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Abstract

We present an extension of PDDL for modeling stochastic
decision processes. Our domain description language allows
the specification of actions with probabilistic effects, exoge-
nous events, and actions and events with delayed effects. The
result is a language that can be used to specify stochastic de-
cision processes, both discrete-time and continuous-time, of
varying complexity. We also propose the use of established
logic formalisms, taken from the model checking community,
for specifying probabilistic temporally extended goals.

Introduction
A standard domain description language, PDDL (McDer-
mott 2000; Fox & Long 2002b), for deterministic planning
domains and the biannual International Planning Competi-
tion, first held in 1998, have resulted in a large library of
benchmark problems enabling direct comparisons of differ-
ent deterministic planners. For the 4th International Plan-
ning Competition to be held in 2004, there are plans to in-
clude a track for probabilistic planners. This will require
a domain description language for specifying probabilistic
planning domains. In this paper, we propose such a domain
description language that in many ways can be seen as an
extension of PDDL.

We start by introducing a PDDL-like syntax for spec-
ifying actions with probabilistic effects, which allows us
to define Markov decision processes (MDPs). We then
go on to introduce exogenous events, as well as actions
and events with random delay. The result is a domain de-
scription language that can be used for specifying a wide
range of stochastic decision processes, from MDPs to gen-
eralized semi-Markov decision processes (GSMDPs). A
GSMDP can be viewed as the composition of concurrent
semi-Markov decision processes (SMDPs), and captures the
essential dynamical structure of a discrete event system
(Glynn 1989).

A discrete event system consists of a set of states S and
a set events E. At any point in time, the system occupies
some state s ∈ S. The system remains in state s until the
occurrence of an event e ∈ E, at which point the system
instantaneously transitions to a state s′ (possibly the same
state as s). Our domain description language can be used
to specify both continuous-time and discrete-time discrete
event systems. By including the process concept from level

5 of PDDL+ (Fox & Long 2002a), we could also specify
stochastic hybrid systems, but that is beyond the scope of
this paper.

As a formalism for specifying probabilistic goal con-
ditions we propose PCTL (Hansson & Jonsson 1994) for
discrete-time domains and CSL (Baier, Katoen, & Her-
manns 1999) for continuous-time domains. This permits
the specification of planning deadlines and maintenance and
prevention goals, in addition to the traditional achievement
goals. The benefit of using established logic formalisms for
goal specification is that we can take advantage of recent
developments in probabilistic model checking for efficient
plan verification.

We leave the representation of plans open. The sole focus
of this paper is the representation of probabilistic planning
domains.

Actions with Probabilistic Effects
An important aspect of stochastic decision processes is that
actions can have probabilistic effects. We adopt a model
of stochastic actions that is a variation of factored proba-
bilistic STRIPS operators proposed by Dearden & Boutilier
(1997). A stochastic action a consists of a precondition φ
and a consequence set C = {c1, . . . , cn}. Each consequence
ci has a trigger condition φi with a corresponding effects list
Ei = 〈pi

1, E
i
1; . . . ; pi

ki
, Ei

ki
〉, where Ei

j is a set of literals and
pi

j ∈ [0, 1] is a probability associated with the jth literal set.

We require that
∑ki

j=1 pi
j = 1.

Semantics
In order for an action with precondition φ to be applicable
in a state s, φ must hold in s. A state is a set of atoms
that hold and bindings of functional expressions to rational
values. We propose that executing an action a whose pre-
condition is not satisfied be given the meaning that a has no
effects (cf. Kushmerick, Hanks, & Weld 1995), instead of
this being a violation as is the case for deterministic actions
in PDDL. The precondition φ can in this way be viewed as
a factored trigger condition common to all consequences in
C. The semantics of stochastic actions can then be stated as
follows.

When applying a stochastic action a = 〈φ, C〉 to a state
s, an effect set is selected for each consequence ci ∈ C.
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Let x(i) ∈ [1, ki] denote the index of the selected effect set
for ci, with x(i) being a sample of a random variable Xi

such that Pr[Xi = j] = pi
j . Let the acting effect set for a

consequence ci be

Ẽi
x(i) =

{
Ei

x(i) if s |= φ ∧ φi

∅ otherwise
.

