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Abstract

Planning systems rely on knowledge about the problems they
have to solve: The problem description and in many cases ad-
vice on how to find a solution. This paper is concerned with a
third kind of knowledge which we term domain knowledge:
Information about the problem that is produced by one com-
ponent of the planner and used for advice by another. We first
distinguish domain knowledge from the problem description
and from advice, and argue for the advantages of the explict
use of domain knowledge. Then we identify three classes
of domain knowledge for which these advantages are most
apparent and define a language, DKEL, to represent these
classes. DKEL is designed as an extension to PDDL.

Knowledge in Planning
The knowledge input to a planning system may be divided in
two distinct classes: problem specification and advice. The
problem specification in turn typically consists of two parts:
(1) a description of the means at the planners disposal, such
as the possible actions that may be taken and resources that
may be consumed, and (2) the goals to be achieved, includ-
ing possibly a measure that should be optimized, constraints
that should never be violated, and so on. Advice we term
knowledge, of all kinds, intended to help the planner find a
better solution, find it more quickly or even to find a solution
at all.

There is often a certain difficulty in distinguishing the
two, particularly since the same kind of knowledge, indeed
the very same statement, may sometimes play one role and
at other times another: e.g. constraints may be part of a prob-
lem specification, but there are also several planners that
accept advice formulated as constraints. Nevertheless, two
things always distinguish advice from the problem specifi-
cation:

First, the problem specification defines what is a solu-
tion, advice does not. It may well be possible to find good
solutions while ignoring, or even acting in conflict with,
the given advice, and conversely, heeding poor advice may
cause a planner to fail to find a solution even though one
exists. It is, however, obviously never possible to find a so-
lution in violation of the problem specification.

Second, the problem specification is, at least in theory, in-
dependent of the planning system used, or even of the fact
that an automated planner is being used at all (apart from

the fact that the specification must be expressed in a format
understandable by the planner). What constitutes useful ad-
vice, by contrast, tends to be highly dependent on the type
of planning system used.

Languages for Specification and Advice

Any automated planning system needs a means of accept-
ing as input a problem specification, and in most cases this
means is language. Consequently, many different planning
problem specification languages, with a varying degree of
similarity, have been used, but recently, PDDL (McDermott
et al. 1998; Bacchus 2000; Fox & Long 2002b) has emerged
as a kind of de facto standard. On a “specification vs. ad-
vice” scale, PDDL is strongly oriented towards specifica-
tion, and even as a specification language, it has its short-
comings: there is for example no easy way to specify con-
straints, which, as mentioned above, may be an important
part of a problem. To combat these shortcomings, several
extensions of PDDL (or PDDL-like languages) have been
proposed: PDDL2.1 (Fox & Long 2002b) adds the abil-
ity to express temporal and metric properties of actions as
well as metric goals. PCDL (Baioletti, Marcugini, & Milani
1998) extends PDDL with a constraint vocabulary, which
is then “compiled away” into standard PDDL. Many plan-
ners have added their own specific extensions, e.g. for con-
straints (Huang, Selman, & Kautz 1999) or invariants (Re-
fanidis & Vlahavas 2001), and many use altogether different
languages, e.g. to allow the expression of non-determinism
(Bertoli et al. 2001) or of more elaborate action and resource
models (Chien et al. 2000).

Languages for expressing plan constraints, whether they
be specification or advice, tend to be quite closely related
to the kind of planning algorithm used. Examples include
Hierarchical Task Network (HTN) schemas, which have a
long tradition as a means of expressing plan constraints (Tate
1977; Wilkins 1990; Nau et al. 1999; Wilkins & desJardins
2000), and more recently different temporal logics, as in
e.g. TLPlan (Bacchus & Kabanza 2000) and TALplanner
(Kvarnstrom & Doherty 2001).

Planners capable of accepting as input control knowledge
of other kinds also use mostly specific languages. This is
a natural consequence of the fact that the knowledge itself
tends to be highly planner-specific.
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Domain Knowledge
In between specification and advice, a third class of knowl-
edge, commonly called domain knowledge, may be distin-
guished. Briefly, it consists of statements about a planning
problem that are logically implied by the problem specifica-
tion, but that are not part of the specification. We would like
to amend this definition with the requirement that domain
knowledge is “planner independent”, i.e. not closely tied to
the internal workings of any particular planning system, but
such a requirement is difficult to formulate precisely.

There are several good reasons for making this distinc-
tion. First of all, domain knowledge is implied by the prob-
lem specification, so it can be derived from same, and in
many cases derived automatically. In this way it is different
from advice, which must be provided by a domain expert, or
learned from experience over many similar problems. There
is a large, and growing, body of work on automatic “domain
analysis” of this kind.

Furthermore, good planner advice tends to depend on
knowledge both about properties of the problem and the
planner used to solve it. For a given planner, there is of-
ten a fairly direct mapping from certain classes of domain
knowledge to useful advice for that planner. To take a sim-
ple example, in a regression planner an obvious use of state
invariants is to cut branches of the search tree that violate an
invariant. This is a sound principle, since a state that violates
an invariant can never be reached and thus a goal set that vi-
olates the invariant is unreachable. The principle is founded
on knowledge of how the planner works, but depends also on
the existence of a certain kind of domain knowledge, namely
state invariants.

