
 1

An Extension to PDDL for Hierarchical Planning

Giuliano Armano, Giancarlo Cherchi, and Eloisa Vargiu

DIEE – Department of Electrical and Electronic Engineering
University of Cagliari

Piazza d’Armi, I-09123 Cagliari (Italy)
{armano, cherchi, vargiu}@diee.unica.it

Abstract
This paper describes an extension to PDDL, devised to
support hierarchical planning. The proposed syntactic
notation should be considered as an initial suggestion,
headed at promoting a discussion about how the standard
PDDL can be extended to represent abstraction
hierarchies.

Introduction

Hierarchical planning exploits an ordered set of
abstractions for controlling the search. This choice has
proven to be an effective approach for dealing with the
complexity of planning tasks. Under certain assumptions
it can reduce the size of the search space from
exponential to linear in the size of the solution
(Knoblock 1991). The technique requires the original
search space to be mapped into corresponding abstract
spaces, in which irrelevant details are disregarded at
different levels of granularity.
Two main abstraction mechanisms have been studied in
the literature: action- and state-based. The former
combines a group of actions to form macro-operators
(Korf 1987), whereas the latter exploits representations
of the world given at a lower level of detail.
The most significant forms of the latter rely on (i)
relaxed and on (ii) reduced models. In relaxed models
(Sacerdoti, 1974) a criticality value is associated to each
predicate, so that operators’ preconditions can
progressively be relaxed, while climbing the abstraction
hierarchy, by dropping those predicates whose criticality
value is under the one that characterizes the current
level. In reduced models (Knoblock 1994) each
predicate is associated with a unique level of abstraction
–according to the constraints imposed by the ordered
monotonicity property; any such hierarchy can be
obtained by progressively removing certain predicates
from the domain (or problem) space.
From a general perspective, abstractions might occur on
types, predicates, and operators. Relaxed models are a
typical example of predicate-based abstraction, whereas
macro-operators are an example of operator-based
abstraction. In (Armano, Cherchi, and Vargiu 2003)
some experiments on abstraction on all the three
dimensions are presented.
Historically, several planning systems used abstraction
hierarchies, e.g.: GPS (Newell and Simon 1972),
ABSTRIPS (Sacerdoti 1974), ABTWEAK (Yang and
Tenenberg 1990), PABLO (Christensen 1991),
PRODIGY (Carbonell, Knoblock, and Minton 1990), but

each of them introduced and adopted its own notation
without following any standard. In other words, existing
planning systems tailored for abstraction did not take
into account the possibility of introducing a common
notation.
To contrast the lack of a standard notation for supporting
abstraction hierarchies, in this paper a suitable extension
to PDDL 1.2 (McDermott et al. 1998) is proposed.
The remainder of this paper is organized as follows:
After briefly framing abstraction hierarchies according to
a theoretical perspective, the syntax of the proposed
extension is given. Then, a sample of an abstraction
hierarchy –described according to the proposed
notation– is illustrated and commented, with particular
emphasis on the mapping between abstraction levels.
Finally, conclusions are drawn and future work is
outlined.

The Proposed Extension to PDDL

According to (Giunchiglia and Walsh 1990), an
abstraction is a mapping between representations of a
problem. In symbols, an abstraction f : Σ0 ⇒ Σ1 consists
of a pair of formal systems (Σ0, Σ1) with languages Λ0
and Λ1 respectively, and an effective total function
f0 : Λ0 → Λ1.
Extending the definition, an abstraction hierarchy
consists of a list of formal systems (Σ0, Σ1, …, Σn-1) with
languages Λ0, Λ1, …, Λn-1 respectively, and a list of
effective total functions fκ : Λk → Λk+1, (k=0, 1, …, n-2)
devised to perform the mapping between adjacent levels
of the hierarchy.
Assuming that standard PDDL is used to represent each
Λk (k=0, 1, …, n-1), in this paper we focus on the
problem of extending the standard for dealing with
abstraction hierarchies, with particular emphasis on the
mapping functions.
The syntactic notation of the proposed extension is given
according to the Extended BNF (EBNF), whose basics
are briefly recalled, to avoid ambiguities:
- each production rule has the form <syntactic element>

::= expansion;
- angle brackets delimit names of syntactic elements;
- square brackets surround optional material;
- an asterisk means “zero or more of”;
- a plus means “one or more of”.
Furthermore, let us point out that –here– ordinary
parentheses are an essential part of the grammar we are
defining and do not belong to the EBNF meta language.

