Dynamic Ontology Refinement

Fiona McNeill, Alan Bundy, Marco Schorlemmer
Centre for Intelligent Systems and their Applications,
School of Informatics,
University of Edinburgh
f.j.mcneill@ed.ac.uk,{bundy,marco} @inf.ed.ac.uk

Abstract

One of the main reasons why plan execution meets with fail-
ure is because the environment in which the plan is being
executed does not conform to an agent’s expectations of how
it will behave. If an agent is forming and attempting to ex-
ecute plans in a given domain, these plans will be based on
the agent’s understanding of the domain, described in its on-
tology. Errors in this ontology are likely to lead to plans that
are not executable. We propose to address this problem by
dynamically refining the ontology as execution failure oc-
curs and replanning using this updated ontology, thus creating
more robust plans that are more likely to be executable.

Introduction

In order to generate plans that are sure to be executable
in a given domain, it is necessary to have a complete and
correct understanding of that domain. In all but the smallest
of domains this is unfeasible, partly because the amount of
resources necessary to fully explore and represent a large
domain would be prohibitive, and partly because the domain
may be dynamic and changing under external and possibly
unpredictable influences. Thus the representation of the
domain is often vague and imprecise and in some cases may
be incorrect. In particular, the understanding of the domain
is likely to be oversimplified, with the increasing detail
of the domain becoming clear only through interaction
with the domain. This is a normal occurrence in human
understanding, where domains that are not well understood
by a person are represented in vague, general terms. During
interaction with that domain, the original representation
seems not to be discarded but instead refined to include the
additional information discovered during the interaction
[7,9].

We use the word ontology to refer to the whole of the
agent’s knowledge of a domain. This ontology could be
shared or partially shared with other agents, or could be
unique to a particular agent. Within the ontology, we
distinguish between:

o the signature, which describes the types of things that ex-
ist in the domain; for example, listing all the predicates to-

gether with their arity and the type of the arguments they
take;

e the theory, which describes the instantiations of the sig-
nature objects; for example, the specific things that exist
and the rules that describe what actions can take place in
the domain.

Lack of precision is likely to exist in both of these. In fact,
vagueness in the signature entails vagueness in the theory,
as all instances of this part of the signature in the theory will
also be vague.

During plan execution, it is possible to learn further
information about the domain. Failures in plan execution
provide important information about what parts of the on-
tology are incomplete or incorrect, but also result in failure
to attain the goal state. Thus we propose to dynamically
refine the ontology using information about the domain that
was learned during the attempted execution. We then use
this refined ontology to create a plan that is more robust and
more likely to achieve success. Much work on updating
theories has been done in the related field of belief revision
[2, 4, 5], and in some cases this will be similar to what we
are doing. The difference lies in the fact that belief revision
is concerned with semantics and considers beliefs to be unit
objects, whereas we are interested in the syntax of a belief
or ontological object. Also, belief revision is concerned
with the facts themselves, whereas we are also interested in
refining the signature of an ontology.

We believe that a casual understanding of a domain
will lead to over-simplified ontological objects: for exam-
ple, a single predicate where many are required; predicates
with lower arity than necessary; rules with insufficient
numbers of preconditions. When a richer understanding of
the domain is developed through further interaction, these
simple ontological objects should not be discarded and
replaced, as occurs in belief revision, but instead should be
refined to incorporate the extra detail.

We are interested in situations where the agent’s on-
tology is close to a correct understanding of a domain but
fails in parts. Our techniques are not applicable to a situa-
tion where two agents with completely different ontologies

are attempting to interact but rather to a situation where
two agents have a similar understanding and comprehend
much of what one another is communicating, thus making it
possible to pinpoint a place in which disagreement occurs.
We believe this is a reasonable situation to consider, since
there are many cases where agents come from a common
source and are later developed independently. One place
this occurs often is on the Semantic Web, where the problem
of ontological mismatch is significant.

