
Using Simulation for Execution Monitoring and On-line Rescheduling with
Uncertain Durations

Julien Bidot and Philippe Laborie
ILOG S. A.

9, rue de Verdun - B. P. 85
94253 Gentilly Cedex, France
{jbidot, plaborie}@ilog.fr

J. Christopher Beck
Cork Constraint Computation Centre

University College Cork, Ireland
c.beck@4c.ucc.ie

Thierry Vidal
L. G. P. /ENIT

47, av. d’Azereix - B. P. 1629
65016 Tarbes Cedex, France

thierry@enit.fr

Abstract

The problem we tackle is on-line rescheduling with
temporal uncertainty, activity durations are uncertain
and activity end times must be observed during execu-
tion. In this paper we will assume we have a represen-
tation of the uncertainty of each activity duration in the
form of probability distributions which are used in the
simulation of schedule execution. We use the simula-
tions to monitor the execution of the schedule and in
particular to estimate the quality of the schedule and the
end times of the activities. Given an initial schedule, the
schedule starts execution and we must decide when to
reschedule. We propose and explore a non-monotonic
technique where each time we reschedule we can com-
pletely change the existing schedule except for those
activities that have already started (or finished) execu-
tion. This paper explicitly addresses the basis on which
the decision to reschedule is made by investigating three
simple measures of the data provided by simulation.

Introduction
Nowadays planning and scheduling must take into account
incomplete information and/or potential changes in the envi-
ronment, i.e. uncertainties (Smith, Frank, & Jónsson 2000).
The central issue is to design robust planning and schedul-
ing techniques, aimed at guaranteeing the feasibility and the
quality of the executed schedule. Several ways to get a more
robust schedule have already been investigated (Herroelen
& Leus 2002; Davenport, Gefflot, & Beck 2001; Davenport
& Beck 2000; Wu, Byeon, & Storer 1999; Le Pape 1995;
Smith 1994). One way among others is to keep one and
only one fixed schedule to execute, but reschedule when it
appears the quality of the currently executing schedule de-
grades. This approach is relevant as far as rescheduling is
fast enough w.r.t. the scheduling execution, i.e. when the dy-
namics of the system are low. Relevant questions are then:
how and when the quality should be assessed? How and
when we should reschedule? How do we assess the robust-
ness of the approach? The paper intends to partially answer
these questions.

The problem we tackle is on-line rescheduling with tem-
poral uncertainty, activity durations are uncertain and activ-
ity end times must be observed during execution. In this
paper we will assume we have a representation of the un-
certainty of each activity duration in the form of probability

distributions which are used in the simulation of schedule
execution. We use the simulations to monitor the execution
of the schedule and in particular to estimate the quality of the
schedule (i.e., the makespan) and the end times of the activ-
ities. In the technique that we propose and explore, those
data are used to decide when to reschedule; when such a
decision is taken, the initial schedule is forsaken and a new
one is computed, except for those activities that have already
started (or finished) execution. The global process is hence
clearly a non-monotonic on-line scheduling strategy which
is used in a reactive way. This paper addresses the basis on
which the decision to reschedule is made by investigating
three simple measures of the data provided by simulation.

Definitions
In this paper we focus on the problem of execution monitor-
ing and the decision to reschedule for a Job-Shop Scheduling
Problem (JSSP) with uncertain durations. In this section, we
define the JSSP, present our assumptions about the evolution
of the uncertainty of activities during execution, and give a
number of definitions used throughout the paper.

A JSSP is composed of jobs. A job is a set of activities
that have to be performed in a given order i.e. there is a
precedence constraint between each pair of activities in this
set. Each activity is assigned to a single resource. Each re-
source can process one activity at a time, resources are mod-
eled as unary resources (resource capacity of unit capacity).
A solution to a JSSP is the assignment of a start time to
each activity in order to satisfy the temporal and resource
constraints and to optimize one or several criteria. Our ob-
jective, which is often used, is to minimize the makespan of
the JSSP i.e. to minimize the time between the start time of
the first activity executed and the end time of the last activity
executed. A JSSP is a generic problem formulation suitable
for many application problems, not only resources in a shop,
namely when one has specific sequences of activities requir-
ing resources. Hence a JSSP may be a sub-problem of a
more general planning problem.

Each uncertain activity duration is modeled by a variable
that follows a probability distribution and is associated with
a domain. Any probability law can be used (normal, uni-
form, etc.) however as the duration of an activity must be
strictly positive, the laws are truncated. At execution, we
know the effective duration of an activity only when the ac-

tivity ends and we learn this piece of information from the
environment. The only decision is when to start the execu-
tion of each activity. As a consequence, we know at each
moment, during the execution which are the activities that
have been executed, the ones that are currently executed, and
the ones that have not been started yet. When an activity is
still executing and its minimum possible duration has been
exceeded, our information on the uncertainty can be updated
since the set of possible durations is now reduced. Therefore
the probability distribution is further truncated and renor-
malized. We update data at specific points in time, i.e. the
moments when we want to decide if we reschedule or not,
and hence we need to know the precise current state.