 2

To represent an abstraction hierarchy a new syntactic
construct (hierarchy) has been defined, able to highlight
the domains involved in the definition and the mapping
between adjacent levels. Its syntax is:

<hierarchy> ::=
 (define (hierarchy <hierarchy name>)
 <domain-def>
 <mapping-def>*)

<domain-def> ::= (:domains <domain name>+)

<mapping-def> ::=
 (:mapping <mapping-pair>
 [:types <types-def>]
 [:predicates <predicates-def>]
 [:actions <actions-def>])

<mapping-pair> ::=
 (<source domain> <destination domain>)

<source domain> = <name>

<destination domain> = <name>

<types-def> ::= (<types-pair>+)

<types-pair> ::=
 (<destination type> <source type>)
<types-pair> ::= (nil <source type>)

<source type> = <name>

<destination type> = <name>

<predicates-def> ::= (<predicates-pair>+)

<predicates-pair> ::= (<predicate> <PT>)
<predicates-pair> ::= (nil <PT>)

<predicate> ::=
 (<predicate name> <variable>*)

<variable> ::= ?<name>

<PT> ::= <typed-predicate>
<PT> ::= (and <PT>+)
<PT> ::= (or <PT>+)

<typed-predicate> ::=
 (<predicate name> <typed list>*)

<typed list> ::=
 <variable>+ - <type name>

<actions-def> ::= (<action-spec>+)

<action-spec> ::=
 <action-pair> | <action-def>

<action-pair> ::= (<action> <AT>)
<action-pair> ::= (nil <AT>)

<action> ::= (<action name> <variable>*)
<AT> ::= <action>
<AT> ::= (and <AT>+)
<AT> ::= (or <AT>+)

<action-def> ::=
 see the PDDL 1.2 standard definition

Let us briefly comment the main definitions that occur
within the proposed extension to PDDL, focusing on the
underlying semantics.

Hierarchy Definition
As specified by the syntax, the “define hierarchy”
statement contains two subsections: <domain-def>
and <mapping-def>.
The :domains field lists domains’ names according to
their abstraction level, from ground to the most abstract
one.
The <mapping-def> definitions specify the mapping
between adjacent levels. In general, n levels of
abstraction require n-1 <mapping-def> definitions.
Therefore, a single-level hierarchy would result in
omitting the <mapping-def> definition (i.e., in this
case only the ground level exists).
It is worth noting that, although it would be desirable –
for the sake of clarity– to give :domains and
:mapping definitions (including :types,
:predicates, and :actions) according to the
ordering specified by the given grammar, nothing
prevents from following a different ordering.

Mapping Definition
The :mapping field specifies, through the
<mapping-pair> definition, the name of the source
and destination domains, respectively. Given a source
domain, the destination domain is unambiguously
determined by consulting the :domains field.
Nevertheless, for the sake of readability, the destination
domain must be explicitly specified.

Types Definition. The :types field specifies how the
type hierarchy is altered while translating between
adjacent levels. Each <types-pair> is provided
according to the following syntax:

(<destination type> <source type>)

It specifies that <source type> becomes
<destination type> while performing “upward”
translations. In particular, <source type> is
disregarded when the first argument of the <types-
pair> equals to nil.
By default, if a type is not mentioned in any pair, it is
forwarded unaltered to the destination level.
If no :types field is provided, all constants and
variables are forwarded to the destination level, labelling
them with their <source type>.

Predicates Definition. The :predicates field
declares how predicates are mapped between adjacent
levels. Each <predicates-pair> expresses whether

 3

a predicate 1 will be forwarded to the destination level.
Generally speaking, three cases may arise:
- a predicate is forwarded unchanged: the pair can be

omitted, being the default;
- a predicate is disregarded: the first argument becomes
nil;

- a predicate is a logical combination of some predicates
belonging to the source level: the second argument
expresses the logical formula.

