
Interleaving Temporal Planning and Execution: IXTET-EXEC∗

Solange Lemai and Félix Ingrand †

LAAS/CNRS,
7 Avenue du Colonel Roche, F-31077 Toulouse Cedex 04, France

{slemai,felix}@laas.fr

Abstract

Execution control of plans is a very active domain of re-
search, but remains a major challenge when performed
on board real autonomous systems such as robots or
satellites. In such a context, where execution concur-
rency, resources contention and environment dynamic
characterize the domain, the use of a temporal planner
and a temporal execution control system is desirable.
This paper presents IXTET-EXEC, a recent extension of the
temporal planner IXTET which allows execution control,
plan repair, and replanning when necessary. We present
how IXTET-EXEC is embedded in the LAAS architecture
and how it interfaces with the other components. We
detail the various internal algorithms used by the sys-
tem, and we illustrate the current implementation with
a short example. We conclude with a list of open issues
and some ideas on how we plan to address them.

Introduction
Execution control of plans is a very active domain of re-
search, but remains a major challenge when performed on
board real autonomous systems such as robots or satellites.
Indeed both planning process and execution control process
need then to be well integrated and must interleave their ac-
tivities to perform the mission they are in charge of, while
respecting the real-time constraints of the environment. In
most cases, embedding such planning and execution control
capabilities requires the use of systems which explicitly rep-
resent and reason about time.

In this paper we present an extension to the IXTET tempo-
ral planner, named IXTET-EXEC, which specifically addresses
this problem. IXTET-EXEC enables the system to execute and
monitor the execution of a temporal flexible plan. It takes
into account runtime failures and timeouts from the under-
lying functional components and incorporates those failures
in the plan. If some flexibility was left for the failed action,
it may try another way to achieve it, otherwise it tries to re-
pair the plan to still achieve the goal, and if this fails too, it
replans the whole plan. Of course, we are well aware that
such a local repair approach may not work in all domains.

∗Part of this work was funded by a contract with CNES and
ASTRIUM.

†This author is currently on sabbatical at NASA Ames Research
Center, Moffett Field, CA, USA.

Still, we believe that there are applications for which the dy-
namic of the environment allows for repair and replanning
while executing a “locked” part of the plan. In any case, if
the situation becomes critical, and one does not have enough
time remaining to plan after an unexpected failure, one can
always rely on predefined emergency plans and procedures
to put the system in a safe state.

A number of studies have already addressed similar is-
sues of how to interleave planning and execution control.
In [Despouys & Ingrand 1999], the authors proposed an ex-
tension to a procedural executive to anticipate the coming
choices and search which branch may lead to the success
of the following execution. Nevertheless, it remained an
extension of a procedural executive, instead of an execu-
tion control of a temporal plan. The Rogue/Prodigy sys-
tem presented in [Haigh & Veloso 1998] is also interleaving
planning and execution control in a robotics environment,
however, this approach does not explicitly represent time
nor resource (although it addresses other interesting issues
such as learning). CPEF (Continuous Planning and Exe-
cution Framework [Myers 1999]) is another system using
an agent based organization to address this problem, still it
seems to be more adapted to domains such as military cam-
paigns than the control of autonomous robots or satellites.
In [McCarthy & Pollack 2002], the authors present the exe-
cution control part of the autominder system. Although the
paper says little about the planning process itself, the paper
presents interesting ideas on how to repair and locally re-
plan when failures occur. The ASPEN/CASPER approach
proposed by [Chienet al. 2000], provides an interesting
framework to perform continuous planning interleaved with
execution. The planner receives and propagates states, re-
sources and temporal updates. Potential future conflicts are
incrementally resolved by performing iterative repair tech-
niques. During replanning, and depending on the domain
application, nothing is executed or a portion of the old plan is
executed. In that case, a commitment window, correspond-
ing to the replanning time interval forbids the modification
of committed activities. However, this approach does not
handle conflicts which appear within the commitment win-
dow. Another approach which seamlessly integrates tem-
poral planning and execution control is IDEA [Muscettola
et al. 2002]. This approach relies on two main ideas: (1)
most components can be seen as agents which share a com-

1

mon virtual machine defining their reactive planning behav-
ior (planning here has to be taken in a wide sense) (2) all
these agents share parts of a global temporal model which
specifies the internal “behavior” of the agent, as well as the
communication between agents. Although it appears to be
a very promising approach, it does not yet provide a frame-
work for resources management.

The paper is organized as follows. The first section
presents the general organization of the system as well as
IXTET the pure planning part of IXTET-EXEC. It also presents
the procedural executive with which it interfaces. Section
2 describes the IXTET-EXEC component and details the meth-
ods and algorithms used to perform temporal plan execution
monitoring, plan repair and replanning. We illustrate the
current state of implementation with an example, and con-
clude with a number of extensions currently being imple-
mented.

General Organization
This section presents an overview of the general organiza-
tion of the system. We introduce the overall architecture in
which our system is intended to be used, as well as the pre-
existing IXTET planning system and the Propice procedural
executive.

The LAAS Architecture
One of the main reasons to extend IXTET with execution, dy-
namic planning and replanning capabilities is to use it on
board complex autonomous systems such as autonomous
robots or satellites. Those systems are usually developed
and deployed using a particular architecture and its associ-
ated tools. In our case, we used the LAAS architecture to
integrate IXTET-EXEC and this section describes this architec-
ture as well as how these different components relate to each
other.

