze. In such a domain, the clustering applies to
atomic predicates describing the problem topology. This is
the reason why we call this topological abstraction. To point
out the generality of our approach, we describe a few appli-
cation domains. We also show the current status of our work
and further challenges that we plan to address in the future.

Motivation
Many interesting domains are hard to deal with when no ab-
straction is present. Examples of such domains are Sokoban
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and path-finding. In these domains, a hierarchical problem
decomposition based on topological clustering can lead to
significantly better performance. Our preliminary work us-
ing these domains as a testbed has already shown an impres-
sive potential of the topological abstraction.

In domains such as Logistics, topological abstraction of
the real world is part of the domain definition. In Logistics,
several packages have to be transported from their initial lo-
cation to various destinations. A Logistics problem has a
map of cities connected by airline routes. Transportation in-
side cities can be done by truck (there is one truck in each
city). Cities are abstracted, being treated as black boxes. In-
side a city, a truck can go from any point to any destination
at no cost. However, in the real world, a city is a graph of
locations connected by streets and traveling inside a city in-
volves considerable costs. In this context, removing human
expertize and automatically obtaining abstracted models of
the real world is an important research problem.

In Sokoban, which is a robotics application, a man in a
maze has to push stones from their initial positions to desig-
nated destinations called goal squares. The maze contains
inaccessible wall squares and accessible interior squares.
There are two types of actions allowed. A man movement
action changes the man’s position to a free adjacent square.
A stone push action changes the position of both the man
and the considered stone. The preconditions request that the
man is located next to the stone and the opposite position
adjacent to the stone is a free interior square. The effects are
that the stone has moved to the position that was initially
free and the man has moved to the initial stone position.
Both the AI planning and the single-agent search commu-
nities agree that this is a hard domain. The game is difficult
for a computer for several reasons including deadlocks (po-
sitions from which no goal state can be reached), the large
branching factor (can be over 100 – if we consider as moves
all the stone pushes in the man reachable area), and long
optimal solutions (can be over 600 moves). Another prob-
lem is that all known lower-bound heuristic estimators for
the solution length are either of low quality, or expensive to
compute.

Humans, who solve Sokoban puzzles much easier than
state-of-the-art AI applications, abstract the maze into rooms
and tunnels and use this high-level representation to create
abstract plans. Following the humans’ example, an AI appli-



cation can cluster atomic squares into more abstract features
such as rooms connected by tunnels, reducing the complex-
ity of the hard initial problem. In effect, a large number of
atomic squares is replaced by a few abstract, more meaning-
ful features such as rooms and tunnels.

In the domain of path-finding, an agent on a map has to
find a (shortest) path from its current position to a destina-
tion position. The map topology can have many forms, such
as a battlefield, the interior of a building, etc. The problem
is important in commercial computer games, robot planning,
military applications, etc. The efficiency of the path-finding
algorithms is often crucial, as they have to produce solutions
in real-time and use limited resources (Yap 2002). The clas-
sical solving strategy represents the maze as a grid of atomic
cells and uses a search algorithm such as A* on that graph.
An action is to move to an adjacent cell that is not part of
an obstacle. The representation of states in the search space
greatly influences the efficiency of the search. A fine gran-
ularity of the map leads to a large search space, requiring
serious time (and possibly space) resources. A much more
efficient problem representation is to abstract the map into
connected clusters such as rooms, large obstacle-free areas,
bridges, etc. As in Sokoban, the abstract map representation
is a small graph of connected clusters, with a much reduced
search space.

The Model Overview
Abstraction is a powerful general technique for reducing
problem complexity, and many different problem-solving
strategies based on abstraction have been developed. The
novelty of our LAP model is that it abstracts the state repre-
sentation by exploiting topological relationships and form-
ing boundaries between problem components. Atomic fea-
tures that describe a state are grouped together into clus-
ters that become state features in the new problem formula-
tion. Since local properties can be handled more efficiently
if separated from the global planning problem, the clustering
aims to catch the local relationships and keep interactions
between clusters as limited as possible.

Our approach abstracts the initial problem into a two level
hierarchy of sub-problems, each being much simpler than
the initial problem. We obtain a global planning compo-
nent and a collection of local problems, called local compo-
nents, aiming to exploit local relationships in the problem
space and reuse local repetitions in the problem solution. In
the global problem, the initial space is replaced by a much
smaller abstract representation, which uses the states of lo-
cal clusters to characterize the global abstract states. At this
level, clusters are treated as black boxes, keeping their in-
ternal properties hidden. Each cluster has a local problem
associated with it. Local problems do not interact directly.
They only interact through the global level, thereby keeping
the complexity of the model as low as possible.