On the other hand, domain knowledge in itself does not
determine its use for advice. To continue the example,
state invariants have many more uses: the MIPS planner
uses them to find efficient state encodings (Edelkamp &
Helmert 1999) and to find abstractions for generating heuris-
tics (Edelkamp 2001), while in GRT (Refanidis & Vlahavas
2001) they are used to split the problem into parts and to
improve the heuristic. In principle, the same planner can
use the same domain knowledge in different, even mutually
exclusive, ways.

For many classes of domain knowledge there exists al-
gorithmic means of generating such knowledge, and indeed
many planners do produce and make use of it: GRT, MIPS
and STAN (Long & Fox 1999) use state invariants, FF (Hoff-
mann & Nebel 2001) uses goal orderings (Koehler & Hoff-
mann 2000), and IPP uses irrelevance information (Nebel,
Dimopoulos, & Koehler 1997; Koehler 1999).

In these examples, the algorithms for generating domain
knowledge can be, at least in principle, separated from the
planning algorithm where it is used, but for practical rea-
sons, the two are built together as one unit. We believe that
making a practice out of this separation is good idea, as it
enables “fast prototyping” of integrated planning systems,
where existing implementations of different domain analy-
sis techniques can easily be “chained” and coupled to ex-
isting planners. Although this is not necessary for building
high performance planning systems, it would simplify the
experimental evaluation of the impact of domain analysis on

different planners, and thereby further the development of
both automatic domain analysis and more flexible planners.

A Language for Domain Knowledge
In order to separate the generation and use of domain knowl-
edge, we need some means of exchanging this knowledge
between producer and consumer. What we propose is to
“standardize” the expression of domain knowledge, using
a language that builds on PDDL, to make this exchange as
natural and easy as the passing of a problem specification to
a planner. In short, what PDDL has done for planning prob-
lem specification, we wish to do for domain knowledge.

To this end, we have created the Domain Knowledge Ex-
change Language (DKEL). The language is an extension of
PDDL and provides a means for items of domain knowledge
to be stated as part of a PDDL domain or problem specifi-
cation. The main goal of DKEL is to enable the kind of
quick and easy prototyping of integrated planning systems
outlined above. At the same time, it provides a limited tax-
onomy of different kinds of domain knowledge, with an at-
tempt at a rigorous definition of the semantics for each kind.

DKEL is currently limited to a few classes of domain
knowledge (described in the next section). We have selected
these classes because they are reasonably well understood
and obviously useful to planners of different kinds, but most
of all because there exist domain analysis tools able to gen-
erate them.

Given that there already exists many formalisms for the
specification of so-called “knowledge rich” planning prob-
lems, it is reasonable to ask why we propose yet another.
The reply would be that DKEL fills a different niche: the
kinds of knowledge expressible in DKEL are different from
those expressible by constraint languages such as HTN
schemas and temporal logics. In short, DKEL is a comple-
ment to, and not a replacement for, existing languages.

Implications of Explicit Domain Knowledge
DKEL augments the original domain or problem descrip-
tion with domain knowledge rather than altering or reducing
it right away. Preserving the original structure of the domain
and problem specification has several advantages: First of
all, it is a prerequisite for the “chaining” of several analy-
sis techniques described above. It also leaves the choice of
what knowledge to apply, and how to apply it, up to the plan-
ner. As mentioned, turning domain knowledge into effective
advice for a specific planner depends on knowledge of the
workings of that planner, and including this in the exchange
language would blur the separation between the generation
and use of knowledge that it is meant to help achieve.

There are also problems with the use of domain knowl-
edge. Not all knowledge is useful to all planners, and may
even be detrimental if incorrectly used. Even if a particular
item of knowledge is useful, the computational cost of in-
ferring it may be higher than the benefit incurred by its use.
Adding explicit domain knowledge to a problem specifica-
tion increases the size of the specification, and although a
planner may always choose to ignore useless items of knowl-
edge, indiscriminate adding-on may blow specifications up
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to a size where the increased cost of simply reading and han-
dling them outweighs any advantage. Note, however, that
these problems are not intrinsic to explicit representations of
domain knowledge, but only more prominent for them: In an
integrated planning system, domain analysis algorithms can
be customized to closely match needs, while explicit repre-
sentations are intended for use with prefabricated, general
tools.

Separating domain analysis from its use in planning
means that the planner component loses control over how
knowledge is generated, and must simply accept it as stated.
Knowledge expressed in an interchange format like DKEL
may have been added by the domain designer instead of be-
ing discovered by automatic analysis. Regardless of origin,
it may be incorrect due to a flawed analysis, differences in
the interpretation of knowledge statements, or even sheer
malice. However, adopting an explicit representation for do-
main knowledge, such as DKEL, may also help in avoiding
problems of the kinds mentioned before. It offers a human-
readable intermediate format with a well-defined semantics,
and encourages empirical evaluation of planning tools. Ul-
timately, the decision what domain knowledge generating
components to couple to a specific planner still belongs with
the designer of the integrated planning system.

Demarcating Domain Knowledge: Scope of DKEL

Distinguishing domain knowledge from other forms of
knowledge, and thus finding the right scope for DKEL, is
not easy. For example, it is not entirely clear where domain
analysis ends and planning begins: Heuristic state evalua-
tions done by a planner such as FF falls under our defini-
tion of domain knowledge as “statements logically implied
by the problem specification”, but we would not consider
it such because what meaning, and relevance, would this
information have to any other planner? Conversely, state-
ments that are in fact not domain knowledge may appear
syntactically indistinguishable from statements that are. For
example, to a regression planner that uses state constraints
to prune unreachable states from the search, advice to prune
reachable but undesirable states could be given in exactly
the same form. Only the fact that these constraints are not
implied by the problem specification makes it advice rather
than domain knowledge.