The scenario we are interested in is that of a plan-
implementation (PI) agent, attempting to execute a plan.
The PI agent’s role is to control the different components
of the system and to execute the actions listed in the plan
through interaction with other agents. This Pl agent needs
to have access not only to the plan and the ontology, but
also to a justification of the plan, by which we mean
a description of what rules and facts each plan step is
based on, and an explanation for why they are believed
to be true. This is necessary so that when a plan step
proves to be inexecutable, the reason for this can be traced
back to the ontology. This justification provides a set of
ontological objects, either in the signature or theory, that
may be at fault; for example, a rule and some preconditions
for that rule with their justification. In order to find the
exact point of failure, further agent communication may
be necessary. The Pl agent must question the agent it
expected to perform the action of its plan as to why the
action was not performed; the objects in the justification
are queried and further questions asked until the point of
failure is discovered. The point of failure is then passed
to a refinement system, where the ontology is altered
appropriately. At this stage, further questions may need
to be asked in order to establish what the correct refine-
ment is. For example, if the arity of a predicate needs to
be increased, what would be the type of this extra argument?

In this paper we describe a dynamic ontology refine-
ment system to correct failed plans, hence using the
additional domain information learned during plan execu-
tion failure to create more robust plans. First we discuss
how the point of failure is located through looking at the
justification of the plan and also through further agent
communication. Next we lay out how we patch this point
of failure. We then outline the architecture for the system,
provide a worked example and finally conclude the paper.

Locating the cause of failure

We believe that a sensible approach to the problem of plan-
ning with incomplete or incorrect information is to use an
attempted plan execution to learn more about the domain,
and hence develop a better domain description to facilitate
the creation of better plans. This mirrors the way in which
humans cope with the problem of vague or wrong knowl-
edge. In the real world it is impossible to understand the
complexities of every situation we may encounter, or the
way these situations may have changed since we last en-
countered them. Humans seem to be very adapt at constantly

refining their ideas and replanning in order to reach a goal
that was unattainable using the initial plan. This is the kind
of technique we are intending to emulate in this system.

The plan deconstruction

The first step in tracing the cause of plan-execution failure
to a problem in the ontology is to examine which parts of
the ontology were used to justify the plan step where failure
occurred. For example, the justification for the action
buy(ticket) may be a rule such as:

Rule Name: buy-rule
Preconditions:
at(Place, Agent) A
buy-at(Thing, Place, Price) A
has(money(X), Agent) A
Effects. has(Thing, Agent)A
has(money(X — Price), Agent)

X > Price

together with an explanation for why the preconditions of
this rule are held to be true. Note that the justification of a
plan step explains why it should be possible to perform that
plan step and not why the plan step is necessary. In order
to establish where the fault is, we need to investigate why
we thought it should have been possible to perform the plan
step.

Justifications for a plan step will always be formulas from
the theory of the ontology, since it is the specific beliefs
about the domain that are required to form a plan rather
than the general description of the types of things found in
that domain. However, the underlying error may well occur
in the signature of the ontology. For example, it may be that
money should be a binary predicate, with currency being
the type of the second argument. This problem would be
highlighted by a failure to execute the buy action due to the
precondition has(money(X)) being incorrectly stated. So
the problem in the signature is revealed through a failure in
the theory. Once the signature problem has been fixed, all
occurrences of it in the theory need to be altered, including
the occurrence that indicated the problem.

Since this kind of information is hard to extract from most
planners, particularly state-of-the-art planners, we have
developed a plan deconstructor to provide this information.
This is loosely inspired by the plan validator developed
at the University of Durham by Long and Cresswell [6],
to validate plans by pseudo-executing them. Although the
motivation is very different, the basic idea of justifying each
plan step with reference to the ontology is the same. The
plan deconstructor can be built on top of any planner. It
takes the plan produced by this planner and deconstructs
how it could have been built from the theory. It is not
attempting to literally follow how the plan was built, it is
instead using the theory to justify the plan that has been
produced by the planner, in order that the justification

can be referred to when failure occurs. This means that
the Pl agent can narrow down the search for the problem
to the relevant area. However, this information is not
sufficient to identify a unique problem; there will still be
many possibilities. If a rule is found to produce the wrong
output it may be that the rule itself is incorrect; it may be
lacking a precondition, for instance. Alternatively, one of
its preconditions may be incorrect, and thus it is falsely
believed that the rule is applicable. If there is an error in the
theory, then the specific fact is incorrectly held to be true
and we must search further back in the justification to see
why we believed this to be true, thus locating the original
source of the error. If it is due to a lack of precision in the
signature, then we need to update the signature and alter all
the occurrences of this predicate in the theory.