The LAAS architecture [Alamiet al. 1998] was origi-
nally designed for autonomous mobile robots. This archi-
tecture remains fairly general and is supported by a consis-
tently integrated set of tools and methodology, in order to
properly design, easily integrate, test and validate a complex
autonomous system. As shown on Figure 1, it has a number
of levels, with different temporal constraints and uses differ-
ent data representations. Proper tools have been developed
to meet these specifications and to implement each level of
the architecture. The levels are:

• The decision level:This higher level includes the delib-
erative capabilities of the agent such as: producing task
plans, recognizing situations, faults detections, etc. In our
case it embeds:
- a procedural executive (PRS/Propice [Ingrandet al.
1996]), which is connected to the underlying level, to
which it sends requests that will ultimately initiate sen-
sors/effectors actions and start processing tasks. It is re-
sponsible for controlling actions and procedures execu-
tion while being at the same time reactive to events from
the underlying level and commands from the operator.
The temporal properties of this executive are to guaran-
tee its execution reaction time.

Environment

Modules

N

S

W E

mission report

ExoGen

GenoM

PlannerPropice
(PRS)

C
om

Li
b

:
cs

Li
b

 +
 p

os
te

rL
ib Procedural

Executive IxTeT-eXeC

Requests and Resources
Checker

Decisional
Level

Requests
Control
Level

Functional
Level

Figure 1: The LAAS Architecture.

- a temporal planner/executive (in our case IXTET-EXEC, an
extension to IXTET [Ghallab & Laruelle 1994]) which will
be in charge of producing and executing temporal plans.
In the context of embedded execution, this planner needs
to be reactive and take into account execution failures (ac-
tion failures or timeout).
This is the component on which this paper focuses.

• The functional level:Located at the lowest level, it in-
cludes all the basic built-in robot action and perception
capabilities. These processing functions and control loops
(image processing, motion control, . . .) are encapsulated
into controllable communicating modules (developed us-
ing GenoM [Fleury, Herrb, & Chatila 1994]). Each mod-
ule provides a number of services and processing tasks
available through requests sent to it. Upon completion or
abnormal termination, reports (with status) are sent back
to the requester. Note that modules are fully controlled
from the decisional level. The temporal requirements of
the modules depend on the type of processing they per-
form. Modules running servo loop (which have to be ran
at precise rates and intervals without any lag) will have a
higher temporal requirement than a motion planner, or a
localization algorithm.

• The requests control level:Located in between the two
previously presented levels, the Requests and Resources
Checker [Ingrand & Py 2002] checks the requests sent
to the functional modules (either from the procedural ex-
ecutive, but also internally from the functional level it-
self), as well as the resources usage. It is synchronous
with the functional modules, in the sense that it sees all
the requests sent to them, and all the reports coming back
from them. It acts as a filter which allows or disallows re-
quests to pass, according to the current state of the system
(which is built online from the past requests and past re-
ports) and according to a formal model (given by the user)
of allowed and forbidden states of the functional system.
When reports of the requests are being sent back to the

2

R2C, it passes them to the requester, after updating its in-
ternal state. The temporal requirements of this level are
hard real-time.

This paper focuses on the Decisional Level and how its
different components deal with reactive planning and re-
planning. In particular, we present a recent extension to
IXTET: IXTET-EXEC which first enables the system to execute
and monitor the execution of a plan produced by IXTET, and
second takes into account run time failures, timeouts, incor-
porates those failures in the plan, and repairs and/or replans
when necessary.

The IXTET planning system
The IXTET system is a lifted partial-order temporal planner
based on CSPs. The temporal representation describes the
world as a set of multi-valued functions of time (piece-wise
constant), calledattributes, and resources over which bor-
rowing, consumption or production can be specified. The
planner deals with a set of deterministic planning operators,
called tasks, which are temporal structures giving partial
specifications of the evolution of attributes over the task du-
ration. Using ungrounded operators, the search process ex-
plores a tree in the plan space whose root node is a struc-
ture similar to a task which specifies the initial situation,
goals with different associated dates and expected contin-
gent events across the planning horizon.

Attributes are temporally qualified by the predicatehold,
which asserts the persistence of an attribute value over an in-
terval, and the predicateevent, which states an instantaneous
change of values. Resources are expressed by the predicates
use, which represents a borrowing of a quantity of a sharable
resource over an interval,consumeandproducewhich state
the consumption or production of a given resource quantity.

A deterministic planning operator, called atask(see Fig-
ure 3 for an example), is a temporal structure composed of
a set ofeventsdescribing the change of the world induced
by the task, a set ofhold assertions on attributes to express
required conditions or the protection of some fact between
two events, a set of resource usages, and a set of tempo-
ral and binding constraints on the different time-points and
variables of the task. Durations are expressed as continuous
intervals. Note that tasks may also contain a set of sub-tasks,
thus allowing a hierarchical definition.

IXTET relies on two CSP managers. Atime-map man-
ager implements a Floyd Warshall like propagation schema
to ensure the global consistency of the temporal network.
A variable constraint managercombines 2-consistency and
forward checking to handle both discrete and numeric vari-
ables. Domain restriction, equality and inequality con-
straintsare propagated. A recent extension has improved the
expressiveness of the planner [Trinquart & Ghallab 2001]:
the variable manager now handles numeric variables over
infinite sets (such as float or integer) and complex numeric
constraints. It allows for instance to represent the quantity of
resource consumed or produced as a numeric variable. Fur-
thermore, mixed constraints between temporal and atempo-
ral variables can be expressed as for instance:
?distance =?speed ∗ (t2 − t1). They are managed by a

Threats

Pending Subgoals

Resource Conflicts

Resolvents
(costs)

Analysis Module

Insertion

resolvent
of the chosen

Backtrack

of the partial plan
Reconstruction

Flaw Selection
(Kmin)

Abstraction Graph
(off−line)

Global Search Tree

Resolvent Choice
A−eps Algorithm

Search Control Module

or

Temporal
Manager

Variable
Manager

Event
Hold
Use

Plan Manager

and

requests

insertion

Figure 2: IXTET modules.

supervisor that transfers information from one CSP to the
other one when required. These CSP managers take part
in the elaboration of flexible plans: they compute for each
variable a minimal domain which reflects only the necessary
constraints in the plan.