Another point is that domain knowledge is defined with
respect to a problem instance, but what we really want to
do is state knowledge about a planning domain, i.e. about
all problem instances belonging to the domain. Because the
concept of “domain” in PDDL is rather weak1, we must in
doing this exclude “unreasonable” problem instances. The
semantics of DKEL statements, and language features such
as :context, have been made with this in mind.

1The domain can for instance not specify the existence of any
particular object, or sanity constraints on the initial state, nor re-
strictions on the goal. The first PDDL specification (McDermott et
al. 1998) had some features along these lines, e.g.:constants
and situations but they never gained widespread use.

Meta Knowledge
The semantics of DKEL statements are carefully and exactly
defined, but they are in a sense not complete. For exam-
ple, the meaning of the :irrelevant clause for actions
is roughly “if there exists a plan, there also exists a plan that
does not contain the irrelevant action”, but this does not say
whether the plan not containing the irrelevant action is of
the same length (or cost according to the problem metric).
Given two statements about action irrelevance, it is also not
clear whether they can both be applied at the same time, or if
doing so will make the problem unsolvable altogether. An-
other example is the :replaceable clause, which states
that any occurrence of a particular action sequence can be re-
placed by a different action sequence, in any valid plan, but
it does not specify if the replacement is valid in the presence
of another action sequence in parallel,

These uncertainties could be resolved by adopting a
stricter semantics for the various DKEL statements, but this
would be likely to make the whole language too restricted to
be useful. At the same time, most domain analyzers can be
much more specific about properties of the domain knowl-
edge they produce. For example, all :irrelevant action
clauses produced by RedOp (Haslum & Jonsson 2000) can
be safely used together, and some of them are also guaran-
teed not to increase the length (serial or parallel) of the plan.

We call this knowledge about properties of particular
items of domain knowledge “meta knowledge” and ideally,
we would like to be able to express it alongside domain
knowledge in DKEL. However, what kinds and forms of
meta knowledge are relevant is not clear to us, and therefore,
at the moment, DKEL supports it only via “tags”: domain
knowledge items may be annotated with arbitrary symbols,
intended to express such properties. A sketch of an ontology
for meta knowledge is given in section “Current Form and
Future Development” below.

Classes of Domain Knowledge
This section presents definitions of the semantics of three
different classes of domain knowledge: state invariants,
fact and action irrelevance, and replaceability of action se-
quences. These are the classes that can be expressed in
DKEL. They represent by no means an exhaustive classifi-
cation of domain knowledge, but together they cover a large
part of the domain knowledge that is made explicit by exist-
ing automatic analysis techniques.

In defining the meaning of knowledge clauses, we con-
sider for the most part plans to have the simple form of a se-
quence of atomic actions, although in some cases, e.g. state
invariants, the meaning of a domain knowledge statement
remains unchanged when slightly more complicated plan
forms, such as partially ordered sets of actions, are used.

State Invariants
State invariants are probably the most commonly produced
and used class of domain knowledge. They express prop-
erties of a planning domain that are invariant under action
application, e.g. the uniqueness of a physical location of an
object. State invariants in planning are commonly defined as
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a formula F on states such that if F is true in the initial state
of a planning problem, F is true in all reachable states. The
following is a typical example, taken from the blocksworld
domain2, which states that a block is either on the table or
on exactly one other block:

(forall (?x) (and
(or (clear ?x) (exists (?y)

(implies (not (= ?x ?y)) (on ?x ?y))))
(forall (?y ?z)
(implies (and

(not (= ?x ?y)) (not (= ?x ?z))
(on ?x ?y) (on ?x ?z)) (= ?y ?z)))

(not (exists (?y) (implies (not (= ?x ?y))
(and (on-table ?x) (on ?x ?y)))))))

The formula is best explained in the terminology of TIM,
see (Fox & Long 1998), p. 386f. The first of the three
outer conjuncts corresponds to a state membership invariant,
meaning that in every state and for every block ?x at least
one of (on-table ?x) or (on ?x ?y) is true, where ?y
is different block than ?x. Likewise, the second and the third
conjunct correspond to a identity and a uniqueness invariant,
respectively. The second denotes that a block is on top of at
most one other block and the third that a block is never si-
multaneously on top of another block and on the table. Then,
for a problem with two blocks A and B, this formula speci-
fies that exactly one of the facts (on-table A) and (on
A B), and analogously exactly one of the facts (on-table
B) and (on B A), is true (provided this was the case in the
initial state).

We will generalize the above definition of state invariants
slightly. First, we simply drop the reference to the initial
state. As any state can be the initial state of a planning prob-
lem, an invariant according to the first definition is useful
even if it becomes true in an intermediate state of a plan
instead of in the initial state. Second, we consider invari-
ants also on pairs of adjacent states. This allows us to ex-
press monotonicity properties on transitions among states.
Although this extension may seem complicated, it fits natu-
rally into the framework of DKEL.

