
The Formal Semantics of Processes in PDDL

Drew V. McDermott
Yale University

Computer Science Department
drew.mcdermott@yale.edu

Abstract

One reason why autonomous processes have not been offi-
cially incorporated into PDDL is that there is no agreed-upon
semantics for them. I propose a semantics with interpreta-
tions grounded on a branching time structure. A model for a
PDDL domain is then simply an interpretation that makes all
its axioms, action definitions, and process definitions true. In
particular, a process definition is true if and only if over ev-
ery interval in which its condition is true, the process is active
and all its effects occur at the right times.

The Semantics Problem for PDDL
In (Fox & Long 2001a), Maria Fox and Derek Long pro-
posed extensions to PDDL for describing processes, that is,
activities that could go on independent of what the executor
of plans did. They also described a semantics for processes
in terms of hybrid automata (Henzinger 1996). Their pro-
posal was not adopted by the rules committee for the third
International Planning Competition, mainly because most of
the members preferred to focus on the narrower extension to
“durative actions,” actions that took a nonzero amount of
time. Another potential reason is that the semantics of pro-
cesses were so complex that no one really understood them.

A semantics for all of PDDL is hard to lay out, for a
couple of reasons. One is that the requirement-flag system
turns it into a family of languages with quite different be-
havior. For instance, the :open-world flag transforms the
language from one in which not is handled via “negation as
failure” into god-knows-what. To sidestep this complexity, I
will make a variety of simplifying omissions and deliberate
oversights:

� I will ignore the possibility of action :expansions.

� There will be no formalization of the fact that propositions
persist in truth value until some event changes them.

� :vars fields in action and process definitions will be left
out.

� I will assume effects are simple conjunctions of literals.
There are no secondary preconditions (“:whens”) or uni-
versally quantified effects.

� I won’t discuss durative actions. They can be defined in
terms of processes, as discussed by (Fox & Long 2001b)
and (McDermott 2003).

� Fox and Long (Fox & Long 2001b) allow for “events,”
which occur autonomously, like processes, but are instan-
taneous, like primitive actions. I won’t discuss these, al-
though they present no particular problem.

� Except for the presence of autonomous processes, we’ll
stay in the “classical milieu,” and in particular assume that
the planner knows everything about the initial situation
and the consequences of events and processes. There’s
no nondeterminism, and no reason to use sensors to query
the world.

The Structure of Time
It’s fairly traditional (McDermott 1982; 1985) to think of an
action term as denoting a set of intervals; intuitively, these
are the intervals over which the action occurs. To make this
precise, we have to specify what we mean by “interval.” A
date is a pair 〈r, i〉, where r is a nonnegative real number and
i is a natural number. A situation is a mapping from propo-
sitions to truth values. A date range function is a function
from real numbers to natural numbers. A situation contin-
uum is a pair 〈C, h〉, where h is a date range function and C
is a timeline, that is, a mapping from

{〈r, i〉 | r ∈ nonnegative reals and 0 ≤ i < h(r)}
to situations. If d1 = 〈r1, i1〉 and d2 = 〈r2, i2〉, then d1 <
d2 if r1 < r2 or r1 = r2 and i1 < i2. A date 〈r, d〉 is in
〈C, h〉 if r ≥ 0 and 0 ≤ d < h(r). A situation s is in 〈C, h〉
if there exists a date d in 〈C, h〉 such that C(d) = s.

The intuitive meaning of these definitions is that at any
point r in time there can be a series of zero or more actions
taken by the target agent (i.e., the hypothetical agent that
executes plans). The range function says how many actions
are actually taken at point r in that continuum. Each action
takes an infinitesimal amount of time, so that “just after”
time r there can be an arbitrary number h(r) of actions that
precede all time points with times r′ > r. (This picture is
reminiscent of nonstandard analysis (Robinson 1979).)