The initial plan is a particular task that describes a prob-
lem scenario, that is: initial values of a set of instantiated
attributes; expected changes on some contingent attributes;
expected availability profile of resources; the goals to be
achieved; and a set of temporal constraints between these
elements.

Figure 2 presents the organization of the different IXTET
modules. The planning algorithm explores a search tree of
partial plans. The root of the tree is the initial plan; branches
represent new tasks or constraints inserted into the current
plan in order to solve one of itsflaws. Three kinds of flaws
are considered:
– pending subgoalsare events or assertions that have not
yet been established; resolvers for a pending subgoal consist
in inserting an establishing event and a causal link (ahold
predicate that protects the attribute value); such an event can
already be in the plan or it may need the insertion of a new
task;
– threatsare possibly inconsistent events or assertions; when
a threat is detected, it can be solved by adding temporal con-
straints or variable binding constraints;
– resource conflictsare detected as over-consuming cliques
in a particular graph; resolvers include precedence con-
straints, variable binding constraints, inequality constraints
between resource allocations, or insertion of resource pro-
duction tasks [Laborie & Ghallab 1995; Trinquart, Lemai,
& Cambon 2002].

The control algorithm detects all current flaws in a partial
plan; if there is no flaw, a solution is found; otherwise a
flaw is selected, possible resolvers for this flaw are listed,

3

one is chosen; it is inserted into the partial plan on which
the algorithm proceeds recursively. IXTET is complete in the
sense that if there exists a solution, it will find it.

However, in a partial plan, the number of flaws to analyze
may be very large. At a given level of the planning process,
some flaws are more relevant than others. IXTET uses a hierar-
chy on the different attribute names (and, as a consequence,
on the different flaws) to structure the search space [Garcia
& Laborie 1995]. This hierarchy verifies the ordered mono-
tonicity property: at a given abstraction level, the resolution
of a flaw creates only new flaws belonging to the current or
less abstract levels. This abstraction hierarchy can be auto-
matically generated from the description of the domain by
analyzing the conditions and the main effects of the tasks.
During the search, the abstraction level is dynamically com-
puted and the flaw analysis is limited to the attributes in the
current level.

There are a few limitations to this functional representa-
tion and CSP-based approach to planning. One of them is
that it performs a feasibility not an optimization search. It is
not easy to introduce an optimization criterion over the set of
plans. This can be done either through heuristics (in the cur-
rent version of IXTET, heuristics are mostly used to reduce the
search time) and/or through a postprocessing stage for local
plan improvements. The other drawback is that the planner
cannot deliver early in the planning process a partial plan on
which execution may start running. This is indeed a limita-
tion for interleaving planning and execution. Note however
that such interleaving modality can be required for highly
reactive systems but it may not be acceptable for a critical
system: execution may start on a partial plan that contains
a flaw to be discovered later, but backtracking becomes im-
possible once execution is started.

Nevertheless, the advantages of the CSP-based functional
approach are numerous. We already underlined the ex-
pressiveness of the representation, its handling of time, re-
sources, controllable and contingent events. The represen-
tation also leads to very flexible plans, partially ordered and
partially instantiated, that can be further constrained at ex-
ecution time (this is part of the least commitment strategy).
Finally, let us stress that since the planner performs a search
in the plan space, it can be adapted to incremental planning
and to other plan merging operations. Our approach for in-
terleaving planning and execution relies on these properties.

Execution Control within the Procedural Executive
Although it is not the focus of this paper, it is necessary to
describe how IXTET-EXEC interacts with Propice, the procedu-
ral executive, as well as the flexibility Propice has to perform
the tasks given by IXTET-EXEC.

In the decisional level presented above, one can see that
the procedural executive is the only component closing the
loop with the next lower level, as well as getting missions
and high level goals from the user. Indeed, this component
is mainly designed to react to events and goals and act upon
accordingly (see [Ingrandet al. 1996] for a detailed account
of these functionalities). Nevertheless, at some point, it may
need a new plan to perform a new goal, for which no prede-
fined plan nor procedure are available.

Note that Propice does not directly interpret the plan built
by the planner, this particular task is carried out by IXTET-
EXEC. Thus, when Propice requests a new plan to achieve a
particular goal, it receives tasks (part of the plan produced)
to perform. Such tasks are in fact linked to particular start
events of the plan graph IXTET-EXEC has decided to execute.
Upon reception of these tasks, Propice refines them (if nec-
essary) and/or picks up the appropriate procedure to carry
them, depending on the current context. In any case, this
usually results in requests being sent to the underlying func-
tional modules. Note that at the functional level, faults and
problems may arise. However, Propice has some latitudes to
recover from these errors, before they get reported to IXTET-
EXEC, as a last resort.

• First, in Propice, all subgoals are automatically reposted
until a “complete” failure is reached. By complete failure,
we mean that all the applicable procedures (with all possi-
ble context bindings) have failed. For example, an action
to take an image in a particular direction may fail while
using a first camera (presumably faulty), but may succeed
using a spare one, providing the action passed to Propice
was given with this latitude left (i.e. this particular vari-
able was not under the control of the temporal planner and
its executive).

• Second, often procedures are written in such a way that
they test at run time what is the best execution path to
take according to the context, and may recover from im-
mediate failures.

These local recoveries do not result from an explicit plan-
ning process, but merely from good engineering practices
(such as flipping a “presumably stuck” switch on and off. . .)
and procedural programming. Nevertheless, they participate
to the overall robustness of the approach.

In any case, when all attempts have failed, or when the
system fails to achieve the IXTET task in the time interval
given by IXTET-EXEC, then Propice reports the failure (or the
timeout) and the planner can then starts its own recovery.