Hence, our definition of a state invariant is (1) a formula
F on states such that if F is true in a state s, F is true in
all states reachable from s by application of a sequence of
actions. In addition, a state invariant may be (2) a pair F1,
F2 of a formula on states and a formula on pairs of states,
respectively, such that if F1 is true in a state s then F2 is true
for all pairs (s, s′) where s′ is reachable from s by the appli-
cation of a single action or a set of non-conflicting actions in
parallel.

With this definition we can formulate state invariants for
a planning domain independently of any particular problem,
even though their applicability clearly depends on the initial
state of the problem. For example, intuition says that all
the blocksworld state invariants given above are properties
of the blocksworld domain, but it is easy to define problems
whose initial state violates them. Our definition simply says

2We use blocksworld as example domain throughout this paper.
The blocksworld domain is simple, widely known, and allows the
formulation of a wide variety of domain knowledge.

that because such an initial state falsifies the antecedents of
the state invariants, there is nothing said about the following
state.

Also note that an invariant according to (1) remains an
invariant, in the intuitive sense, also if the plan is parallel
or partially ordered, if one makes the common assumption
that the result of executing such a plan is the same as that
of executing one of its linearizations. The definition does,
however, not guarantee that the invariant formula holds dur-
ing the execution of each action in the plan. In PDDL2.1,
it is possible to specify effects at different time points in
the execution of an action, and thus an action may falsify
an invariant formula at the start but restore the truth of the
formula at its end.

State invariants are explicitly and implicitly used by a va-
riety of planners, among which are SATplan (Kautz & Sel-
man 1992), STAN, GRT, and MIPS. A similar variety of
tools calculate invariants from domain and problem descrip-
tions, e.g. TIM, Discoplan (Gerevini & Schubert 1998), and
a technique by Rintanen (2000).

Operator and Predicate Irrelevance
The difficulty of solving a planning problem increases, fre-
quently exponentially, with the size of the problem speci-
fication. Unfortunately, for most planners it makes small
difference how much of the specification is actually relevant
for solving the problem goals. The larger and more complex
problems get, the more likely is the presence of irrelevance
(most of the real world is irrelevant for any of our tasks) and
the greater is the cost of not realizing it. It is fair to say that
the identification and efficient treatment of irrelevance is one
of the key issues in building scalable planners.

As important as we consider the treatment of irrelevance
to be, as difficult it is to define precisely. Nebel et al. (1997)
identify three different kinds of irrelevance: (1) a fact or
action is completely irrelevant if it is never part of any so-
lution. This is a very weak criterion, since a plan can al-
ways contain redundant steps that contribute nothing to the
achievement of the problem goals but make use of otherwise
irrelevant facts or actions. Unreachable actions are of course
completely irrelevant. (2) An initial fact or an action is so-
lution irrelevant if its removal from the specification does
not affect the existence of solution, and (3) an initial fact or
an action is solution-length irrelevant if its removal does not
affect the length of the shortest solution plan. This can ob-
viously be generalized to any conceivable cost measure on
plans.

We adopt solution irrelevance as the basis for our defi-
nition, since it seems the most intuitive and least compli-
cated. Solution-cost preserving irrelevance is an important
concept, but because of the unlimited number of measures,
we relegate this property to meta knowledge. Thus we say
that an action a is irrelevant if removing a from the set of
actions available to the planner does not alter the existence
of a solution. In other words, if there exists a plan, then there
also exists a plan that does not contain the irrelevant action.

Concerning facts, the situation is more complicated, since
there are several possible interpretations of what it means
to “remove” a fact from the problem. Removing an “initial
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fact”, i.e. one that is true in the initial state, can be simply
defined to mean making its value in the initial state false
(or unknown) instead. For facts that are not initial there is
no such obvious interpretation, since removing a fact from
the problem completely may have undesired side effects: If
the removed fact appears as a precondition, an action may
become applicable in a state where it was not applicable be-
fore, and thus the simplified problem may have a solution
that is not a solution to the original problem.

Because of this, we choose only a simple definition of
“initial fact irrelevance”: A fact is initial-irrelevant if its
truth value in the initial state does not affect solution ex-
istence.

Action irrelevance is usable by practically every planner,
since its effect is only to reduce the size of the problem. This
is particularly important for planners that work with an in-
stantiated representation. Fact initial-irrelevance has been
shown to be important for Graphplan and Graphplan-like
planners (Nebel, Dimopoulos, & Koehler 1997). Domain
analysis tools that produce irrelevance information include
RIFO (Nebel, Dimopoulos, & Koehler 1997) and RedOp.
RIFO implements several methods of detecting irrelevance,
some of which are not guaranteed to be solution-preserving
and therefore do not strictly fall within our definition. Still,
since the knowledge produced by RIFO has been shown to
be very useful in practice, we feel that the lack of a solution-
preservation guarantee should be regarded as meta knowl-
edge and indicated by a tag.

Replaceable Sequences of Operators
Planning problems tend to have numerous solutions and
many of them are similar. They may differ perhaps only
by a reordering of actions that do not interfere with each
other, or by the substitution of a different object with iden-
tical properties, and recognizing this can improve the effi-
ciency of search since only one of the equivalent sequences
have to be considered (Fox & Long 1999; Taylor & Korf
1993). More generally, a sequence of actions may be “sub-
sumed” by a different sequence, in the sense that wherever
the first sequence occurs, the second can be substituted. We
say that an action sequence T1 is replaceable by an action
sequence T2 if in every executable action sequence contain-
ing T1, replacing T1 by T2 also results in an executable se-
quence, which, in addition, achieves all the goals achieved
by the original sequence.