Using this framework, a purely classical plan might be
specified by giving an action A(i) for all dates 〈0, i〉 where
i < h(0), and h(0) is the length of the plan. The plan is
feasible if A(0) is feasible in the initial situation, and A(i +
1) is feasible in C(0, i). The plan achieves a goal G if G is
true in C(0, h(0)). It may sound odd to imagine the entire

1

plan being executed in zero time, but time is not a factor in
classical planning, so a plan might as well take no time at all
to execute, or h(0)× dt if you prefer. In what follows, I will
use the dt notation to denote an infinitesimal time interval,
i.e., the time from 〈r, i〉 to 〈r, i + 1〉. If date d = 〈r, i〉, then
d + dt = 〈r, i + 1〉.

If we broaden our ontology to allow for autonomous pro-
cesses, then plans can have steps such as “turn on the faucet,”
and “wait until the bucket is full.” We can use situation con-
tinua to model bursts of instantaneous “classical” actions
separated by periods of waiting while processes run their
course. A plan may even call for the target agent to do noth-
ing, but simply wait for processes that are active in the initial
situation to solve a problem. In that case h(r) = 0 for all r.

A closed situation interval in continuum 〈C, h〉 is a pair of
dates [d1, d2]〈C,h〉 with d1 and d2 both in 〈C, h〉. (The sub-
script will be omitted when it is obvious which continuum
we’re talking about.) Informally, the interval denotes the set
of all situations in 〈C, h〉 with dates d such that d1 ≤ d ≤ d2.
The interval is nontrivial if d1 ≤ d2. We also have open
and half-open situation intervals defined and written in ex-
act analogy to the usual concepts of open and half-open in-
tervals on the reals.

A Notation for Processes
Fox and Long, in (Fox & Long 2001a), suggested a nota-
tion for autonomous processes. I propose a slightly different
one, which I believe is clearer and somewhat easier to for-
malize. A process is declared using a syntax similar to that
for actions. (This notation is part of an overall reform and
extension of PDDL called Opt. The Opt Manual (McDer-
mott 2003) lays out the whole language and describes other
features of processes that I’ve omitted in this discussion.)

<process-def>
::= (:process <name>
:parameters

<typed list (variable)>
<process-def body>)

<process-def body>
::=
[:condition <goal proposition>]
[:start-effect <effect proposition>]
[:effect <effect proposition>]
[:stop-effect <effect proposition>]

The syntax <typed list (variable)> refers to the
PDDL notation exemplified by (x y - Location r -
Truck), although here again the full Opt language allows
several extensions.

The informal semantics of a process are simple: When-
ever the :condition of the process is true, the process be-
comes active. It has immediate effects spelled out by its
:start-effect field and the :effect field. These take
time dt. The start-effects occur once, but the through-effects,
i.e., those specified by the :effect field, remain true as
time passes. As soon as the process’s condition becomes
false, the through-effects become false and the stop-effects

(described by the :stop-effects field) occur, again tak-
ing time dt.

The contents of :effect field of a process definition is a
conjunction of one or more propositions of the form

(derivative x d)

where x and d are numerical fluents, that is, objects of type
(Fluent Number).1 So for a process’s effects to remain
true is for various quantities to change at the given rates.
The rates are not constants in general, so we can express any
set of differential equations in this notation.

A formal specification of the semantics of processes is
given by detailing the truth conditions of a process defini-
tion, that is, the constraints mandated by the definition on
situation intervals over which the process is active. This
specification must fit with an overall semantics for plans and
facts.

I said above that a plan might be described by listing the
times when actions occur, but I’m actually going to describe
plans in terms of the method language of Opt. The full
method language is rather different from PDDL’s, but I’m
going to stick to a subset that is close to what PDDL allows.
The grammar of plans is simply

P ::= A
| (seq P1 ...Pn)
| (parallel P1 ...Pn)

A ::= action term
| (wait-while p)
| (wait-for q p)

where p is a process term and q is an inequality that p pre-
sumably affects. An example plan is

Plan A =
(seq (parallel (turn-on faucet1)

(plug-up outlet1))
(wait-for (>= (level tub1)

(cm 30))
(filling tub1)))

Here filling is defined as a process thus:

(:process filling
:parameters (b - Tub)
:vars (f - Faucet l - Outlet)
:condition (and (faucet-of f b)

(outlet-of l b)
(faucet-on f))

:effect
(and (when (plugged-up l)

(derivative
(level b)
(constant (cm/sec 2))))

(when (not (plugged-up l))
(derivative

(level b)
(constant (cm/sec 1))))))

and the actions are defined thus:

1I capitalize types such as Number and type functions such as
Fluent.