IXTET-EXEC
As stressed before, the planning system IXTET presents inter-
esting properties in the context of plan execution and plan
modification: it elaborates very flexible plans and performs
the search in the plan space. Some adaptations have al-
ready been made to perform plan merging operations [Ga-
borit 1996] and incremental planning, integrated with a pro-
cedural executive [Gout, Fleury, & Schindler 1999] but lim-
ited to the insertion of new goals. The purpose of IXTET-EXEC
is to extend IXTET (which is only a planner and a priori knows
nothing about execution) to interleave more closely planning
and temporal execution, especially to:

• regularly update the plan under execution,

• reactively replan in case of failure,

• incrementally replan upon arrival of new goals.

The key component in IXTET-EXEC is a temporal execu-
tive which interacts with the planning system. The general

4

schema of execution is the following. First, given a descrip-
tion of the task operators and of an initial plan containing the
initial situation and the goals, a complete plan is elaborated.
This plan is then executed. At each step of the execution, the
temporal executive selects the appropriate timepoints from
the temporal network, sends the corresponding commands
to the procedural executive for task expansion and integrates
the reports sent in return. In case of failure, the temporal
executive invalidates the part of the plan concerned by the
failure. Then, taking advantage of the temporal flexibility
of the plan and using IXTET procedures, it tries to repair the
plan while continuing the execution of its valid part. If this
plan repair fails, the temporal executive aborts the execu-
tion, abandons the current plan and restarts a complete plan-
ning process from the new situation and the not yet achieved
goals.

This section details the algorithms implemented to
achieve important and specific functionalities of our system:
concurrent plan execution and repair.

Temporal execution
The temporal executive controls the temporal network of the
plan to decide the execution of tasks and maps the abstract
timepoints to their real execution time.

As said before, a recent extension of IXTET allows the def-
inition of mixed constraints between temporal and atempo-
ral variables. If the model description does not contain any
mixed constraint, the temporal network is an STN [Dechter,
Meiri, & Pearl 1989]. The propagation algorithm used dur-
ing the planning process is equivalent to a PC1 and leads
to the minimal network (the edge constraints are minimal
with respect to the intersection). During plan execution, the
consistent assignment of an execution time to a timepoint
is equivalent to adding a constraint between the origin and
the timepoint. The insertion of a constraint between two
timepoints is propagated to all “triangles” containing at least
one of these timepoints. This propagation keeps the STN
minimal and guarantees that a complete execution is possi-
ble. Note that we did not use some more efficient execu-
tion algorithm like the one proposed in [Muscettola, Mor-
ris, & Tsamardinos 1998] and based on a filtering of non-
dominating edges and local propagation in the filtered net-
work, since we need to keep all temporal information in case
the plan is modified during execution.

If the model contains mixed constraints, the temporal net-
work may become a TCSP [Dechter, Meiri, & Pearl 1989]
containing disjunctive constraints. In that case, the path con-
sistency algorithms are not guaranteed to compute the mini-
mal network. Up to now, we have restricted our approach to
plans without mixed constraints, see the Conclusion section
for possible extensions.

The timepoints of an IXTET plan correspond to different
types of event: start or end of a task, some contingent exter-
nal event (as for instance the timepoints defining a visibility
window for a space application), or some internal event of
a task (used to represent the variation of a resource profile,
or some more complex dependency between tasks . . .). The
current implementation only takes into account start and end
timepoints. But we are considering a future extension which

Execution Cycle
ExecutedP lan: plan currently under execution
ExecutableTPs: set of executable timepoints
texec: execution time of the next executable timepoint
ExecTPs: set of timepoints to execute during the cycle

1.cycle forever
2. wake up if (currenttime≤ texec) or (replan)

or (MsgQueue not empty)
3. cycle start time←currenttime
4. cycle end time← cycle start time + timestep
5. Sense()
6. PlanRepair()
7. Act()
8 get nexttexec

9. add executable TPs occuring attexec to ExecTPs
10.end cycle

Sense()
1.if (MsgQueue not empty)
2. for eachMsg
3. if (report is nominal)
4. setexecutiontime(cyclestart time)
5. forget the past()
6. if (report is failed)

// partial invalidation of ExecutedPlan
7. if (cycle start time≥ timepoint lower bound)
8. setexecutiontime(cyclestart time)
9. else
10. createnew timepoint()
11. insert new state()
12. removecls on commonattributes()
13. forget the past()
14. replan←true
15. updateExecutableTPs, ExecTPs
16. NewSearchTree←true

would allow the execution of other timepoints, to check the
occurrence of an external event for instance.

Furthermore, three types of tasks are considered.Non pre-
emptivetasks cannot be terminated by the controller and the
end timepoint is uncontrollable.Early preemptiveand late
preemptivetasks can be terminated by the controller, as soon
as possible in the first case, as late as possible otherwise.
Note that IXTET is not able to handle non controllable tempo-
ral variables and contingent durations can be squeezed dur-
ing propagation. IXTET-EXEC can only detect when an uncon-
trollable timepoint times out. Further work needs to be done
to make the time-map manager verify the Dynamic Control-
lability property described in [Morris, Muscettola, & Vidal
2001].

The algorithmsExecution Cycle, Sense(), PlanRepair()
and Act() present how IXTET-EXEC is implemented. After
the elaboration of a complete plan by IXTET, its execution
is started. Each time the executive needs to do something,
i.e. a message has been received, or it is time to execute
some timepoint, or some plan repair process is in progress,
it wakes up and follows the execution cycle described above.