If the initial probability law of an activity is described by
a distribution functionp0(d), and if the activity has been
executed sinced0 units of time, the current distribution is
defined by the probability distributionpd0(d) as follows:

∀d ∈ [0, d0], pd0(d) = 0 (1)

∀d > d0, pd0(d) =
p0(d)∫ +∞

d0
p0(t)dt

(2)

The following three definitions are used in this paper:

• The effective duration of an activity is the duration that
is observed during execution. The effective schedule is
the sequence of activities obtained after execution: all the
activity durations have been observed. Anexecution sce-
nario is the set of all effective durations.

• An indicative schedule is a solution that is generated by
using fixed activity durations. In an indicative schedule
the activities on each resource are totally ordered. The
first indicative schedule is calculated off-line by using the
mean activity durations. During execution a new indica-
tive schedule is constructed if we decide to reschedule;
in that case this new indicative schedule is calculated by
using both the effective durations of the activities already
executed and the mean durations of the other activities.

Non-monotonic Approach
Execution Model Description
The initial (off-line) schedule starts execution and we must
decide when to reschedule. The main idea behind the crite-
ria investigated here is that we use simulation to determine
when to reschedule. We start execution using the indicative
schedule and a simple execution policy: activities are started
as soon as possible following the precedence constraints in
the original problem, the activity sequences defined by the
indicative schedule, and the effective activity durations that
are observed. During execution of the schedule, we choose
to evaluate the need for rescheduling whenever an activity
ends. The first step consists then in updating the truncated
probability distributions representing our view of the uncer-
tain variables, as discussed in the last section. The second
step is to calculate a chosen rescheduling criterion that de-
pends on estimated values of some variables in the problem.
If the estimated value varies too greatly from the indicative
value, we reschedule.

Our estimations of the values for the variables we are in-
terested in are generated through the use of simulation. Ac-
cording to the currently executing schedule and the current
probability distributions, we randomly generate 1,000 exe-
cution scenarios whenever an activity ends. Each scenario
allows us to calculate the simulated values for the variables
we are monitoring and over the 1,000 simulations we cal-
culate their means and standard deviations. The estimated
value of the variable is its mean value over the simulations.
If we decide to reschedule, the current schedule is ignored
and a new schedule is generated except for the activities that
have already started or finished executing.

Three Variations
The first criterion consists in monitoring the makespan and
is defined as follows: we reschedule when the estimated
makespanMest is greater than the rescheduling threshold,
Mest > Mind

σ whereMind is the indicative makespan and
σ is the sensitivity factor. This criterion will not result in
rescheduling if activity durations are shorter than expected.
In other words, it does not allow “opportunistic” reschedul-
ing that would take advantage of unexpectedly short execu-
tion times.

A second variation, based on the first, is opportunistic
because it reschedules based on the absolute difference be-
tween the estimated and indicative makespans. Reschedul-
ing is done when the absolute difference between the esti-
mated makespanMest and the indicative makespanMind

is greater than the rescheduling threshold. In this case, our
rescheduling threshold is the mean of all activity durations
of the deterministic problem,D, divided byσ. More for-
mally, we reschedule when:|Mest −Mind| > D

σ .
The two versions based on makespan monitoring area

priori rather crude: we mainly take into account the ob-
served durations of the activities of the critical path. If these
activities do not slip too much then, as a consequence, the
makespan will not slip too much either. It is possible how-
ever, that the estimated makespan remains approximately
stable while the executions of the activities that do not be-
long to the critical path are such that it is possible to find
a much better solution by rescheduling. We thus propose a
third variation of the approach that takes into account each
activity duration. First we consider at each time the setA
of the n activities that had not finished execution the last
time we rescheduled.|Ddiff | is then defined as the mean of
the absolute differences between the estimated and indica-
tive end times denotedendest andendind for such activities:

|Ddiff | =
∑

A
|endest−endind|

n . We reschedule each time
|Ddiff | is greater than our previous rescheduling threshold,
i.e. when|Ddiff | > D

σ .

Experimental Study
The instances of the JSSP with imprecise durations are gen-
erated from classical JSSP instances. Each activity is asso-
ciated with a normal probability distribution with mean,p,
corresponding to the duration in the classical instance, and
with standard deviationα × p with α > 0. α characterizes

the degree of uncertainty of the problem. The higherα the
higher the standard deviation of each activity so the more
uncertainty in the system.α is constant and equals 0.3 for
each experiment done in this study.