2

(:action turn-on
:parameters (f - Faucet)
:effect (faucet-on f))

(:action plug-up
:parameters (l - outlet)
:effect (plugged-up l))

Obviously, these are all simplified for expository purposes.
One apparent simplification is that we provide no method for
the target agent to test whether the level in tub1 has reached
30 cm. But in our classical framework, there is no need for
such a method; the agent knows exactly when the level will
get to that point.

What we want our formal semantics to tell us is that Plan
A is executed over any situation interval [〈r1, i1〉, 〈r2, 0〉]
in which (turn-on faucet1) and (plug-up outlet1)
occur at times 〈r1, i1〉 and 〈r1, i1 + 1〉 (in either order), and
the level of tub1 is < 30 cm at time r1 and reaches 30 cm
at time r2. It is also executed over any situation interval
[〈r1, i1〉, 〈r1, i1 +2〉], where the turn-on and plug-up ac-
tions are executed as before, and where (level tub1) ≥
30 cm at r1.

The Formal Semantics
Interpretations of Domains with Processes
An interpretation of a domain D is a tuple 〈U0, T, I0〉,
where U0 is a function from type symbols in D to sets of
objects called subuniverses; T is a set of situation continua;
and I0 is a function from the non-type symbols of D to ob-
jects in the subuniverses. If I0(s) = v, and s has type τ ,
then it must be the case that v ∈ U0(τ).

U0 must obey the following constraints:

U0(Void) = ∅
U0(Boolean) = {true, false}

U0(Integer) = the set of all integers

U0(Number) = the set of all real numbers. I treat
integers as a subset of the reals, not an alternative
data type

U0(Situation) =
{s | For some 〈C, h〉 ∈ Tand date d,C(d) = s}

We want to extend U0 to a function U that gives the mean-
ing of all type expressions, and I0 to a function I giving the
meaning of all formulas and terms. To extend U0, we need
the notion of a tuple, of which Opt distinguishes two vari-
eties, Tup-tuples and Arg-tuples. The former are like lists
in Lisp, the latter like ordered n-tuples in mathematics. The
difference is that Tup-tuples can be of any length, includ-
ing 0 and 1, while Arg-tuples have to have length at least
2. An Arg-tuple 〈x〉 of length 1 is identical to x. An empty
Arg-tuple is impossible, so we identify the type (Arg) with
Void, the empty type. In this paper we need only Arg-
tuples, so I concentrate on those.

Both kinds of tuples have designators with named fields,
as in

(Arg num - Integer &rest strings - String)

but in the Arg case the names are there only because
an Arg expression often does double duty as defining a
tuple and declaring local variables in an action or pro-
cess. The subuniverse denoted by (Arg num - Integer
&rest strings - String) is

{〈i, s1, . . . , sn〉 | i is an integer and each sj is a string}
which, not surprisingly, is the type of arguments to a an ac-
tion declared thus:

(:action name
:parameters (num - Integer

&rest strings - String)
...)

The labels are simply ignored when determining the deno-
tation of the type. We can replace each label with a “don’t
care” symbol (“ ”) or omit them entirely. Note that if τ is
a type, U((Arg τ)) = U(τ). (I will use the term Arg-
type for expressions such as the one following the keyword
:parameters even though the Arg flag is missing.)

We extend U to tuples by making U((Tup ...)) denote
a Tup-tuple and U((Arg ...)) denote an Arg-tuple as sug-
gested by these examples. I won’t try to fill in the messy
details.

Using Arg-tuples, we can give a meaning to the type no-
tation (Fun τr <- τd) of functions from domain type τd

to range type τr. The domain type τd is in general an Arg-
tuple, and U((Fun τr <- τd)) = U(τd) ⊗ U(τr).