5

PlanRepair()
1.if (replan)
2. if (NewSearchTree)
3. set searchtreeroot(ExecutedP lan)
4. NewSearchTree← false
5. getlimit time
6. while (!solution found) and

(currenttime≤ limit time)
7. solution found

←plan onestep(cycle end time)
8. if (solution found)
9. ExecutedP lan← Solution Plan
10. replan← false
11. else
12. ExecutedP lan← get bestpartial plan()
13. updateExecutableTPs, ExecTPs

Act()
1.while (ExecTPs not empty) and (!end cycle)

and (!timeout)
2. (ExecTP ,exec time)← get first TP(ExecTPs)
3. ExecuteNow ←true

//ExecTPs can contain timepoints to execute
//in another cycle (if wake up for replan or Msg)

4. if(exec time > cycle end time)
5. end cycle←true
6. else
7. if (replan)
8. if (ExecTP is start TP)
9. f law ←checkstartingtask()
10. if (flaw)
11. ExecuteNow ←false
12. if (ExecTP ub> cycle end time)
13. addExecTP to WaitingExecTPs
14. suppressExecTP from ExecTPs
15. elsetimeout←true
16. if (ExecuteNow)
17. if (exec time ≤ cycle start time)
18. if (ExecTP ub≥ cycle start time)
19. exec time← cycle start time
20. elsetimeout←true
21. if (ExecTP not controllable and not received)
22. timeout←true
23. else
24. if (ExecTP is start TP)
25. setexecutiontime(exectime)
26. forget the past()
27. NewSearchTree←true
28. sendcommand()
29. updateExecutableTPs, ExecTPs
30.addWaitingExecTPs to ExecTPs

In these algorithms,ExecutedP lan refers to the plan be-
ing executed. At the beginning, it corresponds to the flexible
plan resulting from the initial complete planning process. A
timepoint of its temporal network isexecutableif all time-
points that must directly precede it have already been exe-
cuted. The temporal executive determines what should be

the next timepoint to execute and its execution time (texec).
In fact, several timepoints may have to be executed during
one cycle. The set of these timepoints,ExecTPs, is initial-
ized with the set of timepoints occuring attexec and updated
during the cycle with the new executable timepoints which
have to be executed before the end of the cycle. The execu-
tion time of a timepoint depends on its type. It corresponds
to the lower bound for start timepoints and end timepoints
of early preemptive tasks; and to the upper bound for end
timepoints of late preemptive and non preemptive tasks. In
the last case, this “execution time” only corresponds to a
deadline used to detect possible timeouts.

Two types of commands are sent to the procedural execu-
tive: (START TaskId parameters) or (END TaskId)
(if the task is preemptive). A task is fully instantiated just
before starting its execution. A report is sent back by the
procedural executive each time a task is completed, which
is mapped into the end timepoint of the task. Note that the
real execution time assigned to an end timepoint is the time
at which the report message has been received. More pre-
cisely a completion report contains the following informa-
tion: a completion status (nominal or failed), and in case of
failure, the actual state. This state is described as the set of
new values for the attributes of the task (state and resource
attributes). We also plan to integrate a resource report at
each relevant completion to update the actual quantities of
resource consumed or produced by a task to detect as soon
as possible future resource contention. In the future, a mes-
sage from the procedural executive may also correspond to a
new goal to insert in the plan, see the Conclusion for further
extensions.

The sensepart of the cycle integrates the messages
from the procedural executive. In the nominal case, it
amounts to assigning the current time to the end timepoint
of the task and propagating this value inExecutedP lan
(setexecutiontime()). New executable timepoints may ap-
pear, andExecTPs is updated. For instance,ExecTPs
may now contain the start timepoints of parallel tasks imme-
diately following the completed task, that will be executed
in the same cycle. The failed case is detailed in the next
subsection.

The act part of the cycle “executes” the timepoints
in ExecTPs according to their precedence constraints.
get first TP() (Algo: Act(), line 2) determines which time-
point to handle next and its execution time according to the
temporal network (lower/upper-bound). Line 4 checks if the
timepoint has to be taken into account during the current cy-
cle. If not, no other timepoint is due during this cycle. Oth-
erwise, the “execution” of the timepoint depends on its type.
For a start timepoint: its execution time is assigned the value
determined lines 17-20 and propagated (line 25), the corre-
sponding command is sent. For the end timepoint of a pre-
emptive task: the command is sent, but the execution time is
set only once the report message is received in thesensepart
of the next cycle. Finally, a timeout is detected if a non pre-
emptive task is not terminated yet, but should be (line 21).
Each time a new timepoint is instantiated,ExecutableTPs
andExecTPs are updated (line 29).

The uncertainty on the duration of the execution cycle has

6

some consequences on the exact execution time of start or
end of tasks. Thetimestep(Algo: Execution Cycle, line 4)
is an estimation of the maximal duration of the cycle. It is
defined by the user and may vary with the application. The
model description and the planning process are independent
of the timestep. But the user has to be aware that two time-
points that have to be executed within an interval less than
one timestep, will be executed during the same cycle accord-
ing to their precedence constraints. Note that the cycle can
possibly take less time, and then the executive can react to
messages more quickly.

Finally, the temporal execution of a plan can lead to vari-
ous needs for replan:

1. uncontrollable and controllable timepoints time out,

2. excessive use or insufficient production of resource,

3. new goals to insert,

4. failed tasks.

The adopted strategy consists of two steps: repairing the
plan (cases 2, 3 and 4) and executing its valid part while
there remains some temporal flexibility; if this fails, abort-
ing the execution and elaborating a new plan. The next sub-
section details the plan repair process.

Plan Repair
In most cases, failed tasks have not produced the effects
initially expected in the plan. The plan repair consists of
two steps. First, invalidate the part of the plan depending
on these effects. This process includes removing the causal
links supplied by the failed task, thus revealing new open
conditions in the future. For the moment, the tasks present
in the plan are not removed, to limit the amount of deci-
sions. The second step tries to recover the lost properties of
the plan by adding new tasks and resolving conflicts.