During schedule execution, whenever we are informed by
the environment that an activity has ended, we update all our
data structures, and simulate the continued execution of the
schedule. The updating frequency is sufficiently low to per-
mit us to run 1,000 simulations each time. When the end
of an activity is observed, there might be other concurrent
activities still being executed for which distributions are up-
dated. Scheduling and rescheduling are done using the con-
straint programming approach with a standard chronologi-
cal backtracking algorithm and a time limit of one second.
The new schedule is the best solution found within the time
limit. On the tested problem instances, the optimal schedule
was often found. All scheduling is done with ILOG Sched-
uler 5.3 (ILOG 2002). Unless otherwise noted, the results
come from running 100 different execution scenarios per
value of the sensitivity factor. In this experimental study we
only experiment with one problem, future work will explore
a set of problems.

Results
We use a measure of the computational effort and schedule
quality to evaluate our rescheduling criteria. The former is
measured by the number of times that we reschedule, while
for the latter we use the estimated makespan. The problem
we tackle here is called la11 (Lawrence 1984). It is a JSSP
with 20 jobs and 5 resources. The optimal makespan with
the mean durations is 1,222.

Makespan Monitoring
In this subsection we display the results for the first variation
when the makespan is monitored.

Figure 1 and 2 represent the mean and the standard devi-
ation of the number of reschedulings as the sensitivity fac-
tor σ changes.

0.85 0.9 0.95 1 1.05

Sensitivity factor

0

10

20

30

40

50

60

70

80

90

100

110

M
ea

n
nu

m
be

r o
f r

es
ch

ed
ul

in
gs

Figure 1: Mean number of reschedulings with makespan
monitoring

0.85 0.9 0.95 1 1.05

Sensitivity factor

0

5

10

15

20

25

30

St
an

da
rd

 d
ev

ia
tio

n
of

 th
e

nu
m

be
r o

f r
es

ch
ed

ul
in

gs

Figure 2: Standard deviation of the number of reschedulings
with makespan monitoring

Figure 3 and 4 represent the mean and standard deviation
of the estimated makespan versus the sensitivity factorσ.

0.85 0.9 0.95 1 1.05

Sensitivity factor

1250

1275

1300

1325

1350

M
ea

n
of

 th
e

es
tim

at
ed

 m
ak

es
pa

n

Figure 3: Mean of the estimated makespan with makespan
monitoring

Absolute Makespan Monitoring
Turning to our second criterion, we expect to find better re-
sults if we also reschedule when activities end earlier than
estimated.

Figure 5 and 6 represent the mean and the standard devi-
ation of the number of reschedulings versus the sensitivity
factorσ.

Figure 7 and 8 represent the estimated makespan versus
the sensitivity factorσ. The mean and standard deviation of
the estimated makespan are plotted.

Monitoring of Activity End Times
The first two criteria are myopic because they only focus on
the makespan. Makespan is an aggregate view of the “state”
of the schedule since it depends only on the activities on

0.85 0.9 0.95 1 1.05

Sensitivity factor

55

60

65

70

75

80
St

an
da

rd
 d

ev
ia

tio
n

of
 th

e
es

tim
at

ed
 m

ak
es

pa
n

Figure 4: Standard deviation of the estimated makespan with
makespan monitoring

0 15 30 45 60 75 90 105 120 135

Sensitivity factor

0

10

20

30

40

50

60

70

80

90

100

M
ea

n
nu

m
be

r o
f r

es
ch

ed
ul

in
gs

Figure 5: Mean number of reschedulings with absolute
makespan monitoring

the critical path. In addition, when the standard deviation of
the estimated makespan is large, the mean of the estimated
makespan does not provide accurate information. We thus
investigate a third rescheduling criterion that takes into ac-
count all the activity durations individually.

For the same execution scenarios as those used for Fig-
ure 5, 6, 7, and 8, the shapes of the curves representing the
mean and the standard deviation of the number of reschedul-
ings versus the sensitivity factorσ are very similar to those
on Figure 5 and 6; the shapes of the curves representing the
mean and the standard deviation of the estimated makespan
versusσ are very similar to those on Figure 7 and 8.