The type (Fluent τ) is an abbreviation for (Fun τ <-
Situation). Prop, for “proposition,” is an abbreviation
for (Fluent Boolean). Predicates have types of the form
(Fun Prop <- ...).

Recall our intuition that action and process terms denote
sets of intervals. For this to be the case, the subuniverse that
the denotation resides in must be the powerset of a set of
intervals, written pow(S).

There are four kinds of event type, and hence four types
of sets of interval sets to contemplate: no-ops, skips, hops,
and slides:2

1. Skip: The type of all actions that take one infinitesimal
time unit:

U(Skip)= pow({[〈r, d〉, 〈r, d + 1〉]〈C,h〉
| 〈C, h〉 ∈ T and d + 1 ≤ h(r)})

= pow({[d, d + dt]〈C,h〉 | 〈C, h〉 ∈ T})
2. Hop: The type of all actions that take more time than a

Skip:

U(Hop) = pow({[〈d1, d2〉]〈C,h〉
| 〈C, h〉 ∈ T, d1, d2 are in 〈C, h〉,

and there is a d in 〈C, h〉
such that d1 < d < d2})

2In the full Opt implementation, events can have values as well
as effects, so we can distinguish, say, (Skip Integer) from
(Skip String). What I write as Skip in this paper would
actually be written (Skip Void) in Opt, meaning a Skip that
returns no value.

3

3. no-op: A constant whose value is the only element of
subuniverse

U((Con no-op)) = {{[d, d]〈C,h〉 | d is in 〈C, h〉 ∈ T}}
that is, the singleton set whose only element is the set
of all zero-duration closed situation intervals in T . The
name of this type is (Con no-op). Unlike the others,
this subuniverse is not the powerset of anything.
I define U(Step) to be U((Con no-op)) ∪ U(Skip) ∪
U(Hop).

4. Slide: The type of autonomous processes. A process
must take noninfinitesimal time, so

U(Slide) = pow({[〈r1, i1〉, 〈r2, i2〉]〈C,h〉
| 〈C, h〉 ∈ T and r1 < r2})

We also assume that every expression in Opt is typed. In
all our examples imagine a superscript giving the type of
the expression, with the proviso that all the type labels are
consistent. For instance, the formula

(parallel (turn-on faucet1)
(plug-up outlet1))

with type annotations would be

(parallel(Fun Action <- (Arg &rest Action))

(turn-on(Fun Action <- Faucet)

faucet1Faucet)Action

(plug-up(Fun Action <- Outlet)

outlet1Outlet)Action)Action

The annotations in this example are consistent because
whenever f is labeled (Fun τ <- α), then in (f a) a
is of type α and (f a) is of type τ . The proper-typing
requirementavoids absurd formulas like (if 3 (= (not
"a"))). In the implementation, finding a consistent typ-
ing is a mostly automatic process, which is not relevant to
this paper.

We can now state very simply how to extend I0 to I ,
which assigns a denotation to every (properly typed) term
of the language. I takes two arguments, a term and an envi-
ronment, which is a total function from variables to ordered
pairs 〈v, y〉, where y is a subuniverse.

• If s is a symbol, I(sτ , E) = I0(s) ∈ U(τ).

• If x is a variable, I(xτ , E) = v iff E(x) = 〈v, U(τ)〉 .

• For a functional term,

I((f(Fun τ <- α)aα1
1 . . . aαn

n)τ , E) = v
iff

〈〈I(aα1
1 , E), . . . I(aαn

n , E)〉, v〉
∈ I(f(Fun τ <- α), E)
(which is possible only if

U(α1) ⊗ . . . ⊗ U(αn) ⊆ U(α))

Because f can be an arbitrary function symbol, we don’t
need special rules to give the meanings of (if p q), (= a
b), and such. We just need to stipulate that some symbols
have the same meaning in all interpretations:

• I0(if) = (λ (x, y)(λ (s) x(s) = false or y(s) = true))