An example of such a pair in the blocksworld domain are
T1 =(move A B D)◦(move A D C) and T2 =(move A
B C): whenever a block is moved twice in a row, this se-
quence can be replaced by a single move directly to the des-
tination of the second move. This is also an example where
replaceability holds only in one direction, since replacing
the second sequence by the first may result in an invalid plan,
if D is covered by another block.

The replaceability relation is defined with respect to linear
plans only: It leaves no guarantee that making the replace-
ment in a plan where there exists actions parallel with the
replaced sequence yields a valid plan. For example, if the
sequence (move E C F)◦(move G H D) happens in par-
allel with T1, the previous replacement yields a conflict: If

(move A B C) is placed at the same time as (move A B
D) then block C is still occupied, and if it is placed one step
later, block D is not freed early enough. Note, however, that
if replaceability between two sequences holds in the con-
text of parallel totally ordered plans, it always holds also for
linear plans. Thus, knowledge of replaceability as defined
above may useful at least as a basis for computing replace-
ability for other kinds of plans.

Examples of automatically generated replaceability
knowledge includes the result of RedOp and the RAS con-
straint of Scholz (1999). The latter also goes into replace-
ability for parallel plans. A common use of replaceabil-
ity is “commutativity pruning”, i.e. pruning from search all
but one permutations of a sequence of commutative actions,
used for example by GRT (Refanidis & Vlahavas 2001).
An example of a different use is the “Planning by Rewrit-
ing” approach (Ambite & Knoblock 2001), although this
uses a more elaborate model of replacement and hand-coded
knowledge.

Other Classes of Domain Knowledge
Many classes of domain knowledge beside the three detailed
above have appeared in the literature. They have all been
implemented as part of planning systems, or in some cases
as stand-alone tools, and thus are all candidates for future
extensions of DKEL. Examples include

Landmarks: A landmark (Porteous, Sebastia, & Hoffman
2001) is a fact that must be achieved at some point in ev-
ery solution to a planning problem. Different ordering re-
lations on landmarks can be identified and used to prune
from search candidate plans that achieve landmarks in vi-
olation of the order.

Goal orderings: Goal orderings (Koehler & Hoffmann
2000) allow a divide and conquer approach to planning.
A goal ordering for a planning problem consists of two
or more ordered subsets of its goals. Instead of planning
for all goals at once, a planner can repeatedly search for a
plan from one subset to the next, using the goal state of the
previous plan as initial state. Then, the overall solution is
the concatenation of the plans for the subgoals.

Symmetries: The detection of symmetry can considerably
improve the performance of planning systems: If a can-
didate plan does not yield a solution, there is no use in
considering a symmetric candidate. Fox and Long (1999;
2002a) describe how to find symmetries in planning prob-
lems.

Generic Types: Fox and Long (2000; 2001) define a
generic type as a collection of types, characterized by spe-
cific kinds of behaviors, e.g. movable objects and lockable
doors. Generic types are present in a variety of planning
domains and are amenable to the application of special-
ized techniques. The identification of generic types al-
lows to automatically compose a planner specialized for
the planning problem at hand.

Another important class of knowledge in widespread use
is general constraints on sequences of states and actions. It
is common both as part of a problem specification (although
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not directly expressible in PDDL) and as a means of express-
ing advice. There are, however, good reasons why we have
chosen not to include it in DKEL: There are already many
languages for expressing constraints for these purposes, e.g.
HTN schemas, temporal logic, and more. Such languages
also tend to be highly expressive and quite complex. Even
though constraints on action and state sequences can consti-
tute domain knowledge, their main use is as either part of the
specification, or as advice founded on the intuition of the do-
main designer. Also, there exists very few domain analysis
tools that automatically discover knowledge of this kind.

The Domain Knowledge Exchange Language
This section describes how the three classes of domain
knowledge detailed in the previous section are expressed in
DKEL.

DKEL Design Principles
Our main goal in the design of DKEL has been to make a
language that is useful in practice. In short, it should be
simple, extendible, and as familiar as possible.

The most important design principle is simplicity, which
does not only apply to the language definition but also
to its intended use. In other words, we tried to keep
things simple and ask the users of DKEL to do the same.
On the other hand, the expressiveness of the language
should be adapted to current (and, as far as possible, fu-
ture) use, which motivates our restriction to three common
classes of domain knowledge. In a trade-off with simplic-
ity, we introduce a certain amount of “syntactic sugar”,
i.e. abbreviations for some common cases, for example the
:set-constraint.

Finally, DKEL is designed as an extension of PDDL, so
we expect the user to be familiar with this language. For this
reason, we tried to keep DKEL as close to PDDL as possible
and share some of the syntax with this language. For ele-
ments DKEL which are not described in this paper, please
refer to the PDDL subset used in the AIPS 2000 Planning
Competition (Bacchus 2000).

Stating Domain Knowledge in DKEL
DKEL clauses can be placed within either a domain,
situation, or problem definition. Each location yields
a different scope for the clause: If placed within a domain
definition, a DKEL clause is valid for all problems of this do-
main. Analogously, a DKEL clause within a situation
and a problem definition is valid only for problems that
have the specified initial state and the specific problem, re-
spectively. Note that the semantics of some DKEL clauses,
e.g. state invariants, and the :context feature of the lan-
guage (see below) allows domain descriptions to contain do-
main knowledge that is problem dependent to some extent.