These results show that this rescheduling criterion per-
forms better than the absolute makespan criterion because
we are now opportunistic w.r.t. each activity execution (not
only w.r.t. the activities belonging to the critical path). We
thus observe that the effective (final) makespan is always
less than the first estimated makespanMest = 1, 349.87 and
the higher sensitivity factor, the lower the final makespan

0 15 30 45 60 75 90 105 120 135

Sensitivity factor

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

St
an

da
rd

 d
ev

ia
tio

n
of

 th
e

nu
m

be
r o

f r
es

ch
ed

ul
in

gs

Figure 6: Standard deviation of the number of reschedulings
with absolute makespan monitoring

0 15 30 45 60 75 90 105 120 135

Sensitivity factor

1250

1275

1300

1325

1350

M
ea

n
of

 th
e

es
tim

at
ed

 m
ak

es
pa

n

Figure 7: Mean of the estimated makespan with absolute
makespan monitoring

with more reschedulings.

Global comparison
Figure 9 shows the mean estimated makespan obtained for
each of the three variations versus the mean number of
reschedulings. Whatever the rescheduling criterion, mon-
itoring permits to improve schedule quality. These three
curves confirm that the criterion based on the activity end
time monitoring is almost always the best in terms of quality:
for a given computational effort (here the mean number of
reschedulings greater than 20), this rescheduling technique
provides the smallest makespan.

Future Work: Monotonic Approach
We would also like to investigate another approach which
only performs monotonic decisions, that is, unlike the first
approach, when a given decision has been taken to order
activities, it cannot be changed later on; remember that in the
approach investigated in this paper, the indicative schedule

0 15 30 45 60 75 90 105 120 135

Sensitivity factor

64

65

66

67

68

69

70

71

72

73
St

an
da

rd
 d

ev
ia

tio
n

of
 th

e
es

tim
at

ed
 m

ak
es

pa
n

Figure 8: Standard deviation of the estimated makespan with
absolute makespan monitoring

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

Mean number of reschedulings

1250

1275

1300

1325

1350

M
ea

n
es

tim
at

ed
 m

ak
es

pa
n

Makespan
Absolute makespan
Activity end times

Figure 9: Mean estimated makespan for the three criteria

could be recomputed from scratch. The problem with such
a monotonic approach is that we must be very careful when
taking a decision. On the one hand we have to wait until
uncertainty around the decision is low enough so that the
decision is well informed. On the other hand we cannot wait
too long because the schedule is executing and we do not just
want to have a reactive and myopic decision process. In this
approach, we have decided to schedule the overall problem
piece by piece during the execution. Determining when to
schedule a new set of activities and how to select the set to be
scheduled will be done using information from simulation.
This approach is particularly suited for applications where
the dynamics are high.

Conclusion
This paper presents a non-monotonic approach to deciding
when to reschedule based on the use of simulation. We sim-
ulate on-line, at specific points in time, the execution of the
remainder of the indicative schedule. Three rescheduling
criteria were explored. According to the results, reschedul-

ing permits to improve schedule quality. The computational
effort necessary to reach a given schedule quality depends
on the rescheduling criterion. This work in progress seems
to be promising since there are a lot of new directions we
can follow to better understand and tune our techniques in
order to adapt to different applications.

References
Davenport, A. J., and Beck, J. C. 2000. A
survey of techniques for scheduling with un-
certainty. Unpublished manuscript available at
http://www.eil.utoronto.ca/profiles/chris/chris.papers.html.
Davenport, A. J.; Gefflot, C.; and Beck, J. C. 2001. Slack-
based techniques for building robust schedules. InPro-
ceedings of the 6thEuropean Conference on Planning.
Herroelen, W., and Leus, R. 2002. Project scheduling un-
der uncertainty - survey and research potentials. In8th

International Workshop on On-line Scheduling and Plan-
ning.
ILOG. 2002. Ilog scheduler 5.3: Reference manual and
user’s manual. Technical report, ILOG.
Lawrence, S. 1984.Resource-constrained project schedul-
ing: an experimental investigation of heuristic schedul-
ing techniques (Supplement). Ph.D. Dissertation, Graduate
School of Industrial Administration, Carnegie-Mellon Uni-
versity, Pittsburgh, Pennsylvania, United States of Amer-
ica.
Le Pape, C. 1995. Experiments with a distributed architec-
ture for predictive scheduling and execution monitoring. In
Artificial Intelligence in Reactive Scheduling. Chapman &
Hall, R. Kerr and E. Szelke edition. 129–145.
Smith, D. E.; Frank, J.; and Jónsson, A. K. 2000. Bridg-
ing the gap between planning and scheduling.Knowledge
Engineering Review.
Smith, S. F. 1994. OPIS: A methodology and architec-
ture for reactive scheduling. InIntelligent Scheduling. San
Francisco: Morgan Kaufmann, M. Zweben and M. S. Fox
edition. 29–66.
Wu, S. D.; Byeon, E.; and Storer, R. H. 1999. A graph-
theoretic decomposition of the job-shop scheduling prob-
lem to achieve scheduling robustness.Operations Research
47:113–123.