The acting effect set for action a is then the union of acting
effect sets for the consequences:

Ẽ =
n⋃

i=1

Ẽi
x(i)

We divide Ẽ into disjoint sets: Ẽ+ representing positive lit-
erals, Ẽ− representing negative literals, and Ẽu representing
effects updating value bindings for functional expressions.
The result of applying the stochastic action a to the state s
is a state s′ with atoms

(
atoms(s) \ {p : ¬p ∈ Ẽ−}) ∪ Ẽ+

and bindings of functional expressions to values updated in
accordance with Ẽu.

We require that consequences with mutually consistent
trigger conditions have commutative effects. This means
that the successor state is the same after applying an action
to a state s regardless of the order in which the acting effect
sets of enabled consequences are applied to s.

Consequences in our stochastic action model is closely re-
lated to action aspects in the model of Dearden & Boutilier.
Each consequence ci = 〈φi, Ei〉 of an action with precondi-
tion φ corresponds to an action aspect with discriminant set
{φ ∧ φi,¬(φ ∧ φi)} and effects lists Ei and 〈1, ∅〉. The con-
dition that mutually consistent discriminants taken from dis-
tinct aspects of an action have effects lists with no common
atoms corresponds to our requirement of commutative ef-
fects for consequences with mutually consistent trigger con-
ditions.

Syntax
Stochastic actions can be specified by extending the PDDL
syntax for action effects with a probabilistic construct in-
spired by Bonet & Geffner (2001). Figure 1 shows the pro-
posed extension. The syntax we propose does not allow
nested probabilistic statements in effects lists or conditional
effects inside probabilistic statements, which is in line with
the design decision for PDDL2.1 to disallow nesting of con-
ditional effects. Such language constructs would not add any
expressiveness.

As it stands, there is a clear correspondence between the
syntax and the representation of stochastic actions intro-
duced above. An effects list is specified as

(probabilistic pi
1 Ei

1 . . . pi
ki

Ei
ki
).

The above statement also represents a consequence with a
trigger condition φi = true . Consequences with non-trivial
trigger conditions are specified using conditional effects:

(when φi (probabilistic pi
1 Ei

1 . . . pi
ki

Ei
ki
))

Figure 2 gives a specification in the extended PDDL of
the stochastic move action used by Dearden & Boutilier as
an example. A statement such as

<effect> ::= <d-effect>
<effect> ::= (and <effect>*)
<effect> ::= (forall (<typed list(variable)>) <effect>)
<effect> ::= (when <GD> <d-effect>)
<d-effect> ::= (probabilistic <prob-eff>+)
<d-effect> ::= <a-effect>
<prob-eff> ::= <probability> <a-effect>
<a-effect> ::= (and <p-effect>*)
<a-effect> ::= <p-effect>
<p-effect> ::= (not <atomic formula(term)>)
<p-effect> ::= <atomic formula(term)>
<p-effect> ::= (<assign-op> <f-head> <f-exp>)
<probability> ::= Any rational number in the interval [0, 1].

Figure 1: PDDL extension for probabilistic effects.

(:action move
:parameters ()
:effect (and (when (office)

(probabilistic 0.9 (not (office))))
(when (not (office))

(probabilistic 0.9 (office)))
(when (and (rain) (not (umbrella)))

(probabilistic 0.9 (wet)))))

Figure 2: Specification of stochastic move action in proba-
bilistic PDDL.

(probabilistic 0.9 (wet))

with the probabilities not adding up to 1 is meant as a syn-
tactic sugar for

(probabilistic 0.9 (wet) 0.1 (and)),

where (and) represents an empty effect set.
Numeric effects can be used in combination with prob-

abilistic effects, although this could result in a stochastic
process with an infinite state space. We therefore propose
the introduction of a bounded integer type, (integer low
high), in addition to the standard PDDL type, number, for
functional expressions. This provides a straightforward way
of ensuring a finite state space. For example,

(:functions (power ?x) - (integer 0 10))

effectively defines an integer state variable powerx ∈ [0, 10]
for each object x in the domain.

Expressiveness
For now, we assume a simple discrete model of time, where
time is progressing in unit steps with each state transi-
tion (execution of an action). We can model discrete-time
Markov decision processes (MDPs) using stochastic actions
as defined in this section. Later on we will consider richer
time and action models that will allow us to model more
complex stochastic decision processes.