For the global problem, we define abstract actions based
on the local clusters that we use for abstract state description.
We impose that an abstract action refers to either changing
the internal state of one cluster or changing the internal state
of two neighbor clusters, with no effects on the rest of the
space. This is a powerful yet natural constraint as, in many

Figure 1: Abstraction reduces the size of a plan: (a) one
abstract action contains several atomic actions; (b) when
equivalent states are merged into one abstract state, actions
that make transitions between the equivalent states are im-
plicitly included in the abstract state.

real-life domains, the planning agent either does local pro-
cessing or makes a transition from one local cluster to an-
other. Examples of clusters can be rooms and corridors in
a robot planning domain, cities on a map, large obstacles or
obstacle-free areas in path-finding problems, etc.

The abstract planning problem constructs an abstract plan
(i.e., a sequence of abstract actions) that can always be
translated to a low-level solution. When an abstract plan
is mapped to the initial problem, one abstract planning ac-
tion is mapped to a macro operator, which is a sequence of
atomic actions. The existence of such a mapping is ensured
by our precondition checking mechanism. Checking the pre-
conditions of an abstract action is equivalent to computing a
corresponding sequence of atomic moves that respects all
the low-level constraints in the current world. This compu-
tation constitutes the local component of our problem de-
composition model.

Using abstract actions instead of atomic actions reduces
both the branching factor and the depth of the global search
space by collapsing a sub-tree into a single move. In ad-
dition to using abstract actions, the initial space is further
reduced by identifying equivalent cluster states that can be
merged into one abstract cluster state. Two cluster states��� and ��� are equivalent if there exist two sequences of
local atomic actions � ��� and � ��� so that the sequence �	��
����������������	���

changes the state of the cluster from � � to � 
 .
An action is local to a cluster if we can apply it without in-
teracting with the exterior of the cluster. Sequences of local
atomic moves which make transitions between equivalent
states are “compiled away” completely and are not present
at the global planning level at all. In effect, the planning
problem becomes much easier, as the global search space is
much smaller. Figure 1 illustrates how both macro moves
and state equivalence reduce the complexity of an abstract
plan as compared to the corresponding low-level solution.

In our approach, abstract solutions are correct, which
means that they can always be mapped to a low-level so-
lution. In contrast, the solution optimality is not preserved
at the atomic level. If for each action of an optimal ab-
stract solution we compute an optimal sequence of atomic
moves, the resulting low-level solution is not guaranteed to
be optimal. However, sub-optimal solutions are acceptable
for many applications. For instance, Sokoban is so hard that



any solution will do. If desired, non-optimal solutions can be
improved in a post-processing phase. In path-finding, sub-
optimal solutions are often acceptable, too. In this domain,
more important requests are that solutions are found quickly
and look realistic. In our framework, completeness means
that the existence of an abstract solution (i.e., a sequence of
abstract moves which can be mapped to a low-level solution)
is guaranteed for any problem. We have not yet studied the
completeness issue of our model in detail. In our Sokoban
solver, we have chosen to trade completeness for efficiency.
However, the lack of completeness does not seem to be a
general property of the model. In simpler domains such as
path-finding, we do not see any reason why the complete-
ness should not be guaranteed.

The rest of the paper is structured as follows: In the next
section we review the related work. In the third section we
briefly introduce a formalization of our planning model. The
next section describes the current status of our work and fur-
ther research challenges that we plan to address in the future.
The paper ends with our conclusion.

Related Work
Abstraction is a frequently used technique to reduce problem
complexity in AI planning. Automatically abstracting plan-
ning domains has been explored by Knoblock (Knoblock
1994). His approach builds a hierarchy of abstractions by
dropping literals from the problem definition at the previ-
ous abstraction level. Bacchus and Yang define a theoreti-
cal probabilistic framework to analyze the search complex-
ity in hierarchical models (Bacchus & Yang 1994). They
also use some concepts of that model to improve Knoblock’s
abstraction algorithm. In this work, the abstraction consists
of problem relaxation. In our approach, abstraction means
to reformulate a problem into an equivalent hierarchical rep-
resentation. The abstract problem is solved independently
from the initial problem formulation.

Long et al. use generic types and active preconditions
to reformulate and abstract planning problems (Long, Fox,
& Hamdi 2002). As a result of the reformulation, sub-
problems of the initial problem are identified and solved by
using specialized solvers. Our approach has similarities with
this work. Both formalisms try to cope with domain-specific
features at the local level, keeping the global problem as
generic as possible. The difference is that we reformulate
problems as a result of topological abstraction, whereas in
the cited work reformulation is obtained by identifying var-
ious generic types of behavior and objects such as mobile
objects.