• I0(=) = (λ (x, y)(λ(s) x = y))
• ... and so forth

In general, the type of a predicate symbol P is (Fun Prop
<- α) for some α, recalling that Prop is the type of func-
tions from situations to booleans. We can take if to be
just another predicate, whose argument type is (Arg Prop
Prop). I(if) must then be a function from situations to
Booleans, which yields true when its first argument yields
false or its second yields true in that situation. Although I
use λ here, it’s just a shorthand for a set of ordered pairs.
I could have said {〈〈x, y〉, {〈s, b〉 | b = true iff x(s) =
false or y(s) = true}〉}

The denotation of “=” is a constant function on situations;
two objects are equal only if they are always equal. The
equality tester that tests whether two fluents have the same
value in a situation is called fl=, with denotation

• I0(fl=) = (λ (f1, f2)(λ (s) f1(s) = f2(s)))
The denotation of an action term or a process term must

be a set of intervals:

For every primitive action function f , that is, every
symbol f defined by an :action definition I0(f) must
be of type (Fun Skip <- α).
For every process function f , that is, every symbol f
defined by a :process definition, I0(f) must be of
type (Fun Slide <- α).

In both cases, α is the Arg type from the :parameters
of the definition.

I’ll deal with domain-dependent functions in a later sec-
tion. The meanings of seq and parallel are defined in
every domain thus:

• I0(seq)

= (λ (a1, . . . , an)
{[d0, de]〈C,h〉
| 〈C, h〉 ∈ T

and there exist dates d1, . . . , dn

such that for j = 1, . . . , n,
[dj−1, dj] ∈ aj

and dn = de})
• I0(parallel)

= (λ (a1, . . . , an)
{[db, de]〈C,h〉
| 〈C, h〉 ∈ T

there is a function s :[1, . . . , n]
→ situation intervals,

such that for j = 1, . . . , n,
s(j) = [dj1, dj2]〈C,h〉 ∈ aj

and db ≤ dj1 ≤ dj2 ≤ de

and for some jb, je ∈ [1, . . . , n],
s(jb) = [db, djb2]
and s(je) = [dje1, de])

Another symbol that must have a standard meaning is
derivative:

• U0(derivative)

= U((Fun (Fluent Number) <- (Fluent Number)))

4

• I0(derivative) =

(λ (f)
(λ (s) if there is a d such that

(for all (r, i, C, h)
if 〈C, h〉 ∈ T, s = C(r, i), h(r) = i

and there is an r′
such that r < r′

and for all r′′, r < r′′ < r′
h(r′′) = 0

then f+(C)(r) = d),
then d
else 0))

where f+(C) is the “right derivative” of f in timeline C
measured at time r, that is, the function of time whose
value at t is the limit as ∆t → 0 of

f(C)(r + ∆t) − f(C)(r)
∆t

This will require a bit of explanation. The same situa-
tion can occur in more than one continuum of T . So we
first define the derivative at a “situation occurrence,” that is,
a date 〈r, i〉〈C,h〉. The derivative can be meaningfully de-
fined only if there is an open interval after 〈r, i〉 such that no
discrete events occur during that interval — i.e., h(r) = i
and h(r′′) = 0 for all times r′′ in that interval. In that case
(λ (t) f(C(t, 0))) is an ordinary function of time over that
interval, which may have a derivative. The derivative of that
function we denote by f+(C).

The remaining detail to fill in is to switch from situation
occurrences to situations by requiring f+(C)(r) to have the
same value for all occurrences of C(r, i). Actually, it might
be reasonable simply to require that this be the case, because
it follows from the Markov property, that what happens start-
ing in a situation depends only on what’s true in that situa-
tion, assuming the target agent doesn’t interfere. For now,
I don’t impose that requirement, but it will usually follow
trivially from the axioms of a domain.

Important note: Even though the numerical value of the
derivative in s is defined in terms of timelines in which no
actions happen, the derivative still has a value at a date 〈r, i〉
in a timeline 〈C, h〉 in which an action, or even a series of
actions, occurs at 〈r, i〉, so long as C(r, i) = s. You can
think of (derivative f) as the rate at which the quan-
tity f would change starting at s if it were undisturbed. In
some timelines, the disturbance may be sufficient to cause
the derivative to disappear ∆t after the current situation, that
is, at C(r, i + 1), but it is still well defined at s.