Note that the destination predicate accepts a list of
untyped parameters, as –in this case– parameter types
can be deducted from the :types mapping section. On
the other hand, the source predicate needs to know the
type of each parameter. This is required to avoid
ambiguities, since there might be predicates with
identical names, but different parameter types.
If the :predicates field is entirely omitted, then no
predicate-based abstraction occurs. In other words, each
predicate is forwarded without any change to the upper
level.

Actions Definition. The :actions field describes how
to build the set of operators for the destination domain.
Four different mappings may occur:
- an action remains unchanged or some of its parameters

are disregarded: the pair can be omitted by default;
- an action is removed: the first argument becomes nil;
- an action is a combination of actions belonging to the

source domain (“and” meaning serialization, “or”
meaning parallelization);

- a new operator is defined from scratch: the statement
<action-def> is used (note that this definition is not
expanded in the notation, since it follows the standard
PDDL 1.2).

An Example of the Proposed Extension

As an example, let us consider the depot domain, taken
from the AIPS 2002 planning competition (Long 2002).
The domain was devised by joining two well-known
planning domains: logistics and blocks-world. They have
been combined to form a domain in which trucks can
transport crates around, to be stacked onto pallets at their
destinations. The stacking is achieved using hoists, so
that the resulting stacking problem is very similar to a
blocks-world problem with hands. Trucks behave like
"tables", since the pallets on which crates are stacked are
limited.
Let us suppose we want to create a two-level abstraction
for the depot domain, composed by depot-ground and
depot-abstract.
According to the above notation, we can start defining
the hierarchy in the following way:

(define (hierarchy depot)
 (:domains depot-ground depot-abstract)
 ...
Since there are only two levels of abstraction, just one
:mapping statement is needed. To express the mapping
rules (on types, predicates, and operators) from the

1 Or a combination of predicates, obtained using logical and,
or, not operators.

ground to the abstract level, the following statement
must be introduced:

 (:mapping
 (depot-ground depot-abstract)
 ...

Let us start with abstracting types of the depot domain
type hierarchy (as reported in Figure 1). We decided to
disregard hoists and trucks, and not to distinguish
between depots and distributors (i.e., considering both as
generic places).
According to the proposed notation, the translation can
be expressed in the following way:

 :types
 ((place depot)
 (place distributor)
 (nil hoist)
 (nil truck))

The first two statements assert that both depot and
distributor become place in the depot-abstract
domain. The last two statements assert that both hoist
and truck must be disregarded. Let us recall that, by
default, the types not mentioned remain unchanged at the
abstract level (e.g. locatable, crate, place, etc.).
The above notation entails the type hierarchy reported in
Figure 2.

depot distributor surface hoist truck

crate pallet

locatable place

object

Fig. 1 - Type Hierarchy for the depot ground domain.

surface

crate pallet

locatable place

object

Fig. 2 - Type Hierarchy for depot abstract domain.

 4

The choice of removing some types implies that some
predicates might become meaningless at the abstract
level. In particular, predicates accepting parameters of
type truck or hoist cannot exist at the abstract level.
Figure 3 lists the ground predicates of the depot domain.
Since the in predicate accepts a truck as a parameter,
it must be explicitly disregarded by the following
statement:

 (nil (in ?c – crate ?t – truck))

Similar considerations can be made for the lifting
and available predicates.
The predicates (clear ?s – surface) and (on
?c – crate ?s – surface) remain unchanged
and can be omitted in the :mapping field (being the
default).