Plan deconstruction example Suppose the plan decon-
structor is passed a plan such as the following one:

[buy(ticket), walk(station,embassy, bishkek),
buy(visa), travel (bishkek, tashkent, bus))

together with the Pl agent’s ontology. The plan deconstruc-
tor annotates each action in the following ways: the rule
used is given, together with a reason for why each of the
preconditions are held to be true; for example, because it
is a fact in the theory, or true in initial state, or true after
action X. Also given are the effects of the action, i.e. what
becomes true under that action, and the current status of the
fluents, or predicates that change value depending on the
situation (for example location and possession of items).
A justification for the above plan as produced by the plan
deconstructor is given below.

Action 1: buy(ticket)

Rule Used: Rule 2

Preconds: at(station, me) initial situation
buy_at(ticket, station,3) fact
has(money(10), me) fact
10 >3 true

Effects: has(ticket, me)

has(money(10 — 3), me)
Status: at(station, me)

has(money(7), me)
has(ticket, me)

Action 2: walk(station,embassy,bishkek)
Rule Used: Rulel
Preconds: at(station, me) initial situation,
status from Action 1
sit(station, bishkek) fact
sit(embassy, bishkek) fact
Effects: at(embassy, me)

-at(station, me)

Status: at(embassy, me)
has(money(7), me)
has(ticket, me)

Action 3: buy(visa)
Rule Used: Rule 2
Preconds: at(embassy, me) result from Action 2
buy-at(visa,embassy, 2) fact
has(money(7), me) result from Action 1
7>2
Effects: has(visa, me)
has(money(7 — 2), me)
Status: at(embassy, me)
has(visa, me)
has(ticket, me)
has(money(5), me)
Action 4: travel (bishkek,tashkent,bus)
Rule Used: Rule 3
Preconds: at(embassy, me) results from Action 2,
status from Action 3
sit(embassy, bishkek) fact
transport(bishkek,
tashkent, bus) fact
has(ticket, me) result from Action 1,
status from Actions 2,3
has(visa, me) result from Action 3
Effects: at(tashkent, me)

Status: at(tashkent, me)
has(visa, me)
has(money(5), me)
—has(ticket, me)

Agent communication

As described above, the plan deconstruction alone is not
enough to find the point of failure. It is only possible
through further investigation for the Pl agent to decide
exactly what part of the ontology to send to the refinement
system. The PI agent cannot know exactly why the action
failed; however, the agent with which it is communicating
— for example, a ticket-selling (TS) agent — must have had
a reason for failing to perform the action and must therefore
have information about what the problem point is. The TS
agent will have refused to perform the action because some
part of his ontology prevents the action being possible;
the corresponding part of the PI’s ontology suggests that
it should be possible. Hence this is where the ontology
mismatch occurs, and if the Pl agent wishes to interact
successfully with the TS agent, he must alter this part of
his ontology accordingly. Note that we are interested in
agents that have similar but slightly differing ontologies;
for example, agents whose ontologies have originated from
the same source but have been developed separately. The PI
agent is thus persuaded to refine its ontology to bring it in
line with the agent with which it needs to interact, at least
for the fragment of the ontology that is relevant to the action
the Pl agent wanted to execute. It may that there are some
parts of the Pl agent’s ontology which it is not prepared to
refine. In this case it will have to look for another agent that
has different requirements to perform the same action.

An example of the kind of communication that may
occur is given below. In this case, the Pl agent has a

different ontological representation of the concept of money
to the TS agent. The PI agent has money represented as a
unary predicate taking a numerical value as an argument,
the TS agent, instead, as a binary predicate taking a
numerical value and a currency as arguments. This could
occur because the Pl agent has only ever dealt with one
currency, and thus does not feel the need to specify, whereas
the TS agent may be working in a domain where different
currencies are used.