Using topological abstraction to speed-up planning in
a reinforcement learning framework has been proposed in
(Precup, Sutton, & Singh 1997). In this work, the authors
define macro actions as offset-casual policies. In such a pol-
icy, the probability of an atomic action depends not only on
the current state, but also on the previous states and atomic
actions of the policy. Learning macro actions in a grid robot
planning domain induces a topological abstraction of the
problem space.

Previous experiments showed that planning in a low-
level Sokoban formulation was too hard for state-of-the-art

generic planners (McDermott 1997; Junghanns & Schaef-
fer 1999). Culberson performed a theoretical analysis of
Sokoban, showing that this domain is PSPACE-complete
(Culberson 1997). The state-of-the-art Sokoban solvers
are Junghanns’ Rolling Stone (Junghanns 1999; Junghanns
& Schaeffer 2001) and deep green, developed inside the
Japanese Sokoban community (Junghanns 1999). These ap-
plications can find solutions for two thirds of the standard���

-problem test suite 1.

The LAP Formalism
LAP is a planning model based on a topological abstrac-
tion of the state representation. A clustering of the problem
representation space is used to define boundaries between
problem components. The clustering process aims to group
together related atomic pieces and keep cluster interactions
low. The abstraction allows us to decompose the initial
problem into a hierarchy of sub-problems in a divide-and-
conquer manner. For each cluster we define a local problem,
which solves the local constraints of that cluster. The global
problem uses an abstract problem description, where global
states are characterized by states of abstract features. Each
feature is a cluster that represents several atomic elements of
the space.

At the global level, our abstraction approach leads to a
much more compact state representation. For instance, a
room in a robot planning domain is an abstract feature en-
coding many low-level objects such as atomic-size squares.
Since one cluster is a complex feature representing several
atomic features, cluster states can have many possible val-
ues. It is therefore natural to represent the global abstract
states as tuples of cluster values. Using this representation,
our abstraction model can be defined as a special case of
the Simplified Action Structures (SAS) model (Bäckström
& Klein 1991; Bäckström & Nebel 1995).

Next we formally define the LAP model as a special case
of SAS structures. To do so, we first provide the SAS and
SAS � definitions given in (Bäckström & Nebel 1995).

Definition 1 A SAS structure �����
	 ��� ����
is defined

by
� a finite set 	�� �� � ������� � �� �

of state variable indices;� a space of total states
� � � ����� � ����� ����� � � ��� , where

–
� 
 is a domain of mutually exclusive values for the

�
th

state component,
–
� �
 � � 
 � �"! 
 ��# 
 � is the extended domain, where

! 

is the undefined value and

# 
 is the contradictory value
for

� 
 ;� �$� � �� � � � �� � � ����� � � ���� is the space of partial states.� a set
 � �&% � �����'� ��%)( � of operators so that each

% �$
has the structure

% �
�+* �,% ����-��.% � ��/ �.% �0� �1� �2� � �3�� � where
– * �,% � is the pre-condition of

%
,

–
-	�,% �

is the post-condition of
%

,

1The test suite is available at http://xsokoban.lcs.
mit.edu/xsokoban.html.



–
/ �.% �

is the prevail-condition of
%

(i.e., state compo-
nents that do not change when

%
is applied).

The undefined value is introduced to better express * �.% � ,-	�,% �
, and

/ �,% �
. For instance, if an operator

%
leaves un-

changed the
�
th component of a state, then

-	�,% ��� ��� � ! 
 .
Given a state � � � � , we define � �� � � � � �  � 	�� � � 	��
�! � � . The contradictory value is introduced for theoretical
purposes only, so that a partial order is defined over

� � and
it becomes a lattice.

Definition 2 A SAS � -structure is a SAS-structure with the
following additional constraints:
�� % �  � � ��� 	 :

# � does not appear in * �.% � , -	�,% � , or/ �,% �
;�� % � �������� � * �,% ����������� � -	�,% ���

;�� % � �������� �,-	�,% ����������� �,/ �,% ��� ��� ;�� % �  � �  � 	 � * �.% ��� 	��
� ! � � * �,% ��� 	��
� -��.% ��� 	�
The first condition removes the contradictory value from the
framework, so that it only has the theoretical meaning pre-
sented above. The second condition states that a compo-
nent’s value cannot be changed from a defined value to the
undefined value. The third condition ensures that an opera-
tor cannot both change one component’s value and yet pre-
serve its value. The last condition states that components
whose values do not change should be be part of

/ �.% �
.