Exogenous Events
Boutilier, Dean, & Hanks (1999) make a distinction between
implicit-event models where the effects of the environment
are factored into the representation of stochastic actions, and
explicit-event models where change caused by the environ-
ment is modeled separately from change caused by actions
selected for execution by the decision maker. We have so far
only provided the means for specifying implicit-event mod-
els. It is sometimes convenient, however, to model environ-
mental effects separate from effects of consciously chosen
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actions. For this purpose we introduce the notion of an ex-
ogenous event, e = 〈φ, C〉, having the same structure as a
stochastic action.

Semantics

An exogenous event e is given the same semantics as a
stochastic action, except that the triggering of e is beyond
the control of the decision maker. When in a state s, any
action chosen for s and all events with a precondition φ that
holds in s are applied to s, producing a successor state s′ at
the next time step.

With exogenous events in the domain model it becomes
possible to have an action and one or more exogenous events
triggering within the same unit time interval, and the succes-
sor state s′ can then depend on the order in which the action
and the events are applied to the current state s. We could
require events and actions that can be enabled simultane-
ously to be commutative, meaning that the successor state
is independent of the order in which the events and actions
are applied to s, but it would be hard for a domain designer
to adhere to this requirement when constructing a large do-
main with many exogenous events. Instead we choose to
assign an equal probability to all orderings of enabled event
and actions in a state. So, for example, if an action adding
the atomic proposition a and an event deleting a is enabled
in a state s, then there is a 0.5 probability of a holding in the
next state.

Boutilier, Dean, & Hanks (1999) consider other ways of
dealing with simultaneity, but these typically requiring ad-
ditional information from the domain designer. The fact,
though, is that simultaneity almost always is an artifact of
using a discrete-time model for an inherently continuous-
time stochastic process, and the probability of two events
triggering at exactly the same time becomes zero if we work
directly with a continuous-time model.

Syntax

We propose using the same syntax for specifying exoge-
nous events as stochastic actions, except that the keyword
:event is used instead of :action. The :event keyword
was introduced in level 5 of PDDL+ (Fox & Long 2002a) for
the specification of deterministic events, and our exogenous
events can be viewed as stochastic extensions of PDDL+
level 5 events.

We can break the stochastic move action in Figure 2 into
an action modeling intended effects and an exogenous event
modeling environmentally triggered effects. Figure 3 shows
how this would be done.

Expressiveness

The addition of exogenous events does not add to the ex-
pressiveness of our specification language: we can still only
model discrete-time MDPs. At this point it is merely added
for the convenience of the modeler, but once we consider
more complex processes we will see that the effects of ex-
ogenous events cannot in a reasonable way be factored into
the effects of actions.

(:action move
:parameters ()
:effect (and (when (office)

(probabilistic 0.9 (not (office))))
(when (not (office))

(probabilistic 0.9 (office)))))

(:event make-wet
:parameters ()
:precondition (and (rain) (not (umbrella)))
:effect (probabilistic 0.9 (wet)))

Figure 3: Partial specification of explicit-event model in
probabilistic PDDL.

¬officeoffice 0.10.1

0.9

0.9

Figure 4: State-transition model for executing the stochastic
move action of Figure 3.

Delayed Actions and Events
Consider the stochastic move action of Figure 3 in isolation.
Figure 4 shows the state-transition model for executing this
action both when in the office and when not in the office.
The stochastic move action is executed at every time step
and has a 0.9 probability of succeeding each time. The time
spent in a state before the action succeeds is a random vari-
able with a geometric distribution G(0.9). Instead of think-
ing of the stochastic move action as being executed at every
time step, we can think of it as being executed once in each
state but with a delayed effect. The delay is in this case a
random variable with distribution G(0.9). Figure 5 shows
the state-transition model for a delayed move action, where
probability distributions instead of probabilities are associ-
ated with each state transition.

A delayed action a is a triple 〈φ, C, F (t)〉, where φ is the
enabling condition of a, C is the consequence set of a de-
fined in the same way as for stochastic actions, and F (t)
is the cumulative distribution function (cdf) for the delay
from when a is enabled until it triggers. We require that
F (0) = 0, meaning that an action must trigger strictly after
it becomes enabled. Delayed exogenous events are defined
analogously. A regular stochastic action (exogenous event)
can be viewed as a delayed action (event) with a cdf satis-
fying the condition F (1) = 1, i.e. it always triggers within
one time unit from when it is enabled,but with no additional
assumptions being made regarding the shape of F (t).