Pl: buy(ticket)

TS: has(money(P, dollars))?
PI: fails has(money(P, dollars))
TS: fails buy(ticket)

In this case the cause of the problem is immediately
clear; the Pl agent has been confronted with a concept of
money different to the one currently in his ontology and
must refine his ontology accordingly.

If the cause of the problem is in the signature of the
ontology then it is immediately apparent, since the PI
agent is confronted with predicates it does not understand.
If the problem is with the theory of the ontology, it is
more difficult to discover and further communication is
necessary. For example, the Pl agent may have a fact
buy_at(ticket, station, 10), whereas the TS agent may
have a fact buy_at(ticket, ticket_office, 10). Thus when
it comes to check the preconditions for its selling rule it
finds that the Pl agent is in the wrong location and the
conversation goes as follows:

Pl: buy(ticket)
TS: fails buy(ticket)

The PI must then investigate further by checking which of
the preconditions of the rule the TS agent does not agree
with. If all the preconditions are accepted then the rule itself
must be at fault.

Agent communication system Controlling agent com-
munication is an important aspect of the system. We need
to define what kind of speech acts are acceptable, whilst
at the same time not restricting this too tightly, so that
communication is possible between agents with somewhat
different ontologies. In order to do this our system is based
on the idea of elnstitutions [8, 10, 11]. We briefly describe
these below, and then outline how we adapt these to our
purposes.

An elnstitution consists of a set of predefined scenes,
and transitions between these scenes. A scene describes
what kind of illocutions, or speech acts, can occur within
it, and thus what actions can be performed here, and are
controlled by institution or admin agents. External agents
entering the institution must take on roles, for example as
a buying-agent or a selling-agent. So for the example
situation described above, we would need to have a scene
where the buying and selling of tickets was facilitated, plus

scenes allowing whatever other actions we would wish to be
performable. The institution agents ensure that the scenes,
transitions and the institution itself run smoothly. They do
not themselves participate in the buying or selling activity,
or other function of the institution. The agents who would,
for example, sell tickets, would be external agents who visit
the institution because they wish to sell tickets. The Pl agent
will have to rely on the presence of the agents he wishes
to interact with before he can achieve his goal within a scene.

This type of organisation creates a forum for our
agent interaction. This is how we control how a Pl agent
would find the agents with which he needs to interact, and
how, using the institution scene agents, this interaction
is controlled. In the agent’s ontology, in addition to the
domain information, he has information about which scenes
exist, which agents he can expect to find in which scenes
and how he can move between these scenes.

Refining the problem point

Once the exact source of the problem has been located,
it is sent to the refinement system to be corrected. At
this stage, further communication with the other agent is
likely to be necessary. Since we are mostly concerned with
adding details, we are likely at this stage to require more
information about this extra detail. For example, if we need
to add an argument to a predicate, we will need to know
what the type of the argument is.

Much work has been done in the field of removing
detail from theories (abstraction). Hence, in order to
formulate techniques for adding detail, we have investigated
common abstraction techniques and considered how to
invert these. Walsh and Giunchiglia claim that almost all
abstractions fall into four categories [3]:

1. Predicateabstractions
mapping predicate names in some uniform way:
e.g. bottle(x), cup(x) map onto container(x).

2. Domain abstractions
mapping constants and function symbols in some uniform
way:
e.g. prime(3), prime(5) map onto prime(oddnumber).
3. Propositional abstractions
dropping some or all of the arguments to predicates:
e.g. abelian(groupA), abelian(groupB) map onto
abelian.

4. Precondition abstractions
mapping some of the atomic formulas onto true or false:
e.g. has(ticket,me) — can-travel(me) maps onto
can-travel(me)

From these four types of abstraction we have developed four
kinds of anti-abstractions.