Note that (at ?l – locatable ?p – place) is
overloaded, in the sense that it actually represents
different predicates. Some examples of possible
expansions are:

(at ?l – hoist ?p – distributor)
 (at ?l – truck ?p – depot)
 (at ?l – crate ?p – depot)

All expansions that accept any parameter whose type has
been disregarded at the abstract level, must be explicitly
removed. In this case, the following statements must be
asserted:

(nil (at ?h – hoist ?p - place))
 (nil (at ?t – truck ?p - place))

Let us point out that more complex mapping rules are
admissible. For example, two or more ground predicates
could be combined to form a new abstract predicate. Let
us consider the statement below:

((moveable ?c ?h ?s ?p)
 (and (lifting ?h – hoist ?c – crate)
 (at ?h – hoist ?p – place)
 (clear ?s – surface)
 (at ?s – surface ?p – place))

The new predicate moveable is introduced, which
applies only when the specified group of ground
predicates are true.
The mapping rules enforced on types and predicates may
modify preconditions and effects of some ground
operators. For example, consider the drive action:

(:action drive
 :parameters
 (?t - truck ?p1 ?p2 - place)
 :precondition
 (and (at ?t ?p1))
 :effect

(in ?c - crate ?t - truck)
 (lifting ?h - hoist ?c - crate)
 (available ?h - hoist)
 (clear ?s - surface)
 (on ?c - crate ?s - surface)
 (at ?l - locatable ?p - place)

Fig. 3 – Predicates of the depot domain.

(define (hierarchy depot)

 (:domains depot-ground depot-abstract)

 (:mapping (depot-ground depot-abstract)

 :types

 ((place depot)

 (place distributor)

 (nil hoist)

 (nil truck))

 :predicates

 ((nil (lifting ?h – hoist ?c - crate))

 (nil (available ?h – hoist))

 (nil (in ?c – crate ?t – truck))

 (nil (at ?h – hoist ?p - place))

 (nil (at ?t – truck ?p - place)))

 :actions

 ((nil (drive ?t ?p1 ?p2))

 (nil (load ?h ?c ?t ?p))

 (nil (unload ?h ?c ?t ?p))

 (nil (lift ?h ?c ?s ?p))

 (nil (drop ?h ?c ?s ?p))

 ((lift-and-drop ?c ?s1 ?s2 ?p1 ?p2)

 (and (lift ?h ?c ?s1 ?p1)
 (drop ?h ?c ?s2 ?p2))))))

Fig. 4 – Hierarchy definition for the depot domain.

(define (domain elevator-ground)
 (:requirements :strips :typing)
 (:types passenger floor - object)

 (:predicates
 (origin ?person - passenger ?floor - floor)
 (destin ?person - passenger ?floor - floor)
 (above ?floor1 ?floor2 - floor)
 (boarded ?person - passenger)
 (served ?person - passenger)
 (lift-at ?floor - floor))

 (:action board
 :parameters (?f - floor ?p - passenger)
 :precondition
 (and (lift-at ?f) (origin ?p ?f))
 :effect (boarded ?p))

 (:action depart
 :parameters (?f - floor ?p - passenger)
 :precondition
 (and (lift-at ?f) (destin ?p ?f)
 (boarded ?p))
 :effect (and (not (boarded ?p))(served ?p)))

 (:action up
 :parameters (?f1?f2 - floor)
 :precondition
 (and (lift-at ?f1) (above ?f1 ?f2))
 :effect
 (and (lift-at ?f2) (not (lift-at ?f1))))

 (:action down
 :parameters (?f1?f2 - floor)
 :precondition
 (and (lift-at ?f1) (above ?f2 ?f1))
 :effect
 (and (lift-at ?f2) (not (lift-at ?f1)))))

Fig. 5 – The elevator domain.

 5

 (and (not (at ?t ?p1))(at ?t ?p2)))

Since the (at ?t – truck ?p – place)
predicate has not been forwarded to the abstract level,
the drive action could not require any such
precondition or effect. Therefore, drive becomes
meaningless at the abstract level, and must be removed
throughout the following statement:

((nil (drive ?t ?p1 ?p2))

Similar considerations can be made for the load and

unload actions:

 (nil (load ?h ?c ?t ?p))

 (nil (unload ?h ?c ?t ?p))

At this point, one may want to join the remaining actions
lift and drop to form a new abstract operator (say
lift-and-drop). According to the proposed
extension, the new operator is defined as:

 ((lift-and-drop ?c ?s1 ?s2 ?p1 ?p2)
 (and (lift ?h ?c ?s1 ?p1)
 (drop ?h ?c ?s2 ?p2)))