Partial invalidation of the plan Upon reception of a fail-
ure message, two situations may arise. If the reception time
is consistent with the bounds of the end timepoint of the task,
the task is considered to be finished and its end timepoint is
instantiated (Algo:Sense, line 8). But the task can fail at
any moment and before the minimal expected end time of
the task. In that case, a new failure timepointF is created
(Algo: Sense, line 10) and set to the current time. It corre-
sponds to the new end timepoint. The other timepoints of the
task occuring after F are considered to be failed. Their tem-
poral constraints are relaxed and the temporal propositions
(hold, event, . . .) are updated. That is:

• the propositions beginning or occuring at a failed time-
point are removed, as well as the causal links with their
establishers,

• in the propositions ending at a failed timepoint, the end
timepoint is replaced byF .

Precedence constraints are also added betweenF and the
executable timepoints of the plan.

Next, the new state is inserted (Algo:Sense, line 11). The
new state is formalized as a set ofevents on the attributes
of the task, occuring at the end timepoint (or atF) and set-
ting the value of the attributes to the new values given by

the procedural executive. These events are considered as
explainedand do not need to be established by the plan-
ning process. Such an event may or may not be inserted in
ExecutedP lan. If the plan does not contain any conflicting
proposition with the event, it is inserted. If the new value
is in conflict with propositions of another running task, it
is not inserted. Indeed, we consider, that unless the other
task is reported failed, its execution is nominal. Finally, if
the new value is in conflict with some propositions of the
failed task or some causal links, the event is inserted and the
conflicting propositions and causal links are removed. Note
that the breaking of causal links does not call the temporal
constraints between tasks into question.

At this point, the plan may contain open conditions to re-
establish. The repair may require the insertion of new tasks.
To allow a task insertion within the current order of tasks,
we need to break additional causal links (Algo:Sense, line
12). We adapted the work presented in [Gaborit 1996] to
determine which causal links to remove. In short:
• search for the common instantiated attributes present both

in the plan and in the potentially inserted tasks,

• extract the set of causal links on the common instantiated
attributes belonging to the not yet executed part of the
plan,

• among these causal links, remove those who do not be-
long to theextensionof their establishing event. The
extensionof an event corresponds to the interval during
which the value established by the event is imposed (by
some assertion of a task . . .).

A plan repair is then attempted.

Interleave plan repair and execution The plan repair is
similar to the IXTET plan search process in the plan space.
The root of the search tree is the partially invalidated plan
ExecutedP lan. The search tree is developed according to
an Ordered Depth First Search strategy.

Plan repair is distributed, if necessary, on several cycles to
allow the concurrent execution of the valid part. During the
plan repairpart of the cycle, planning is done one step at a
time until a solution is found or a deadline is reached. This
deadline (limit time on line 5, Algo: PlanRepair) corre-
sponds to the share of the timestep allocated to thesense
andplan parts. This parameter is defined by the user. This
planning distribution raises two important problems:
1. On which plan relies the execution in theact part, espe-

cially if no solution has been found? This plan has to sat-
isfy the condition:The currently running tasks are fully
supported in ExecutedPlan. The plan does not contain
any flaw in relation to these tasks. At each planning step,
the node is labeled if the corresponding partial plan sat-
isfies the condition. At the end ofPlanRepair(line 12,
Algo: PlanRepair) and if the current plan is not accept-
able, the last labeled node is chosen and the corresponding
plan becomesExecutedP lan.

2. On which plan and which search tree relies the planning
process in the next cycle? If no decision has been made
meanwhile (no timepoint instantiation, no message re-
ception), the search tree can be kept as is and further

7

developed during the nextRepairPlanpart. It is even
possible to backtrack on decisions made in previous cy-
cles. However, ifExecutedP lan has been modified, a
new search tree is mandatory. Its root node is the new
ExecutedP lan. The planning decisions made in the pre-
vious cycles are now fixed, no backtrack is possible.

Some precautions must be taken to prevent from planning
in the past. Each new timepoint inserted during the plan-
ning process is constrained to occur aftercycle end time.
And, to prevent the planner from looking for threats or es-
tablishing events in the past, aforget the past() function
is applied at each timepoint instantiation. So that the sets
used for the flaw analysis contain, for each instantiated at-
tribute, only the last event and the assertions occuring after
it.

The execution of a partially invalid plan requires to check,
before starting a new task, that it is fully supported in
ExecutedP lan (Algo: Act, line 9). If not, and if the time
upper bound of the start timepoint has not been reached, its
execution is postponed (Algo:Act, line 13). In case of time-
out, the execution is failed and a complete replanning pro-
cess is necessary.

This plan repair process is not guaranteed to find a valid
plan everytime (backtrack nodes frozen by execution or tem-
poral constraints too tight to add new tasks . . .), but can
avoid to abort execution and completely replan at each fail-
ure. By invalidating only a part of the plan, the amount of
decisions is rather limited and a repaired plan may be found
in a few cycles. Plan repair is especially efficient and use-
ful for not temporally over-constrained plans and plans with
some parallelism (some sets of tasks can be executed inde-
pendently). This approach is illustrated with a short example
in the next section.

Complete replanning

If a plan repair is not possible, a complete replanning pro-
cess is mandatory. This problem has not been completely
addressed yet, and thus does not appear in the algorithms
presented above. The idea is to adapt the approach proposed
in [Muscettolaet al. 1998] (“planning to plan”) and con-
sider the planning process as one of the tasks of the plan,
in our case a non preemptive task. Thus, the plan on which
replanning is started would contain:

• the origin and end horizon timepoints ofExecutedP lan,

• the new global state returned by the procedural executive
once the execution is completely stopped, associated with
the timepointT set to the reception time,

• a non preemptive task PLAN, withT as start timepoint
(and each new timepoint in the plan is constrained to oc-
cur after its end timepoint),

• the set of not yet executed goals,

• a new goal requiring the plan to be found.

Open issues remain. One is for instance the detection and
abandonment of goals that can not be achieved because of a
lack of time.