Truth and Models

As usual, we want to define a model to be an interpretation of
a domain’s language that makes all its axioms true. Because
propositions change truth value from situation to situation,
we must amend that to: A model of a PDDL domain is an
interpretation 〈U0, T, I0〉 that makes all axioms true in all
situations and environments.

For ordinary axioms, we simply translate an axiom A

from the :axiom syntax of PDDL to the traditional syntax,3

yielding A′, and then test whether I(A′, E)(s) is true for all
environments E and situtations s in 〈C, h〉. We use the tra-
ditional specification of the interpretation of quantified for-
mulas:

• I((forall (x - α) PProp), E) = p, an object from
subuniverse

situations (T) ⊗ {true,false}
such that p(s) = true if and only if I(P,E′)(s) = true for
every environment E′ that differs from E, if at all, only in
assigning a different value, drawn from U(α), to variable
x. (That is, E′(xα) = 〈v, U(α)〉 for some v ∈ U(α).)

• Dual formula for exists left as an exercise for the reader.

In addition to axioms, we must require that an interpreta-
tion make action and process definitions true. I is extended
to an action definition thus:

• I((:action a(Fun Skip <- α)

:parameters rα

:precondition pProp

:effect eProp),
E)

= true
if and only if
for all 〈C, h〉 ∈ T ,

and every E′ that differs from E,
if at all, only in the assignments
of the variables in r,

and all d1 = 〈r, i〉 and d2 = 〈r, i + 1〉 in 〈C, h〉,
if I(pProp, E′)(C(r, i)) = true

and 〈I(rα, E′), [d1, d2]〈C,h〉〉 ∈ I0(a)
then I(eProp, E′)(C(r, i + 1)) = true

In other words, the action definition is true if whenever I
says the action occurs and that its preconditions are true,
the effect is true. In this definition, α is an Arg type, and
I(rα, E′) refers to an instance of the Arg-tuple obtained by
substituting its variables as specified by E′.

We also need the following condition

• For all pairs of action terms aSkip1 �= aSkip2 , all time-
lines 〈C, h〉 ∈ T , and all environments E1 and E2, if
[d1, d1 + dt]〈C,h〉 ∈ I(a1, E1) and [d2, d2 + dt]〈C,h〉 ∈
I(a2, E2), then d1 �= d2. In other words, no two actions
occur over precisely the same infinitesimal (“skip”) inter-
val.

This condition enforces an interleaving interpretation of
concurrency. Two actions can occur at the same time, but
they must still be ordered.

The truth condition on process definitions relies on the
following definition:

With respect to an interpretation 〈U, T, I〉
and an environment E,
an interval [d1, d2]〈C,h〉 is a
maximal slide in 〈C, h〉 over which p is true

3Opt allows you to use the traditional syntax for axioms, which
is a lot less cumbersome that PDDL’s.

5

if and only if

[d1, d2] is a slide,
and for all d, d1 < d < d2

I(p,E)(C(d)) = true,
and there is a d0 < d1 such that

for all d, d0 < d < d1

I(p,E)(C(d)) = false,
and there is a d3 > d2 such that

for all d, d2 < d < d3

I(p,E)(C(d)) = false

To preserve flexibility, the definition doesn’t say what the
truth value of p is at d1 or d2. So the interval over which p
is true can be open or closed.

Finally, figure 1 shows truth condition for processes. This
condition may appear more complex than one would expect,
because a conceptual “if and only if”:

A process occurs over an interval if and only if that
interval is a maximal slide over which its :condition
is true.

has had to be broken into an “if” clause and an “only if”
clause, to allow the process’s boundaries to differ infinitesi-
mally from the boundaries of the maximal slide. The reason
for this slop is to enforce another interleaved-concurrency
constraint:

• For all pairs of process terms p1 �= p2, all time-
lines 〈C, h〉 ∈ T and all environments E1 and E2, if
I(p1, E) = [db1, de1]〈C,h〉 and I(p2, E) = [db2, de2]〈C,h〉
then db1 �= db2 and de1 �= de2. In other words, no two
processes begin or end at precisely the same moment.