Moreover, the lift and drop actions can be ignored:

 (nil (lift ?h ?c ?s ?p))
 (nil (drop ?h ?c ?s ?p))

Alternatively, the new abstract operator lift-and-
drop could be introduced from scratch as follows:

(:action lift-and-drop
 :parameters
 (?c - crate ?s1 ?s2 – surface
 ?p1 ?p2 - place)
 :precondition
 (and (at ?c ?p1) (on ?c ?s1)
 (clear ?c) (at ?s2 ?p2)
 (clear ?s2))
 :effect
 (and (not (at ?c ?p1))
 (at ?c ?p2)(clear ?s1)
 (not (clear ?s2))

 (on ?c ?s2)
 (not (on ?c ?s1))))

For the sake of completeness, the entire hierarchy
definition for the depot domain is summarized in
Figure 4.
In the above example, we started by abstracting the type
hierarchy. It is worth pointing out that this choice is not
mandatory; in fact abstraction could also be started by
specifying the mapping of predicates or actions.
To better illustrate an alternative approach, let us
consider another example applied to the elevator domain
(Koehler and Schuster 2000), whose ground definition is
reported in Figure 5.
The type hierarchy of elevator is very simple and
contains only two types: passenger and floor.
Thus, let us abstract the domain from predicates.
In particular, one may decide to disregard (above ?f1
?f2 – floor) and (lift-at ?f – floor), so
that the lift is always available and moveable from a
floor to another. This choice has an influence on actions:
up and down become meaningless, whereas
preconditions and effects of board and depart
undergo some modifications on their abstract

(define (hierarchy elevator)

 (:domains elevator-ground

 elevator-abstract)

 (:mapping

 (elevator-ground elevator-abstract)

 :predicates

 ((nil (lift-at ?f – floor))

 (nil (above ?f1 ?f2 - floor)))

 :actions

 ((nil (up ?f1 ?f2))

 (nil (down ?f1 ?f2))

 (nil (board ?f ?p))

 (nil (depart ?f ?p))

 ((load ?f ?p) (board ?f ?p))
 ((unload ?f ?p) (depart ?f ?p)))))

Fig. 6 – Hierarchy definition for the elevator domain.

(define (domain blocks-ground)
 (:requirements :strips :typing)
 (:types block - object)
 (:predicates
 (on ?x - block ?y - block)
 (ontable ?x - block)
 (clear ?x - block)
 (handempty)
 (holding ?x - block))

 (:action pick-up
 :parameters (?x - block)
 :precondition
 (and (clear ?x)(ontable ?x)
 (handempty))
 :effect
 (and (not (ontable ?x))
 (not (clear ?x))
 (not (handempty))(holding ?x)))

 (:action put-down
 :parameters (?x - block)
 :precondition (holding ?x)
 :effect
 (and (not (holding ?x))(clear ?x)
 (handempty)(ontable ?x)))

 (:action stack
 :parameters (?x - block ?y - block)
 :precondition
 (and (holding ?x) (clear ?y))
 :effect
 (and (not (holding ?x))
 (not (clear ?y))(clear ?x)
 (handempty)(on ?x ?y)))

 (:action unstack
 :parameters (?x - block ?y - block)
 :precondition
 (and (on ?x ?y)(clear ?x)(handempty))
 :effect
 (and (holding ?x)(clear ?y)
 (not (clear ?x))(not (handempty))
 (not (on ?x ?y)))))

Fig. 7 – The blocks-world domain.

 6

counterparts (say load and unload, respectively).
Figure 6 shows the described hierarchy definition for the
elevator domain.
As an example of abstraction starting from actions, let us
consider the blocks-world domain, reported in Figure 7.
In this case the type hierarchy cannot be abstracted, as it
contains only the type block. In this domain two macro-
operators can be identified: pick-up&stack and
unstack&put-down. The decision of adopting these
operators entails a deterministic choice on which
predicates have to be forwarded / disregarded while
performing upward translations. More explicitly
(handempty) and (holding ?b – block) must
be disregarded, meaning that the hand can be considered
always available. Figure 8 shows the corresponding
hierarchical definition of the blocks-world domain,
according to the proposed notation.