(0.9)G

(0.9)G

¬officeoffice

Figure 5: State-transition model for executing a delayed
move action.
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<delayed-action-def> ::= (:delayed-action <name>
:parameters (<typed list<variable>)
:delay <delay-distribution>
[:condition <GD>]
[:effect <effect>])

<delayed-event-def> ::= (:delayed-event <name>
:parameters (<typed list<variable>)
:delay <delay-distribution>
[:condition <GD>]
[:effect <effect>])

<delay-distribution> ::= Any distribution s.t. Pr[delay ≤ 0] = 0.

Figure 6: PDDL extension for delayed actions and events.

Semantics
For now, let us assume that all delay distributions are mem-
oryless. We will consider general delay distribution in the
next section. The probability distribution of a random vari-
able X is memoryless if Pr[X > t + ∆t|X > t] = Pr[X >
∆t] for all t, ∆t ≥ 0. For an action a with a memory-
less delay distribution this means that if a has been enabled
for t time units without triggering, then the remaining de-
lay has the same distribution as if a had just been enabled.
The geometric distribution mentioned earlier in this section
is a memoryless distribution, and so is its continuous ana-
log: the exponential distribution. The semantics of delayed
actions and events with memoryless delay distributions is as
follows.

Assume we are entering state s at time t. Any action cho-
sen by the decision maker to be enabled in s and all events
with a condition φ holding in s race to trigger first. Let e∗
be the event or action with the shortest delay in s and let d∗
be the delay of e∗ in s. We then get the successor state s′ at
time t + d∗ by applying e∗ to s. An action or event enabled
in s may still be enabled in s′, but this is inconsequential
when all delay distributions are memoryless. If an action or
event did not trigger in s and is not enabled in s′, then that
action or event is simply canceled. If multiple events or ac-
tions have minimum delay d∗ in s, then all those events and
actions are simultaneously applied to s to produce s′ at time
t + d∗.

Syntax
The proposed syntax for specifying delayed actions and
events is given in Figure 6. Delayed actions can be viewed
as a stochastic variation of the deterministic durative actions
available in PDDL+. A delayed action with a determinis-
tic delay distribution D(x) and enabling condition φ corre-
sponds to a durative action with duration x, invariant con-
dition φ, and effects associated with the end of the durative
action.

Figure 7 shows the partial specification of an explicit-
event model with delayed actions and events.

Expressiveness
By just considering memoryless delay distributions, we are
nevertheless only able to model MDPs. With geometric de-
lay distributions we have a discrete-time MDP, while with
exponential delay distributions we have a continuous-time
MDP. Moreover, exogenous events still do not add expres-
siveness as they can easily be factored into the representation

(:delayed-action move
:parameters ()
:delay (geometric 0.9)
:effect (and (when (office)

(not (office)))
(when (not (office))

(office))))

(:delayed-event make-wet
:parameters ()
:delay (geometric 0.9)
:precondition (and (rain) (not (umbrella)))
:effect (wet))

Figure 7: Partial specification of explicit-event model with
delayed actions and events.

(:delayed-action move
:parameters ()
:delay (geometric 0.99)
:effect (and (when (office)

(probabilistic 10/11
(not (office))))

(when (not (office))
(probabilistic 10/11 (office)))

(when (and (rain) (not (umbrella)))
(probabilistic 10/11 (wet))

Figure 8: Partial specification of implicit-event model with
delayed move action.

of actions. We can combine all actions and events enabled
in a state s into one single action.

For a discrete-time model, let G(pi) be the distribution of
the ith action or event enabled in a state s. The probability of
at least one action or event triggering in s after one time unit
is p = 1 − ∏

i(1 − pi), and the probability of the ith action
or event triggering after one time unit given that something
triggers is pi/p. We can therefore represent all actions and
events enabled in s with a single action having delay distri-
bution G(p), and with the effects of the ith action or event
weighted by pi/p. Figure 8 shows the implicit-event repre-
sentation of the action and event in Figure 7.

A similar transformation of an explicit-event model to an
implicit-event model can be made for continuous-time mod-
els. Let E(λi) be the delay distribution of the ith action or
event enabled in a state s, with λi being the rate of the ex-
ponential delay distribution. The rate at which some action
or event triggers in s is λ =

∑
i λi, and the probability of

the ith action or event triggering before any other action or
event is λi/λ. We can use this information to construct a
single action representing all actions and events enabled in
s. Part of a continuous-time explicit-event model is given
in Figure 9 and the corresponding implicit-event model is
given in Figure 10.