Example
Let consider a robot with two arms (LH andRH), initially
located inL3. This robot has to take two objects (O1 and
O2, respectively located inL1 andL2), and to bring them
in L4. The robot capabilities are described as a set of four
tasks: MOVE from a location to another one, TAKE an ob-
ject with one of its arms, CARRY the object from a location
to another one and PUT the object. The initial state and goals
as well as an example of a task description in the IXTET for-
malism are illustrated in Figure 3. The CARRY task is early
preemptive. It will be terminated as soon as the robot arrives
in its final location?l2 with the object?obj. The proposition
(1) asserts that the object is on the robot and the proposition
(2) guarantees that the robot is in?l2 1 second before the
possible end of the task.

Figure 4 presents the initial plan found by IXTET-EXEC
(bold circles represent start and end timepoints of the tasks,
arrows represent the precedence constraints between time-
points). The execution starts and a failure occurs: the robot
letsO2 fall on the floor at the locationL5 while it is going
to L1.

Figure 5 presents the plan repaired by IXTET-EXEC. The
failure occurred at the beginning of the CARRY task, a fail-
ure timepoint (23) has been created and timepoints 12 and 13
relaxed. The part of the plan concerned by the invalidation
is related only to the attributes representing the position of
O2. The task PUT(L4,O2,LH) is no more supported, but the
task TAKE(O1,L1,RH) remains valid and can be executed.
The shaded timepoints represent the tasks added by the plan
repair. Note that this repaired plan is not optimal. Since no
initial task has been removed (especially MOVE(L1,L4) is
no more useful), the plan contains an extra MOVE fromL5
to L1.

As said before, two parameters are defined by the user:
the timestep and how much of it is allocated to the plan re-
pair. Their values mainly depend on the size of the plan. In
fact, several factors play a part in the duration of the exe-
cution cycle, among them: the number of timepoints exe-
cuted during the cycle, the duration of the propagation in the
STN (varies with the numbern of timepoints in the plan, the
complexity is in(n2 +n)), the duration of the plan invalida-
tion in case of failure and the duration of the most expensive
planning step. The simple example above has been run on
a SunBlade100. Plan invalidation takes 190ms. Plan repair
requires 29 steps and 1 backtrack and is distributed on 2 cy-
cles for a 1s timestep (plan repair: 85%), on 4 cycles for a
600ms timestep (plan repair: 80%). During the other cycles,
a 5Hz control rate is achieved.

Conclusion and Prospectives
This paper presents some preliminary results on IXTET-EXEC,
an extension to the IXTET planning system, which is able
to interleave more closely planning and temporal execution
control. In particular, it regularly updates the plan under ex-
ecution, it reactively repairs the plan in case of failure, and
it incrementally replans upon arrival of new goals.

We have presented how IXTET-EXEC is integrated in the
overall LAAS architecture, and how it relates to the procedu-

8

L1

L4

O1

L5

L2

L3

O2

event(ON(O2): (?,L2),tS)
event(AT_OBJECT(O1): (?,L1),tS)
event(ON(O1): (?,L1),tS)

event(AT_OBJECT(O2): (?,L2),tS)
event(AT_ROBOT(): (?,L3),tS)
ARM(LH), capacity = 1
ARM(RH), capacity = 1

hold(ON(O1): L4,(tG,tE))
hold(ON(O2): L4,(tG,tE))

task CARRY(?l1,?l2,?obj,?arm) (tstart,tend){
 ?l1,?l2 in LOCATIONS
 ?obj in OBJECTS
 ?arm in {LH,RH}
 timepoint t1

 ?l1 != ?l2
 (tend−t1) in [1,1]
 (tend − tstart) in [1,1000]

 hold(AT_ROBOT(): ?l2,(t1,tend)) (1)
 hold(ON(?obj): on_robot,(tstart,tend)) (2)
 event(AT_OBJECT(?obj): (?l1,at_object_idle),tstart)
 hold(AT_OBJECT(?obj): at_object_idle,(tstart,tend))
 event(AT_OBJECT(?obj): (at_object_idle,?l2),tend)
 use(ARM(?arm):1,(tstart,tend))
} early preemptive

Initial State Goals

Figure 3: Example of IXTET formalism.

S 19 20 5 6

21 22 9 10

11 12

17 18

14 16 15

7 8

3 4

13

EMOVE(L3,L2)

PUT(L4,O1,RH)

PUT(L4,O2,LH)

CARRY(L2,L4,O2,LH)

CARRY(L1,L4,O1,RH)

MOVE(L1,L4)

TAKE(O1,L1,RH)MOVE(L2,L1)

TAKE(O2,L2,LH)

Figure 4: The initial plan.

7

3

8

4

E

16 15

27

CARRY(L5,L4,O2,LH)

28

17 1832

26

25

MOVE(L5,L1)

24

31

30

MOVE(L1,L5)

TAKE(O2,L5,LH)

29

10

14

5 6 112019

12

13

922

(Running)
MOVE(L2,L1)

2321S

CARRY(L2,L4,O2,LH)
(Failed)

Figure 5: The plan after repair.

ral executive which relays the actions to the functional level
and passes back the reports of success or failure of those
same actions. The process of plan repair in IXTET-EXEC al-
lows, to some extent, concurrent planning and execution. It
is well adapted for domains where subsystems are rather in-
dependent and allow some sets of tasks to be executed in par-
allel. Moreover, this repair technique is “safe” if the domain
is such that no failure is fatal, and can always be recovered
from. In any case, for critical situations where the system
does not have time to repair or replan, one can always con-
sider using predefined emergency plan or procedure, which
can be fired by the procedural executive to put the system in
a safe state (safe enough to allow a lengthy replanning from

scratch).
The work presented here is still ongoing, and we have al-

ready identified a number of desirable features, and in some
cases, potential methods and solutions to address them:

• We plan to handle uncontrollable timepoints [Morris,
Muscettola, & Vidal 2001].