Conclusions and Future Work

In this paper a novel extension to the standard PDDL 1.2
has been proposed, devised to support hierarchical
planning. The extension introduces the hierarchy
construct, which encapsulates an ordered set of domains,
together with a set of mappings between adjacent levels
of abstraction. Since mappings are given in term of
types, predicates, and operators, three subfields in the
<mapping-def> have been introduced, to represent the
abstraction over such dimensions. The extension
described in this paper should be considered as an initial
proposal, headed at promoting a discussion about how
the standard PDDL can be enriched with additional
constructs able to represent abstraction hierarchies.
As for the future work, the possibility of extending the
notation to encompass PDDL 2.1 (Fox and Long 2002)
is being investigated.

References

Armano, G., Cherchi, G., and Vargiu, E. A Parametric
Hierarchical Planner for Experimenting Abstraction
Techniques. Proceedings of the 18th International Joint
Conference on Artificial Intelligence (IJCAI’03), Acapulco,
Mexico, August 2003, to appear.

Carbonell, J.C., Knoblock, C.A., and Minton, S. PRODIGY:
An integrated architecture for planning and learning. In D. Paul
Benjamin (ed.) Change of Representation and Inductive Bias.
Kluwer Academic Publisher, 125--146, 1990.

Christensen, J. Automatic Abstraction in Planning. PhD thesis,
Department of Computer Science, Standford University, 1991.

Fox, M., and Long, D. PDDL 2.1: An extension to PDDL for
expressing temporal planning domains. Technical Report,
Department of Computer Science, University of Durham, UK,
2001.

Giunchiglia, F., and Walsh, T. A theory of Abstraction,
Technical Report 9001-14, IRST, Trento, Italy, 1990.

Koehler, J., and Schuster, K. Elevator Control as a Planning
Problem. Proceedings of the 5th International Conference on AI
Planning and Scheduling, 331--338, AAAI Press, Menlo Park,
2000.

Korf, R.E., Planning as Search: A Quantitative Approach.
Artificial Intelligence, 33(1):65--88, 1987.

Knoblock, C.A. Search Reduction in Hierarchical Problem
Solving. Proceedings of the 9th National Conference on
Artificial Intelligence, 686--691, Anaheim, CA, 1991.

Knoblock, C.A. Automatically Generating Abstractions for
Planning. Artificial Intelligence, 68(2):243--302, 1994.

Long, D. Results of the AIPS 2002 planning competition, 2002,
Url: http://www.dur.ac.uk/d.p.long/competition.html.

McDermott, D., Ghallab, M., Howe, A., Knoblock, C.A., Ram,
A., Veloso, M., Weld, D., and Wilkins, D. PDDL – The
Planning Domain Definition Language, Technical Report CVC
TR-98-003 / DCS TR-1165, Yale Center for Communicational
Vision and Control, October 1998.

Newell A., and Simon H.A. Human Problem Solving.
Prentice-Hall, Englewood Cliffs, NJ, 1972.

Sacerdoti, E.D. Planning in a hierarchy of abstraction spaces.
Artificial Intelligence, 5:115--135, 1974.

Yang Q., and Tenenberg, J. Abtweak: Abstracting a Nonlinear,
Least Commitment Planner. Proceedings of the 8th National
Conference on Artificial Intelligence, 204--209, Boston, MA,
1990.

(define (hierarchy blocks)

 (:domains blocks-ground blocks-abstract)

 (:mapping

 (blocks-ground blocks-abstract)

 :predicates

 ((nil (handempty))

 (nil (holding ?b - block)))

 :actions

 ((nil (pick-up ?b))

 (nil (put-down ?b))

 (nil (stack ?b1 ?b2))

 (nil (unstack ?b1 ?b2))

 ((pick-up&stack ?b1 ?b2)

 (and (pick-up ?b1)(stack ?b1 ?b2)))

 ((unstack&put-down ?b1 ?b2)

 (and (unstack ?b1 ?b2)

 (put-down ?b1))))))

Fig. 8 – Hierarchy definition of the blocks-world domain.