The interpretation of the “wait” actions can now be spec-
ified:

• I0(wait-while) =

(λ (p) {[d1, d2]〈C,h〉
| either there is a slide [pb, pe] ∈ p

such that pb ≤ d1 < pe and d2 = pe

or there is no such slide and d1 = d2})
• I0(wait-for) =

(λ (q, p) {[d1, d2]〈C,h〉
| there is a slide [pb, pe] ∈ p

such that pb ≤ d1 ≤ d2 < pe

and d2 is the first date in [d1, pe]〈C,h〉
such that q(C(d)) = true})

Although there are many details to be fleshed out, we can
summarize with this definition:

A model of a PDDL domain D is an interpretation
〈U0, T, I0〉 of the symbols in D such that for every
variable-binding environment E

� For every axiom A and every date 〈r, i〉 in 〈C, h〉 ∈
T , I(A,E)(s) = true.

� and For every process or action definition P , I(P,E)
= true.

where I is the extension of I0 outlined above, respect-
ing the interleaving constraints and the required defini-
tions of symbols such as derivative and seq.

Assessment
I have been thinking about the logic of processes for a long
time (McDermott 1982). The contents of this paper are ba-
sically a further refinement of those ideas.

The only other attempt I know of to add autonomous pro-
cesses to PDDL is the proposal by Fox and Long (Fox &
Long 2001a) for the AIPS 2002 Planning Competition. The
syntax of their notation differs from mine only in detail.4

The semantics they propose is very different. They base
it on the theory of hybrid automata (Henzinger 1996), so
that to every domain and initial situation there corresponds
an automaton. Finding a plan is finding a path through the
states of the automaton. The main virtue of their approach is
also its main defect: They are determined to preserve finite-
ness properties exploited by many planning algorithms, es-
pecially that there are only a finite number of plan states,
and that the branching factor at each plan state is finite. The
states of the hybrid automaton are all possible sets of ground
atomic formulas in the language. For the state set to be fi-
nite, atomic formulas with numeric arguments must be sep-
arated out and treated in a special way. The whole apparatus
becomes quite unwieldy.5

I believe that maintaining finiteness properties required
by some current planners should be rejected as a constraint
on domain-description languages. If some problems cannot
be solved by some planners, so be it. It would be better
to make it the responsibility of any planning system to de-
cide whether a problem is beyond its scope. Of course, re-
quirements flags can provide a broad-brush portrait of what
a planner must be able to handle in order to solve a prob-
lem, so it’s important to keep the set of flags up to date as
the language evolves. But it’s asking too much for PDDL to
fit the capabilities of some set of existing planners exactly.
In the first planning competition, there were loud votes for a
:length field to be included in every problem description,
specifying a bound on the length of a solution, because sev-
eral systems had to guess a length in order to get started. We
reluctantly acceded to that demand, but the :length field
has since been taken out on the grounds that it’s an arbitrary
hint to a special class of planners. Trying to base the se-
mantics of PDDL processes on finite-state hybrid automata
strikes me as an even worse accommodation to the needs of
a “special-interest group.”

There is an important issue raised by (Fox & Long 2001a),
namely, how do you check the correctness of a problem so-
lution when real numbers are involved? A complete answer
is beyond the scope of this paper, but I believe the semantic
framework laid out here lends itself to the idea of “approxi-

4Which means it will be the subject of bitter and unending de-
bate before the next competition!

5I should acknowledge the regrettable fact that a specification
of the formal semantics of anything is generally clear only to the
person that wrote it, so my proposal is probably as opaque to Maria
and Derek as theirs is to me.