Signature Refinement

Three of these anti-abstractions are signature refinements of
the ontology:

1. Predicate anti-abstractions
A single predicate is divided into some number of
sub-predicates:
e.g. money(X) maps onto
dollars(X), euros(X), sterling(X)

2. Domain anti-abstractions
Constants and function symbols are divided up into
different cases:
e.g. money (X, european) maps onto
money(X, euros), money(X, sterling),
money (X, krona)

3. Propositional anti-abstractions
Extra arguments are added to predicates:
e.g. money(X) maps onto
money (X, dollars), money(X, sterling)

Once the refinement has been made to the signature, this al-
ways requires some change in the theory. Since the error
in the signature has led to plan failure, we know that there
must be at least one occurrence of the signature symbol in
the theory that was the cause of this failure. That, and ev-
ery other occurrence of the signature symbol, needs to be
altered. This, in most cases, requires further agent commu-
nication in order for the system to be able to use the new
version of the signature object. In some cases, where it oc-
curs in parts of the theory that are not related to the agent that
is currently being communicated with, it may not be possi-
ble to immediately instantiate the occurrence of the signa-
ture symbol in the theory, for example, if a new argument is
added it may not be immediately clear what value this ob-
ject may take, and it may be left uninstantiated until it is
necessary to instantiate it.

Theory refinements

The theory has two components: rules and facts. One of
the anti-abstractions describes a method for refining rules
by adding preconditions:

e Precondition anti-abstractions
Preconditions can be added to rules:
e.g. the preconditions has(invitation) could be added to
the buy rule in order to purchase a visa:
Rule-name: buy-rule
Preconds:
at(PI)
buy_at(Thing, Pl, P)
has(money(X))
X>P has(invitation)

Effects: has(T'hing) A has(money(X — P)

In most cases, facts will be refined due to signature refine-
ments. However, in some cases we may find facts causing
errors not because they lack detail but because they are miss-
ing entirely, or simply wrong. This may happen in a dy-
namic environment, where facts need to be updated. This
kind of alteration is not a refinement but a kind of belief re-
vision. Although this is not central to our interests since it
is not refinement, it is may well cause problems and we will
need tactics to deal with it.

>>>>

Refinement example

In the following example, we discuss situations where these
refinements are used. The agent communication aspect is
not discussed in detail; for more information on this, see the
Agent Communication section.

Suppose the Pl agent’s next step in the plan is to per-
form an action buy-ticket and this is justified by the
following rule in the agent’s ontology:

Rule-name: buy-ticket-rule

Preconds:
at(X, Agent)
has(money(A), Agent)
transport(X,Y)
has(visa(Area), Agent)
cost(X,Y,C)

>>>>>

P>C
Effects. has(ticket(X,Y), Agent)A
has(money(A — C), Agent),

which, in this case, is instantiated as follows:

Preconds:
at(bishkek,me

)
has(money(10), me)
transport(bishkek, tashkent)
has(visa(CIS))
cost(bishkek, tashkent, 5) 10>5
Effects. has(ticket(tashkent, bishkek),me) A
has(money(5), me).

>>>>>

He approaches the appropriate agent and asks him to
perform the buy-ticket action. The TS agent will have a
rule in his own ontology which describes the conditions
under which a ticket can be bought, in this case of the form:

Preconds:
at(bishkek, Agent
has(money(A, dollars), Agent
has(invitation, Agent
has(visa(uzbek), Agent
bus(bishkek,tashkent
cost(bishkek,tashkent, 5
Effects: at(tashkent, Agent)A
has(money(A — 5), Agent)

>>>>>>

A>5

Some of these preconditions are fully instantiated al-
ready and he can check them himself, for example
bus(bishkek, tashkent). Others are not instanti-
ated initially, and he may have to check these with
the agent he is communicating with, for example
has(money(A, dollars), Agent). He can immediately
instantiate the variable Agent to the name of the agent he is
communicating, but he cannot tell what A might be until he
questions the agent further. Additionally, he needs to check
some predicates which are fully instantiated: for example,
has(invitation, Agent) will not contain uninstantiated
variables once he has inserted the name of the agent, but
its veracity cannot be determined without questioning the

agent.