General Delay Distributions
Although memoryless distributions can be used to ade-
quately model many real-world phenomena, they are many
times insufficient for accurately capturing certain aspects of
stochastic processes. Hardware failure, for example, is often
more accurately modeled using a Weibull distribution rather
than an exponential distribution (Nelson 1985).

Figure 11 shows an example domain with general de-
lay distributions for actions and events. Here, we have
associated a uniform delay distribution with the move ac-
tion and a Weibull distribution with the make-wet event.
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(:delayed-action move
:parameters ()
:delay (exponential 3)
:effect (and (when (office)

(not (office)))
(when (not (office))

(office))))

(:delayed-event make-wet
:parameters ()
:delay (exponential 2)
:precondition (and (rain) (not (umbrella)))
:effect (wet))

Figure 9: Partial specification of continuous-time explicit-
event model with delayed actions and events.

(:delayed-action move
:parameters ()
:delay (exponential 5)
:effect (and (when (and (office)

(rain) (not (umbrella)))
(probabilistic 0.6 (not (office))

0.4 (wet)))
(when (and (office)

(or (not (rain))
(umbrella)))

(probabilistic 0.6
(not (office))))

(when (and (not (office))
(rain) (not (umbrella)))

(probabilistic 0.6 (office)
0.4 (wet)))

(when (and (not (office))
(or (not (rain))

(umbrella)))
(probabilistic 0.6 (office)))))

Figure 10: Partial specification of continuous-time implicit-
event model with delayed move action.

The state-transition model for the action and event con-
sidered separately is depicted in Figure 12. Each state-
transition model corresponds to a semi-Markov process
(SMP; Howard 1971). However, when viewing the domain
model as a whole—as the composition of concurrent SMPs
(Figure 13)—we have what is called a generalized semi-
Markov process (GSMP; Glynn 1989).

GSMPs differ from SMPs in that the delay distribution of
an enabled event can depend not only on the current state
but on the entire path taken to that state. Consider the state-
transition model in Figure 13. Assume that we start out not
being in the office and not being wet (upper right state). The
move action and the make-wet event are both enabled. Say
that the make-wet event happens to trigger before the move
action after having been in the current state for 3 time units,
causing a transition to the lower right state where the move

(:delayed-action move
:parameters ()
:delay (uniform 0 6)
:effect (and (when (office)

(not (office)))
(when (not (office))

(office))))

(:delayed-event make-wet
:parameters ()
:delay (weibull 2)
:precondition (and (rain) (not (umbrella)))
:effect (wet))

Figure 11: Partial specification of continuous-time explicit-
event model with general delay distributions.

(0, 6)U

(0, 6)U

office ¬office

¬wet wet
(2)W

Figure 12: State-transition model for move action (above)
and make-wet event (below).

office ¬office
¬wet¬wet

(2)W (2)W

(0, 6)U

(0, 6)U

(0, 6)U

(0, 6)U

¬officeoffice
wet wet

Figure 13: Composite state-transition model for move action
and make-wet event.

action is still enabled. Because the move action already has
been enabled for 3 time units in the previous state without
triggering, the delay distribution for the move action in the
new state is in effect U(0, 3). If, on the other hand, we had
entered the lower right state by executing the move action
when being wet in the office (lower left state), then the delay
distribution of the move action would have been U(0, 6).
This history dependence occurs because we are not using
memoryless distributions.

Generalized Semi-Markov Processes

GSMPs, first introduced by Matthes (1962), have the follow-
ing components:

• A set S of states.

• A set E of events.

• For each state s ∈ S, a set E(s) ⊂ E of events enabled in
s.

• For each pair 〈s, e〉 ∈ S×E(s), a probability distribution
p(s′; s, e) over S giving the probability of the next state
being s′ if event e triggers in state s.

• For each event e, a cdf F (t; e), s.t. F (0; e) = 0, giving the
probability that e has triggered t time units after it was last
enabled.
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A generalized semi-Markov decision process (GSMDP) is
a GSMP with a subset of E being controllable events (i.e.
actions).