DKEL clauses have the form of a list beginning with an
identifier. Elements within a clause, like the elements of
an action definition, consist of a keyword followed by some
“content” in the form of a LISP expression, i.e. a single sym-
bol or a list with balanced parentheses. The basic form of a
DKEL clause is:

(<KNOWLEDGE_KIND> <ELEMENT>)

<KNOWLEDGE_KIND> ::=
:replaceable | :irrelevant | :invariant

<ELEMENT> ::=
[:tag <name>]*
[:vars (<TYPED?-LIST-OF(VARIABLE)>)
[:context <CONTEXT_FORMULA>] ]

<CONTENT>+

Elements common to all clauses are :tag, :vars,
:context, and <CONTENT>. The first allows a limited
amount of meta knowledge, in the form of an arbitrary sym-
bol, to be associated with the clause. Note that a clause
may have more than one :tag element. Writing several
instances of content within the same DKEL clause is equiv-
alent to writing one clause with the same :tag, :vars,
and :context for each of them.

Variables on the <ELEMENT> level act as universally
quantified parameters to the content of the clause, allowing
several instances of a domain knowledge item to be writ-
ten in a single statement. The :context clause limits the
possible instantiations of these variables. Thus, writing a
DKEL clause with parameters is equivalent to writing one
ground instance of the clause for each assignment of the
variables that satisfies the context formula. For example,
consider the :invariant clause in the next subsection:
In a blocksworld problem with three blocks A, B, and C, it
denotes three state invariants, one for each binding of ?x to
a block.

The context formula is required to be “static”, i.e. evalu-
able without reference to a particular state. This makes it
possible (but not necessary) to convert all DKEL clauses to a
set of ground instances in a preprocessing step. The restric-
tion is reasonable, since for none of the classes of domain
knowledge currently expressible in DKEL does validity de-
pend on the state, but it may have to be lifted in the future if
DKEL is extended to other kinds of domain knowledge.

To allow knowledge items in the domain definition to
depend on properties of the problem instance, a context
formula may contain two kinds of modal literals: (:init
<literal(t)>) and (:goal <literal(t)>).
They refer to the truth value of the literal in the initial and
goal state of the problem, respectively.

Since even simple conjunctive goals in PDDL do no
specify a complete state, there is a question of how to
interpret negative :goal literals: Does (:goal (not
<ATOM>)) mean “it is a goal that <ATOM> should be
false”, or does it mean “it is not a goal that <ATOM> should
be true”? The most straightforward and general interpre-
tation, and the one we choose for DKEL, is that (:goal
<literal>) is true if and only if <literal> is entailed
by the goal formula of the problem, even though this does
make it more difficult to handle problems with complex goal
formulas (see e.g. Kvarnström and Doherty (2001), Section
3.4, for a more detailed discussion). Consequently, the sec-
ond possible interpretation suggested above is expressible as
(not (:goal <ATOM>)).
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State Invariants
An :invariant clause specifies a state invariant as first-
order formula or as a set constraint. As defined in the previ-
ous section, this means that the given property is preserved
by all operators. It does not necessarily mean it is true in ev-
ery reachable state: Only if the :invariant clause stands
within a situation or problem definition the property
is required to be true in the initial state.

The syntax of an :invariant clause is as follows:

<CONTENT> ::=
:formula <FORMULA>

| :set-constraint (<CONSTRAINT_TYPE>
<INTEGER> <LITERAL_SET>+)

<SET_CONSTRAINT> ::=
exactly | at-most | at-least

| decreasing | increasing

<LITERAL_SET> ::=
<LITERAL(<TERM>)>

| (:setof
[:vars (<TYPED?-LIST-OF(VARIABLE)>)
[:context <CONTEXT_FORMULA>] ]

<LITERAL(<TERM>)>)

The motivation for introducing set constraints is to simplify
the writing of common types of invariants. A set constraint
specifies the literal set as a union of <LITERAL SET>, each
of which can either be a single literal or an instance of the
(setof VARS CONTEXT LITERAL) construct. The latter
denotes the set of literals entailed by the (closed) formula

(forall (VARS) (implies CONTEXT LITERAL)),

like the literals entailed by an action precondition. For ex-
ample, the invariant given in the previous section may be
expressed as follows using a set constraint:

(:invariant
:vars (?x - block)
:set-constraint (exactly 1

(on-table ?x)
(setof :vars (?y - block)

:context (not (= ?x ?y))
(on ?x ?y))))

The setof clause corresponds to the formula (forall
(?y) (implies (not (= ?x ?y)) (on ?x ?y))),
where ?x has already been bound on the <ELEMENT>
level. In a blocksworld problem with blocks A, B, and C, if
?x is bound to A, the formula denotes the set {(on A B),
(on A C)}.

The set constraint abbreviation is provided mainly be-
cause the corresponding first-order formulas quickly be-
come very large: Imagine a blocksworld domain extended
to have n tables, so that a block ?x could be (on-table1
?x), (on-table2 ?x), and so on. In this case, we need
only to replace (on-table ?x) by the n new predicate
schemata in the DKEL clause above, while formulating
the same invariant in first-order logic requires a formula
quadratic in size.