In order to decide whether he can comply with the
request, he first checks the instantiated predicates. Since
he can find out that bus(bishkek,tashkent) is correct,
he does not need to question it, so although there is an
ontology mismatch here, this does not come to light.
Next he asks how much money the agent has. Since
the PI agent is confronted with a predicate that is not
of the form he expects, he passes this to the refinement
system. Here, has(money(A), Agent) is refined to
has(money(A, Z), Agent), where Z is an extra argument
of unknown type. Further information about this new
argument comes from the PI’s ontology, if he already knows
type information about the object dollars. Otherwise, he
needs to question the TS agent to discover this information.

Next, the TS agent questions the truth of the precon-
dition has(invitation, Agent). The Pl agent responds
negatively to this response, and so the TS agent refuses
to perform the task. The PI agent infers from this that
has(invitation, Agent) is a necessary precondition (this
is not certain but is a sensible guess), and the refinement
system performs precondition anti-abstraction on the rule.

Finally, the TS agent questions the
has(visa(uzbek), Agent) precondition. The Pl agent
must again reply negatively to this, leading to failure, but in
this case the question is not unexpected, merely differently
instantiated. If the Pl agent has the right information, he will
be able to tell that uzbek is a country within CI.S, and thus
the refinement system performs domain anti-abstraction. If
he does not have this information, he extracts it from the TS
agent.

At this point, the TS agent performs the ac-
tion, even though there is still an ontological
mismatch: bus(bishkek, tashkent) matching
transport(bishkek, tashkent). This is acceptable
because we are interested in updating ontological problems
that affect plan execution. It is likely that this ontological
mismatch will cause problems at another point, at which
stage it is refined using predicate anti-abstraction. If
it never causes problems then the ontological mismatch
remains.

Worked Example

Worked examples for different aspects of the system are
given in the relevant sections. Here, we briefly tie together
these worked examples to describe how the whole system
works.

Firstly, the Pl agent forms the plan:
[buy(ticket), walk(station,embassy, bishkek),
buy(visa), travel (bishkek, tashkent, bus)].

This is sent to the plan deconstructor, which anno-
tates it as previously described and returns it to the Pl agent.

The PI agents next attempts to execute the first action of the
plan, buy(ticket). He communicates with a ticket-selling
(TS) agent, and meets with plan failure. In this case there
is an obvious clue about the cause of the failure, namely
that the TS agent has a different signature for the object
money. This is immediately obvious from the questioning
of the TS agent, and in this case, recourse to the plan de-
construction is not immediately necessary. The money(A)
object in the signature is sent to the refinement system,
where propositional anti-abstraction is used to refine it to
money(A, Currency). Suppose further questioning of the
agent results in the object has(money(10)) being refined to
has(money(10, sterling)) in the theory of this ontology.
Once the refinement has been performed, replanning occurs,
which in this case produce the following plan:

[exchange(10, sterling, dollars), buy(ticket),
walk(station, embassy, bishkek), buy(visa),
travel(bishkek,tashkent, bus)].

Note that in some cases the plan looks the same as
the original plan; for example, if the Pl agent discovers that
the currency of his money is already dollars. Then no extra
action is required. However, the new plan is executable
where the old one was not, because the ontology it is based
on is more accurate.

Recourse to the justification from the plan decon-
struction becomes necessary when no clues are given by the
other agent; for example, in the second situation described
in the Agent Communication section. Here, the TS agent
simply refuses to perform the action. The PI agent must turn
to the justification, as detailed in the plan deconstruction
example, where he sees that this action is based on rule 2.
He queries each of the preconditions of that rule. If one of
these proves to be at fault, he must look at its justification:
perhaps it is incorrectly stated in the theory of the ontology,
or perhaps it was made true by some other rule, and in that
case the PI agent must look further back for the cause of the
failure.