By allowing general delay distributions, we can specify
GSMDPs using the proposed extensions of PDDL. The pre-
conditions of actions and events determine the sets E(s), the
probability distributions p(s′; s, e) can be derived from con-
ditional probabilistic effects, and the distributions F (t; e)
correspond directly to the delay distributions of actions and
events.

The semantics of a GSM(D)P is best described in terms
of discrete event simulation (Shedler 1993). We associate a
real-valued clock c(e) with each event e ∈ E that indicates
the time remaining until e is scheduled to occur. The system
starts in some initial state s with events E(s) enabled. For
each enabled event e ∈ E(s), we sample a duration accord-
ing to the cdf F (t; e) and set c(e) to the sampled value. Let
e∗ be the event in E(s) with the shortest duration, and let
c∗ = c(e∗). The event e∗ becomes the triggering event in s.
When e∗ triggers, we sample a next state s′ according to the
probability distribution p(s′; s, e∗) and update the clock for
each event e ∈ E(s′) enabled in the next state as follows:

• If e ∈ E(s) \ {e∗}, then subtract c∗ from c(e).
• If e 	∈ E(s) \ {e∗}, then sample a new duration according

to the cdf F (t; e) and set c(e) to the sampled value.

An event enabled in s but not in s′ will have its clock re-
set next time it becomes enabled. The first condition above
highlights the fact that GSM(D)Ps are non-Markovian, as
the durations for events are not independent of the history.
The system evolves by repeating the process of finding the
triggering event in the current state, and updating clock val-
ues according to the scheme specified above.

Summary of Expressiveness
Figure 14 shows the hierarchy of stochastic decision pro-
cesses that can be specified using our proposed probabilis-
tic extension of PDDL. The most general class is GSMDPs,
which allow for concurrency, general delay distributions,
and probabilistic effects. A GSMDP is an SMDP if no ac-
tion or event can be enabled in consecutive states without
triggering, and it is an MDP if all delay distributions are
memoryless (Glynn 1989).

With general delay distributions, there is no longer an
easy way to factor the effects of exogenous events into the
effects of actions. The delay distribution of the combined
action would be the distribution of the minimum of the in-
dividual delay distributions. The minimum of exponential
distributions with rates λi is simply an exponential distribu-
tion with rate

∑
i λi, but for general distributions there is

typically no simple distribution for the minimum. Neither is
it in general possible to obtain a closed-form expression for
the probability of a specific event triggering first. Exogenous
events is therefore more than just a modeling convenience
once we allow general delay distribution.

A GSMDP can be approximated with an MDP by approx-
imating each general delay distribution with a phase-type
distribution. Figure 15 shows two commonly used phase-
type distributions. The phase of each approximating distri-

general delay distributions
probabilisitc effects

general delay distributions
probabilistic effects

concurrency

MDP

SMDP

GSMDP

probabilistic effects
memoryless delay distributions

Figure 14: A hierarchy of stochastic decision processes.

...λ λ λ1 2 n
λ

(a) An n-phase Erlang distribution.

1 1λ
2

λ2

−p1

p

(b) A two-phase Coxian distribution.

Figure 15: Examples of phase-type distributions.

bution becomes part of the state-space for the MDP, which
potentially can lead to state-space explosion. It is therefore
desirable to approximate a general distribution with a phase-
type distribution having few phases, while still matching at
least the first three moments of the general distribution (Os-
ogami & Harchol-Balter 2003).

We can model both discrete-time and continuous-time
stochastic decision processes. German (2000) discusses
techniques for approximating a continuous-time Markov
process with a discrete-time Markov process that can be
used in case a discrete-time model is preferred.

Probabilistic Planning Problems
A probabilistic planning problem is commonly specified as
an initial state s0 (or initial distribution over states), a set
of goal states G, and a probability threshold p. A plan
is considered a solution to a problem if the set of paths
from s0 to states in G has probability p′ ≥ p (Farley 1983;
Blythe 1994; Goldman & Boddy 1994; Kushmerick, Hanks,
& Weld 1995; Lesh, Martin, & Allen 1998). Drummond &
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Bresina (1990) suggest the need for maintenance and pre-
vention goals, in addition to goals of achievement tradi-
tionally considered in probabilistic planning, and propose
a branching temporal logic for specifying temporally ex-
tended goals. Dean et al. (1995) embrace a similar view,
but take a decision-theoretic approach with goals encoded
using utility functions.