As it turns out, set constraints are well suited to express
many of the invariants found by current analysis techniques.

For example, the invariants found by TIM (identity, state
membership, uniqueness, and fixed resource) and most of
those found by Discoplan (implicative, single-valuedness,
antisymmetry, OR, and XOR) all correspond to set con-
straints. Consider the following Discoplan XOR-constraint:

((XOR (ON ?X ?Y) (ON-TABLE ?X)) (BLOCK ?X))

Here, ?X is universally quantified, ?Y existentially quantified
and (BLOCK ?X) is a supplementary condition that has to be
true in the initial state. Hence, the constraint reads: “In every
reachable state it holds that for all ?X such that (BLOCK ?X)
is true in the initial state, either there is a ?Y such that (ON
?X ?Y) is true or (ON-TABLE ?X) is true”. The one-to-one
corresponding DKEL invariant is

(:invariant
:vars (?x)
:context (:init (block ?x))
:set-constraint (exactly 1

(on-table ?x)
(setof :vars (?y) (on ?x ?y))))

Of course, set constraints can only describe a limited class
of invariant properties, but for remaining invariants we can
always resort to first-order formulas.

The semantics of set constraints are as follows: The con-
straints exactly, at-most, and at-least denote that
exactly n, at most n, and at least n of the literals in the
given set are true in a state, respectively. In TIM termi-
nology, an at-most set constraint is the conjunction of
the corresponding identity and uniqueness invariants, lim-
ited to the variable bindings that satisfy the context. Like-
wise, an at-least set constraint is the conjunction of
the corresponding state membership and uniqueness invari-
ants, again limited by the context. An exactly set con-
straint is the conjunction of the corresponding at-most
and at-least set constraints.

The decreasing and increasing constraints are
examples of the second type of invariants defined in the
previous section, i.e. invariant properties on pairs of adja-
cent states. A decreasing (increasing) set constraint
means that at most n (at least n) of the literals in the set are
true in a state and that in any succeeding state, the number of
true literals is the same or less (more). We give its semantics
in first-order logic by quantifying TIM invariants over states.
Then the first invariant formula F1(s) of decreasing
is (at-most i s), where the extra argument denotes the
state that the invariant holds in. Formula F2(s, s

′) is a con-
junction of k+1 implications (implies((exactly i s)
(at-most i s’))), one for each i in the range 0 ≤ i ≤ k.
Here, s and s′ denote adjacent states. The meaning of the
increasing constraint may be expressed by a similar pair
of formulas, with an upper limit given by the size of the fact
set.

Operator and Predicate Irrelevance
The :irrelevant knowledge clause allows irrelevance
information to be stated as part of the domain description
instead of removing the irrelevant operator or predicate in-
stances directly, thus preserving more of the original domain
structure. The syntax is as follows:
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<CONTENT> ::=
:fact <ATOMIC-FORMULA(<TERM>)>

| :action <OP_SCHEMA>

Any variables appearing in either fact or action schema
should appear also in the :vars element of the clause.

If the clause contains an operator schema, the meaning
is that any matching instance of that operator is solution-
irrelevant, as defined in the previous section, i.e. if there
exists a plan which contains such an action, there also ex-
ists a plan that does not. A predicate schema indicates that
instances of this predicate are initial-irrelevant, as defined
in the previous section, i.e. those instances can be removed
from the initial state of the problem without affecting so-
lution existence. The following is an example from the
blocksworld domain:

(:irrelevant
:vars (?x ?y ?z - block)
:context (not (:goal (on ?x ?z)) )
:action (move ?x ?y ?z))

It states that unless (on ?x ?z) is a goal, any instance of
the move operator that places ?x on ?z is irrelevant.

Replaceable Sequences of Operators

A :replaceable clause specifies replaceability of oper-
ator sequences in the context of linear plans. The syntax of
a :replaceable clause is as follows:

<CONTENT> ::=
:replaced <OP_SEQUENCE_SCHEMA>
:replacing <OP_SEQUENCE_SCHEMA>

<OP_SEQUENCE_SCHEMA> ::= (<OP_SCHEMA>*)

<OP_SCHEMA> ::= (<name> <TERM>*)

An example of a :replaceable clause from the
blocksworld domain is the following:

(:replaceable
:vars (?x ?y ?z - block)
:replaced ((move-from-table ?x ?y)

(move-onto-table ?x ?y))
:replacing ())

It states that it is always possible to replace the sequence of
moving a block from the table onto a block and immediately
back onto the table by the empty sequence. In other words,
this subsequence can be removed from any solution plan.

Current Form and Future Development
DKEL, as presented in this paper, is a first step, not a fi-
nal solution. It is the nature of a first step that there might
be discussions about its direction. Specification languages
for planning problems have evolved over many years, and
PDDL is still undergoing development.

In the following, we identify some of the weaknesses
DKEL currently exhibits, and discuss future developments
to remedy those.

Coverage
DKEL does not offer a representation for every conceivable
item of interesting domain knowledge. In fact, even the clas-
sification outlined in this paper does not cover all the kinds
of domain knowledge that have been discussed in planning
literature and used in planners up to now. The main rea-
son why we have left it in such an unfinished state is that
we believe the construction of a complete ontology of do-
main knowledge, and a matching representation, must be a
project for the planning community, not only because of the
scale of such a project but more importantly because an in-
terlingua such as DKEL is intended to be is useless unless it
is accepted by a large part of the community.