Architecture

The system is controlled by a central plan implementation
(PI) agent. The PI agent has access to the ontology that de-
scribes the domain. These are sent to the planner, in a suit-
able translation (for example, PDDL [1]), together with the
goal the PI agent wants to achieve. The planner outputs a
plan and this, together with the original ontological theory,
is sent to the plan deconstructor, which will return the plan,
annotated with a justification, to the Pl agent. At this stage
the PI agent attempts to execute the plan through commu-
nication with other agents. If failure occurs, the Pl agent
examines the justification developed by the plan deconstruc-
tor and then, through further communication with the agent
he is interacting with, pinpoints the exact point of failure.
This is then sent to the refinement system, where a decision
is made about how to refine the problem and further com-
munication with other agents, via the Pl agent, is likely to

Refinement

Plan +ontology’ @

Plan Deconstructor

Circled numbersindicate order in which parts of the system are called
Dotted line indicates that both the Pl agents and the TS agents are currently visiting the elnstitution

Figure 1: Architecture and interaction of a dynamic
ontology-refinement system

occur. The refinement is then sent back to the PI agent, who
deletes the original problem from the ontology and replaces
it with the refined version. The process is then repeated with
the updated ontology, and a more robust plan is developed.

Conclusions and further work

We have identified the problem of ontological mismatch as a
major factor in plan execution failure. We have presented a
way in which these ontological mismatches can be identified
by plan-implementation agents and then refined. This
refined ontology can then be used to produce a new plan
which stands a better chance of being executable. As many
plans are executed in the same domain, the understanding of
that domain will become more sophisticated and accurate,
and further plans created for that domain will be more likely
to be executable.

So far we have developed the plan deconstructor and
the refinement system, and we have decided what these
refinements are and how they work. Our next focus is
the agent communication system, and we are focusing on
elnstitutions as our communication framework. Due to the
kind of speech acts we require, we expect that additional
work beyond elnstitutions may need to be done.

References

[1] Maria Fox and David Long. An extension to PDDL
for expressing temporal planning domains. Available
from Durham Planning Group webpage: htt p:
/I www. dur . ac. uk/ conmput er . sci ence/
resear ch/ st anst uf f/ pl anpage. ht m ,
2002.

[2] P. Gardenfors and H. Rott. Belief revision. In D. Gab-
bay, C. J. Hogger, and J.A. Robinson, editors, Hand-
book of Logic in Artificial Intelligence and Logic Pro-

[3]

[4]

[5]

[6]
[7]
[8]

[9]

[10]

[11]

gramming, volume 4, pages 35-132. Oxford Science
Publications, 1995.

Fausto Giunchiglia and Toby Walsh. The use of ab-
straction in automatic inference. 1990. Proceedings of
UK Conference on Information Technology (1T-90).

P. Langley, G. Drastal, R. Bharat Rao, and R. Greiner.
Theory revision in fault hierarchies. The Fifth Interna-
tional Workshop on Principles of Diagnosis, October
1994.

D. Ourston and R.J. Mooney. Changing the rules: A
comprehensive approach to theory refinement. Pro-
ceedings of the National Conference on Atrtificial In-
telligence, 2:815-820, 1990.

Plan validator. http://wwv. dur. ac. uk/ d. p.
[ong/ 1 PC/ resources. htm .

G. Polya. How to Solve it. Princeton University Press,
1945.

Carles Sierra, Nick R. Jennings, Pablo Noriega, and
Simon Parsons. A framework for argumentation-
based negotiation. In M. P. Singh, A. Rao, and
M. J. Wooldridge, editors, Fourth International Work-
shop on Agent Theories Architectures and Languages
(ATAL-97), volume 1365 of Lecture Notes in Computer
Science, pages 177-192. Springer-Verlag, 1998.

Alice ter Meulen. Representation and human reason-
ing. 2001. Third Augustus de Morgan Conference on
Logic.

W. Vasconcelos. Expressive global protocols via
logic-based electronic institutions. Technical Report
AUCS/TR0301, Department of Computing Science,
University of Aberdeen, 2003.

Wamberto Vasconcelos. Skeleton-based agent de-
velopment for electronic institutions. In Proceed-
ings of the First International Joint Conference on
Autonomous Agents and Multi-Agent Systems. ACM
Press, 2002. Part II.