We propose a definition of probabilistic planning prob-
lems closely related to that of Drummond & Bresina, adopt-
ing PCTL (Hansson & Jonsson 1994) and its continuous-
time analog CSL (Baier, Katoen, & Hermanns 1999) as a
logic for specifying probabilistic temporally extended goals.
We define a planning problem as an initial state s0 and a CSL
(PCTL) formula φ, and a solution is a plan that makes φ true
in s0.

Probabilistic Temporally Extended Goals
The syntax of CSL (PCTL) is defined as

φ ::= true
∣∣a∣∣φ ∧ φ

∣∣¬φ
∣∣P�� p

(
φ U≤t φ

) ∣∣P�� p (φ U φ) ,

where a is an atomic proposition, p ∈ [0, 1], t ∈ R≥0 (t ∈
Z≥0 for PCTL), and ��∈ {≥, >}.

Regular logic operators have their usual semantics. A
probabilistic formula P�� p (ρ) holds in a state s if and only
if the set of paths starting in s and satisfying the path for-
mula ρ is p′ and p′ �� p. A path of a stochastic process is a
sequence of states and holding times:

σ = s0
t0−→ s1

t1−→ s2
t2−→ . . .

A path formula φ1 U≤t φ2 (“time-bounded until”) holds
over a path σ if and only if φ2 holds in some state si such
that

∑i−1
j=0 tj ≤ t and φ1 holds in all state sj for j < i. The

formula φ1 U φ2 (“until”) holds over a path σ if and only if
φ1 U≤t φ2 holds over σ for some t ≥ 0.

We can derive other common logic and path operators, for
example:

false ≡¬true
φ1 ∨ φ2 ≡¬(¬φ1 ∧ ¬φ2)

P�� p

(
�≤t φ

) ≡P�� p

(
true U≤t φ

)
P≥ p

(
φ1 W≤t φ2

) ≡¬P> 1−p

(¬φ2 U≤t ¬(φ1 ∨ φ2)
)

P> p

(
φ1 W≤t φ2

) ≡¬P≥ 1−p

(¬φ2 U≤t ¬(φ1 ∨ φ2)
)

P�� p

(
�≤t φ

) ≡P�� p

(
φ W≤t false

)
Intuitively, �≤t φ (“eventually”) holds if φ becomes true
within t time units, φ1 W≤t φ2 (“weak until”) holds if either
φ1 remains true for t time units or φ2 becomes true within t
time units with φ1 holding until then, and �≤t φ (“continu-
ously”) holds if φ continuously holds for t time units. These
path operators can be defined without a time-bound in an
analogous way.

Table 1 gives a few examples of goals that we can ex-
press using PCTL/CSL. In addition to regular achievement
goals, we are able to specify goals with deadlines, safety
constraints over execution paths, maintenance goals, and
prevention goals.

Relation to Decision-Theoretic Planning

We can encode a probabilistic goal P�� p (φ1 U φ2) for a de-
cision process M as a Markovian reward function for a mod-
ified decision process M ′. This is done by making every
state for which ¬φ1 ∨ φ2 holds in M absorbing in M ′ and
assigning reward one in M ′ to those states that satisfy φ2 in
M . All other states are assigned reward zero. The expected
total undiscounted reward for M ′ then equals the probabil-
ity of φ1 U φ2 holding in M . For a time-bounded formula
P�� p

(
φ1 U≤t φ2

)
, the time-bound serves as a planning hori-

zon.
Bacchus, Boutilier, & Grove (1996; 1997) use PLTL, a

past-tense variation of the linear temporal logic (LTL; Emer-
son et al. 1990), to specify desired plan behavior, and asso-
ciate rewards with PLTL formulas. This enables the speci-
fication of non-Markovian rewards. A similar approach is
suggested by Thiébaux, Kabanza, & Slaney (2002), who
present a formalism for expressing non-Markovian rewards
adapted to anytime solution methods.

Decision Epochs

For discrete-time MDPs decision epochs occur at every time
point, meaning that the decision maker is allowed to select
an action for execution at regular intervals of unit length. If
we count movements from a state to itself as state transi-
tions (caused by the triggering of an event with no effects on
the current state), then we can say that decision epochs for
discrete-time MDPs occur after every state transition.