In order to introduce LAP, we have to define the unary op-
erators, the binary operators, and the adjacency graph. An
operator

% � 
is unary if � � �� �,-��.% � � � � �

. An operator% �

is binary if � � �� � -	�,% ��� � � �

. An unary operator
changes only the value of one state component. We denote
the set of unary operators by

 �
. A binary operator changes

only the value of two state components. We denote the set
of binary operators by

 �
. The adjacency graph is an undi-

rected graph ! � �#" � ! � �%$�� ! � � , where
" � ! � ��	 and

edges model the cluster inter-relationships.

Definition 3 A LAP-structure & ��� 	 � � �  �
is a SAS � -

structure that respects the following additional constraints:
�  �  � �  �

;�� % � �������� � * �,% ��� � ����� � -	�,% ���
;� there is an adjacency graph ! � �	"�� ! � � 	 �%$�� ! ���

defined for this model;�� % �  � � � �� �,-��.% � � �'$�� ! �
The first condition states that all operators are either unary
or binary. Equivalently, an abstract action

%
changes either

one state component or two state components, leaving the
rest of the tuple unchanged. In other words, the planning
agent is only allowed to do local processing inside a cluster
or perform an action affecting two adjacent clusters. This
constraint is related to the unary-SAS, where an action is al-
lowed to change only one component of a state. The second
condition emphasizes that, when checking the preconditions
of an operator, only the values of the components that are
going to be changed matter. The graph ! models cluster
relationships. The last condition states that a transition be-
tween two clusters is possible only if the two clusters are
neighbors.

Current Status and Future Work
At this stage of our work, we have achieved definite
progress, which constitutes our basis for future research de-
velopments. We have introduced the LAP model, which rep-
resents our vision about using local abstraction to reduce the
complexity of planning and heuristic search problems. We
also applied the model to Sokoban (Botea, Müller, & Scha-
effer 2002; Botea 2002; Botea, Müller, & Schaeffer 2003)
and path-finding (Botea, Müller, & Schaeffer 2003), getting
a clear indication about the potential of the approach.

There are several directions in which we plan to extend
our current results. Since our understanding of the model is
still in an early stage, we plan to explore it further, to better
understand the strong and the weak points. We also intend
to develop a formal description of the model and compare it
to other abstraction models.

In the future we want to make steps toward building a
unitary planning framework based on LAP. We want to
develop domain-independent abstraction algorithms to be
used as part of the model. The challenge is to take a
non-abstracted problem and domain formulation written in
PDDL and translate it to an equivalent abstract representa-
tion. One such technique should perform automatic clus-
tering in the representation space. Also, it is interesting to
study the trade-off between efficiency and using generic al-
gorithms, especially for problem abstraction and solving lo-
cal problems.

As part of an unified planning framework based on topo-
logical abstraction, the support of the planning language
can be very important. The support for hierarchical plan-
ning should allow us to express an abstracted problem as
a sum of sub-problems having different abstraction levels.
The support for abstraction includes modeling the relation
between low-level and abstract features, automatic abstrac-
tion, adaptive abstraction, and using hybrid state representa-
tions. Adaptive abstraction and hybrid state representation
model the case when only a part of the problem space is ab-
stracted. In such a situation, global states can be represented
as a mixture of abstract features (for the abstracted problem
components) and low-level features (for the part of the prob-
lem not abstracted yet). In addition, the abstraction can be
performed gradually, as the planning agent discovers more
about the problem topology. In (Botea, Müller, & Schaeffer
2003) we discuss in more detail how a more general version
of PDDL could be useful to better model abstraction and hi-
erarchical planning.

Another future work topic is to extend our work in apply-
ing LAP to domains such as Sokoban. In Sokoban we have
solved

�)(
problems so far, as compared to about * � for the

state-of-the-art applications Rolling Stone and deepgreen. In
this context, our goal is to surpass this performance, showing
that hierarchical search can be more efficient than low-level
search. The limitations of our system are in the lack of the
domain-specific knowledge, not in the abstraction approach.

Conclusion
This paper presented a hierarchical planning approach based
on topological abstraction. Topological abstraction is a pow-



erful technique for reducing problem complexity in AI plan-
ning and single-agent search. The method is based on a clus-
tering of the initial problem representation space. The clus-
tering catches local relationships inside clusters and keep
cluster interactions as limited as possible. In effect, the ini-
tial problem is decomposed into a two-level hierarchy of
sub-problems, each being much simpler than the initial one.
At the local level, each cluster has associated a local problem
that solves the local constraints. There is also a global plan-
ning problem which uses clusters as features in the global
state description. Since this model is useful in several ap-
plication domains, it is worth to build a generic planning
framework using topological clustering. As part of building
this framework, we have shown what we have achieved so
far and what are the challenges that we want to deal with in
the future.
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