This said, we also think that DKEL, as presented here,
is an adequate first step towards a more comprehensive rep-
resentation. The three classes of knowledge it does cover
have been selected as a starting point because they are fairly
well understood and useful to a wide variety of planners,
and because there exist techniques to automatically derive
them from problem descriptions. In a sense, the language is
a “snapshot” of the state of the art in domain analysis. As
work in this area continues, we expect more kinds of domain
knowledge fulfill these criteria, and we hope that they will
also be incorporated into DKEL.

Finally, although DKEL is designed as an extension of
PDDL, there is no reason to believe that similar extensions
to other formalisms for specifying planning problems should
not be of use: compared to constraint languages, such as e.g.
HTN schemas, DKEL plays a different, and complementary,
role.

Meta Knowledge
Neither have we provided a syntax or an ontology of the
properties of items of domain knowledge which we have re-
ferred to as meta knowledge. Examples of such properties
that may be important include:

Assumptions about domain, problem and plan. The va-
lidity of action sequence replaceability may depend on
the assumption that the plan is linear, but instances of
the replaceability relation may be valid also in the con-
text of parallel or temporal plans. In a temporal planning
domain, invariant and replaceability knowledge may also
depend on exactly what action execution semantics are
assumed.

Effects of applying domain transformations. Irrelevance
and replaceability knowledge both describe (potential)
changes to the planning domain and problem: as de-
fined, these changes are guaranteed to preserve solution
existence, but other properties of the solution, e.g.
optimality with respect to number of actions, makespan,
or the problem-defined metric, are not guaranteed to be
preserved.

Compatibility and synergy. As already pointed out, action
irrelevance statements may be mutually exclusive, in the
sense that applying one such statement (by removing the
action or actions from the domain) renders the other in-
valid. Less obviously, there may be synergy effects be-
tween domain knowledge items: For example, there may
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be state invariants not valid for the original domain and
problem that become valid if a particular action replace-
ment or irrelevance statement is consistently applied.

Origin and dependencies. With the proper meta knowl-
edge attached, the origin of a particular item of domain
knowledge is of no importance. However, as long as there
is no detailed ontology of meta knowledge, it might be
necessary to know what program produced the knowl-
edge (and with what options), what other items of domain
knowledge were used to derive it, and so on.

This, however, is merely a sketch, which may prove inade-
quate if DKEL is extended to cover more classes of domain
knowledge. Although a need for a more structured classifi-
cation of meta knowledge is sure to develop if DKEL be-
comes used in wider circles, such widespread use is also
a prerequisite for designing an ontology that properly ad-
dresses that need.

Current Use of DKEL
Currently, there are two domain analysis tools that produce
state invariants in DKEL form: version 2.0 of Discoplan3

and TIM dkel, a reimplementation of TIM.
RedOp4 identifies actions that can be replaced by action

sequences. This knowledge can be output in DKEL, either
as :irrelevant or :replaceable statements.

One of the main goals of DKEL is to enable fast and easy
prototyping of integrated planning systems built from exist-
ing preprocessing techniques and planners. Varrentrapp et
al. (2002) demonstrate this with an on-line testbed for plan-
ning systems.5. Part of the testbed is a reimplementation of
GRT that accepts DKEL invariants. Here it is also possible
to download TIM dkel.

DKEL, in its current form, has been subjected to relatively
little in the way of evaluation. How does one evaluate a lan-
guage, especially a language targeted at the role we have in
mind for DKEL? While expressivity can be formally ana-
lyzed and compared, again, we believe the most important
metric of the value of DKEL is acceptance.

Conclusions
Domain knowledge is an important resource for automated
planners: It can be extracted automatically from the domain
and problem specification by a variety of techniques, and in
combination with knowledge of the workings of a planner
it can be turned into effective advice for reducing search ef-
fort or improving the quality of plans found. The language
DKEL has been conceived and designed as means for allow-
ing easy integration of domain analyzers and planners in a
flexible way. In a sense, this reduces the effort devoted to
inventing efficient domain and problem specifications in ex-
change for finding a combination of tools and planner that
efficiently solves the problem.

3http://prometeo.ing.unibs.it/discoplan
4http://www.ida.liu.se/˜pahas/hsps/

redop.html
5http://www.intellektik.informatik.

tu-darmstadt.de/˜planlib/Testbed

The explicit representation of domain knowledge also has
other uses. For example, it opens up the possibility of rea-
soning about the planning process. An example of this is
the planner HAP (Vrakas, Tsoumakas, & Vlahavas 2002),
whose planning strategy is adjusted according to the exis-
tence and characteristic of domain properties. Statements
of domain knowledge, e.g. a state invariant, are regarded as
property of the corresponding domain, similar to details like
the number of goal facts.

Two things we wish to stress. First, DKEL is aimed at
describing a particular kind of knowledge about a planning
domain: It is not a substitute for extensions to the expres-
sivity of problem specification languages, or formalisms for
“knowledge rich” domain description, it is a complement.
Second, it is not final: Although useful in its current form,
it will certainly need to be extended to meet future develop-
ments in planning and in domain analysis. Ultimately, the
goal may be a unified and standardized language for plan-
ning problem specification, domain knowledge and planner
advice, but it still lies far in the future.
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