A natural extension of this decision model to continuous-
time and non-Markovian decision processes is to have deci-
sion epochs occur only at state transitions. This is the typical
decision model for SMDPs (Howard 1971), and is also the
model used by Younes, Musliner, & Simmons (2003) for
GSMDPs.

Alternatively, we could allow policies that associate with
each state s an action selection function π(s, t), with the
currently enabled action being a function of the time since
the last state transition. This decision model is, for exam-
ple, used by Doshi (1979). Decision epochs occur at every
point in time with this model, making the number of deci-
sion epochs uncountable for continuous-time decision pro-
cesses.

Plan Verification

Given a plan π, a stochastic domain model M, and a plan-
ning problem 〈s0, φ〉, we accept π as a solution if φ holds
in s0 for the stochastic process M controlled by π. We can
take advantage of recent developments in probabilistic veri-
fication to verify if a plan is a solution to a planning problem.

Interest in verification of probabilistic systems has been
on the rise in the last ten years. Symbolic methods for
probabilistic verification of discrete-time (Hansson & Jons-
son 1994) and continuous-time (Baier, Katoen, & Hermanns
1999; Baier et al. 2000; Katoen et al. 2001) Markov pro-
cesses have been proposed. PRISM (Kwiatkowska, Nor-
man, & Parker 2002a; 2002b) is a fast symbolic probabilistic
model checker for both PCTL and CSL formulae.
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Goal description Formula
reach office with probability at least 0.9 P≥ 0.9 (� office)
reach office within 5 time units with probability at least 0.9 P≥ 0.9

(
�≤5 office

)
reach office with probability at least 0.9 along paths where the recharging P≥ 0.9

(P≥ 0.5

(
�≤17 recharging

) U office
)

station can be reached within 17 time units with probability at least 0.5
maintain stability for at least 8.2 time units with probability at least 0.7 P≥ 0.7

(
�≤8.2 stable

)
avoid becoming wet with probability at least 0.8 P≥ 0.8 (�¬wet)

Table 1: Probabilistic goals expressible in CSL and PCTL.

Model checking algorithms for more complex models
have been proposed by Infante López, Hermanns, & Katoen
(2001) (SMPs) and Kwiatkowska et al. (2000) (stochas-
tic timed automata with clocks governed by general distri-
butions). While verification of CSL properties without a
time-bound is no harder for SMPs than for Markov pro-
cesses, the proposed symbolic methods for verifying time-
bounded properties of more general processes rely on tech-
niques that are prohibitively complex, and for GSMPs no
symbolic methods exist at all.

Younes & Simmons (2002) have developed an efficient
sampling-based approach to verifying time-bounded prob-
abilistic properties of general discrete event systems. For
GSMPs without any restrictions on the class of delay distri-
butions that can be used, there are currently no alternatives
to sampling-based approaches. Without exhaustive sam-
pling, we can never be certain that the result returned by
a sampling-based approach is correct, but Younes & Sim-
mons use statistical hypothesis testing techniques to bound
the probability of an incorrect verification result.

Discussion
We have presented an extension of PDDL for modeling
stochastic decision processes of varying complexity. Our
representation of actions with probabilistic effects is in
essence the same as that of Dearden & Boutilier (1997). In
this paper we have tied this representation to a PDDL-like
syntax. We have also extended the representation of stochas-
tic actions to include actions with random delay, which al-
lows us to specify SMDPs and GSMDPs.

We have extended the classical representation of proba-
bilistic planning problems by using PCTL and CSL for spec-
ifying goals. This allows us to express, for example, dead-
lines and maintenance and prevention goals in addition to
the traditional achievement goals. We have discussed work
in probabilistic model checking that could be utilized for ef-
ficient plan verification.

The focus of this paper has been on the representa-
tion of planning problems and not on the representation
or generation of plans. Much of the work in proba-
bilistic and decision theoretic planning assumes an MDP
model. Boutilier, Dean, & Hanks (1999) provides an ex-
cellent overview of planning with MDP models. Howard
(1971) provides a good introduction to SMPs and SMDPs,
and presents dynamic programming algorithms for solving
decision-theoretic SMDP planning problems. Probabilistic
planning with GSMDP domain models have been consid-

ered recently by Younes, Musliner, & Simmons (2003) who
propose a sampling-based algorithm for generating station-
ary policies for GSMDPs, and decision-theoretic extensions
of this work is discussed by Ha & Musliner (2002).
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