• One of the main advantages of IXTET is its handling of
production, consumption or borrowing of resources. The
quantities can be defined as variables ranging over con-
tinuous domains. We aim at exploiting this flexibility to
update the actual levels of resource during execution, de-
tect future resource contention, repair if possible (add a

9

production task . . .) or replan (if a resource is no more
available).

• The insertion of new goals is quite similar to the plan re-
pair process. A goal is sent by the procedural executive.
It is inserted in the plan as ahold proposition with the
adequate temporal constraints. As for plan invalidation,
causal links on common attributes are removed to allow
the insertion of new tasks and the plan is “repaired” to
satisfy the new open condition.

• We plan to allow the use of mixed constraints and adapt
the plan execution in case the time map contains disjunc-
tive constraints. Preliminary ideas would consist in using
a PC algorithm and then a backtrack algorithm [Dechter,
Meiri, & Pearl 1989] at the end of the planning process to
guarantee a minimal network, and adapting the Incremen-
tal Directional Path Consistency algorithm [Chleq 1995]
by using theloose intersectiondefined in [Schwalb &
Dechter 1997] to check consistency when adding a new
constraint.

Another important aspect of this work is to embark it and
test it on real robotics platforms. Considering that all the
other tools and functional modules are currently available on
a number of robots at LAAS (Diligent, Dala, etc), and that
the development of IXTET-EXEC is made under Linux (the op-
erating systems used on all these platforms) we do not fore-
see any particular implementation problem. However, de-
pending on the complexity of the planning task and the dy-
namic of the environment, we still need to test how well the
current implementation will perform on real applications.

References
Alami, R.; Chatila, R.; Fleury, S.; Ghallab, M.; and In-
grand, F. 1998. An architecture for autonomy.Interna-
tional Journal of Robotics Research, Special Issue on Inte-
grated Architectures for Robot Control and Programming
17(4):315–337.
Chien, S.; Knight, R.; Stechert, A.; Sherwood, R.; and Ra-
bideau, G. 2000. Using iterative repair to improve the
responsiveness of planning and scheduling. InProceed-
ings of the National Conference on Artificial Intelligence
(AAAI).
Chleq, N. 1995. Efficient algorithms for networks of quan-
titative temporal constraints. InCONSTRAINTS-95, pages
40–45.

Dechter, R.; Meiri, I.; and Pearl, J. 1989. Temporal con-
straint networks. InKR’89: Principles of Knowledge Rep-
resentation and Reasoning. Morgan Kaufmann.
Despouys, O., and Ingrand, F. 1999. Propice-plan: Toward
a unified framework for planning and execution˙ InPro-
ceedings of the European Conference on Planning (ECP).
Fleury, S.; Herrb, M.; and Chatila, R. 1994. Design of a
modular architecture for autonomous robot. InIEEE Inter-
national Conference on Robotics and Automation.
Gaborit, P. 1996. Planification distribuée pour la
cooṕeration multi-agents.Thèse de Doctorat, Université
Paul Sabatier, Toulouse.

Garcia, F., and Laborie, P. 1995. Hierarchisation of the
search space in temporal planning. InProceedings of the
European Workshop on Planning (EWSP), 235–249.
Ghallab, M., and Laruelle, H. 1994. Representation and
Control in Ixtet, a Temporal Planner. InProceedings of the
International Conference on AI Planning Systems, 61–67.
Gout, J.; Fleury, S.; and Schindler, H. 1999. A new de-
sign approach of software architecture for an autonomous
observation satellite. InProceedings of iSAIRAS.
Haigh, K. Z., and Veloso, M. M. 1998. Interleaving plan-
ning and robot execution for asynchronous user requests.
Autonomous Robots5(1):79–95.
Ingrand, F., and Py, F. 2002. An Execution Control System
for Autonmous Robots. InIEEE International Conference
on Robotics and Automation.
Ingrand, F.; Chatila, R.; Alami, R.; and Robert, F. 1996.
PRS: A High Level Supervision and Control Language for
Autonomous Mobile Robots. InIEEE International Con-
ference on Robotics and Automation.
Laborie, P., and Ghallab, M. 1995. Planning with Sharable
Resource Constraints. InProceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), 1643–
1649.
McCarthy, C., and Pollack, M. 2002. A plan-based per-
sonalized cognitive orthotic. InProceedings of the Inter-
national Conference on AI Planning Systems.
Morris, P. H.; Muscettola, N.; and Vidal, T. 2001. Dynamic
control of plans with temporal uncertainty. InProceedings
of the International Joint Conference on Artificial Intelli-
gence (IJCAI).
Muscettola, N.; Nayak, P. P.; Pell, B.; and Williams, B.
1998. Remote agent : To boldly go where no ai system has
gone before.Artificial Intelligence103.
Muscettola, N.; Dorais, G. A.; Fry, C.; Levinson, R.; and
Plaunt, C. 2002. Idea: Planning at the core of autonomous
reactive agents. InProceedings of the 3rd International
NASA Workshop on Planning and Scheduling for Space.
Muscettola, N.; Morris, P.; and Tsamardinos, I. 1998. Re-
formulating temporal plans for efficient execution. InPrin-
ciples of Knowledge Representation and Reasoning, 444–
452.
Myers, K. L. 1999. Cpef: Continuous planning and execu-
tion framework.AI Magazine20(4):63–69.
Schwalb, E., and Dechter, R. 1997. Processing disjunc-
tions in temporal constraint networks.Artificial Intelli-
gence93:29–61.
Trinquart, R., and Ghallab, M. 2001. An extended func-
tional representation in temporal planning : towards contin-
uous change. InProceedings of the European Conference
on Planning (ECP).
Trinquart, R.; Lemai, S.; and Cambon, S. 2002. One step
on the left, one step on the right and back to the middle :
Exploring temporal domains in a pop fashion. InProceed-
ings of the AIPS Workshop on Temporal Planning.

10