6

• I((:process a(Fun Slide <- α)

:parameters rα

:condition pProp

:start-effect bProp

:effect eProp

:stop-effect wProp),
E)

= true
if and only if
for all 〈C, h〉 ∈ T ,

and every E′ that differs from E,
if at all, only in the assignments
of the variables in r,

and every interval [d1, d2] in 〈C, h〉
where d1 = 〈r1, i1〉 and d2 = 〈r2, i2〉,

(a) If 〈I(rα, E′), [d1, d2]〈C,h〉〉 ∈ I0(a)
then there is a maximal slide [〈r1, is1〉, 〈r2, is2〉]〈C,h〉 over which p is true

with respect to 〈U, T, I〉 and E′
such that is1 ≤ i1 and is2 ≤ i2

and I(bProp, E′)(C(r1, i1 + 1)) = true
and I(wProp, E′)(C(r2, i2 + 1)) = true

and
(b) If [d1, d2] is a maximal slide over which p is true

with respect to 〈U, T, I〉 and E′
then there are dates d′1 = 〈r1, ip1〉 and d′2 = 〈r2, ip2〉,

such that 〈I(rα, E′), [d′1, d
′
2]〈C,h〉〉 ∈ I0(a)

and ip1 ≥ i1 and ip2 ≥ i2
and 〈I(rα, E′), [d′1, d

′
2]〉 ∈ I0(a)

and I(bProp, E′)(C(r1, ip1 + 1)) = true
and I(wProp, E′)(C(r2, ip2 + 1)) = true

Figure 1: Truth Condition for Process Definitions

7

mate simulation” of a plan. The exact dates at which events
occur is not important as long as every step the planner takes
is feasible when it takes it, and the plan simulator stops in a
state where the goal condition is true. If a problem includes
an objective function, we evaluate it in that final state. The
value may be slightly different from the true mathematically
attainable minimum, but all we require is that it be compara-
ble to the results obtained by other planners. The only tricky
part is how to deal with equalities in process specifications.
If the :condition of a process includes a formula (not
(= x y)), then the process stops when x equals y. Finding
the precise instant when that occurs is usually impossible.
To fix this problem, all the planner has to do is convert the
“=” goal relationship to a “≥” or “≤” by observing whether
x < y or x > y when the process starts, and do the best
job it can of finding the earliest time when the new inequal-
ity becomes true. A similar trick will work for determining
when the action (wait-for (= x y) p) ends.

There is also the easily overlooked issue of plan execu-
tion. The assumption that actions take infinitesimal time is
of course absurd when applied to a physically possible ac-
tion. Obviously, there must be some temporal grain size ε
specified to the executor such that any action must take less
than ε, and every process must take more than ε. Otherwise,
the domain model is simply inappropriate.

Finally, it should be noted that, because action and pro-
cess definitions have truth conditions, they can be “reverse
engineered” to yield formulas with the same truth condi-
tions. These would not be legal PDDL axioms, because
they would have to mention multiple situations explicitly,
whereas PDDL axioms refer implicitly to one and only one
situation. However, to translate PDDL to Kif (?), which has
no built-in action-definition syntax, these axioms could be
very useful. There existence also makes it clear that PDDL
is not “predicate calculus + actions”; it’s just “predicate cal-
culus + useful macros for writing action-definition axioms.”

References

Fox, M., and Long, D. 2001a. Pddl. + level 5: An
Extension to PDDL2.1 for Modeling Planning Do-
main with Continuous Time-dependent Effects available at
http://www.dur.ac.uk/d.p.long/pddllevel5.ps.gz.

Fox, M., and Long, D. 2001b. Pddl.
2.1: An Extension to PDDL for Express-
ing Temporal Planning Domains available at
http://www.dur.ac.uk/d.p.long/pddl2.ps.gz.

Henzinger, T. 1996. The theory of hybrid automata. In
Proc. Annual Symposium on Logic in Computer Science,
278–292.

McDermott, D. 1982. A temporal logic for reasoning about
processes and plans. Cognitive Science 6:101–155.

McDermott, D. 1985. Reasoning about plans. In Hobbs, J.,
and Moore, R. C., eds., Formal Theories of the Common-
sense World. Ablex Publishing Corporation. 269–317.

McDermott, D. 2003. Draft opt manual. Available at
http://www.cs.yale.edu/˜dvm/papers/opt-manual.ps.

Robinson, A. 1979. Selected papers of Abraham Robin-
son: Vol. II. Nonstandard analysis and philosophy. Yale
University Press.

8

