
Empirical Evaluation of a Replanning Algorithm

Guido Boella and Rossana Damiano
Dipartimento di Informatica and Centro di Scienza Cognitiva

Cso Svizzera 185 Torino ITALY
{guido,rossana}@di.unito.it

Abstract

In this paper, we present and discuss the empirical evalua-
tion of a replanning algorithm for a utility-based, hierarchical
planner. The algorithm is embedded in a BDI agent architec-
ture which includes a meta-deliberation component. The aim
of the experimental setting is to investigate, given a utility-
based notion of plan failure, the role of replanning in differ-
ent domains, and to evaluate the preferability of replanning
versus planning from scratch when the plan fails during exe-
cution.

Introduction
Although planning and reactive planning techniques have
been often investigated in real world domains, by obtain-
ing encouraging results, their evaluation in the context of
intelligent agent architectures constitutes a primary research
issue. In particular, when situated in non-deterministic, dy-
namic worlds, agents are likely to experience the failure of
their plans, and the need for re-deliberation on them.

In this paper, we present an experimental setting for em-
pirically evaluating re-deliberation strategies in a BDI agent
architecture which includes a meta-deliberation component
(Boella and Damiano, 2002b), (Damiano, 2002). Theories
of rational behavior claim that intentions are characterized
by stability and tend to be revised at lower level rather than
at higher level (Bratman, 1987), (Bratman et al., 1988). Ac-
cording to this claim, conservative re-deliberation should be
preferred over forms of re-deliberation which abstract from
current intentions.
Here, we focus our attention on two alternatives, replan-
ning, and planning from scratch, and propose a methodology
for evaluating their preferability in a given domain. In this
methodology, the alternatives of replanning and planning
from scratch are evaluated based on their success rate, their
time performance, and the quality of output plans. In line
with theories of rational behavior, the functioning of the re-
planning component is inspired to the notion of persistence
of intentions, in that it tries to perform the most local replan-
ning which allows the expected utility to be brought back to
an acceptable difference with the previously expected one.

The paper is structured as follows. In the next section,
we introduce the agent architecture and its deliberation and
execution components. Then, we present the experimental

methodology, and discuss the results obtained by applying it
to three different domains.

The agent architecture
The architecture is composed of adeliberation module, an
execution module, and a sensing module, and relies on
a meta-deliberationmodule to evaluate the need for re-
deliberation, following (Wooldridge and Parsons, 1999).
The internal state of the agent is defined by its beliefs about
the current world, its goals, and the intentions (plans) it has
formed in order to achieve a subset of these goals. Inten-
tions are dynamic, and can be modified as a result of re-
deliberation. The agent’s deliberation and redeliberation are
based on decision-theoretic notions: the agent is driven by
the overall goal of maximizing its utility based on a set of
preferences encoded in a utility function.

The architecture is based on the assumption that the agent
is situated in a dynamic environment, i.e. the world can
change independently from the agent’s actions, and actions
can have non-deterministic effects, i.e., an action can re-
sult in a set of alternative effects (see (Boella and Dami-
ano, 2002b) and (Damiano, 2002) for a detailed description).
Moreover, it does not assume a perfect correspondence be-
tween the environment actual state and the agent’s represen-
tation of it.

The behavior of the agent is controlled by an execution-
sensing loop with a meta-level deliberation step (see Figure
1). When this loop is first entered, the deliberation module
is invoked on the initial goal; the goal is matched against
the plan schemata contained in the library, and when a plan
schema is found, it is passed to the planner for refinement.
The best plan becomes the agent’s current intention, and
the agent starts executing it. After executing each action in
the plan, the sensing module monitors the effects of the ac-
tion execution, and updates the agent’s representation of the
world. In order to decide whether re-deliberation is needed
or not, the meta-deliberation component is invoked on the
current plan and the updated representation of the world.

The core of the meta-deliberation module is constituted
by an execution-monitoring function, which relies on the
agent’s subjective expectations about the utility of a certain
plan: after the execution of each step, this function computes
the expected utility of executing the remaining plan steps.
Then, the difference between the previously expected utility

1

DELIBERATION

goals intentions

EXECUTION

SENSING

planning

replanning

subjective
world

M
E
T
A
-
D
E
L
I
B
E
R
A
T
I
O
N

W
O
R
L
D

Figure 1: The structure of the agent architecture. Dashed lines represent data flow, solid lines represent control flow. The grey
components determine the agent’s state.

and the new one is computed: if there is a significant differ-
ence, the plan has failed during its execution, and replanning
is performed.1

If new deliberation is not necessary, the meta-deliberation
module simply updates the execution record and releases the
control to the execution module, which executes the next
action. On the contrary, if new deliberation is necessary, the
deliberation module invokes thereplanning componenton
the current plan with the task of finding a better plan.

Deliberation and Execution
The planning algorithm
The planning component of the deliberation module builds
on the DRIPS system, a decision-theoretic refinement plan-
ner which searches the plan space for optimal plans (Had-
dawy and Suwandi, 1994), (Haddawy and Hanks, 1998).
The action library is organized along twoabstractionhier-
archies. Thesequential abstractionhierarchy is a task de-
composition hierarchy: an action type in this hierarchy is
a macro-operator which the planner can substitute with a
sequence of (primitive or non-primitive) action types. The
specification hierarchyis composed of abstract action types
which subsume more specific ones. In the following, for
simplicity, we will refer tosequentially abstractactions as
complexactions and to actions in the specification hierarchy
asabstractactions.

A plan is a sequence of action instances and has associ-
ated the goal the plan has been planned to achieve. A plan
can be partial both in the sense that some steps are complex
actions and in the sense that some are abstract actions.
Before a partial plan is refined, the agent does not know
which plan (or plans) is the most advantageous among those
it subsumes in the plan space. Hence, the expected utility
of the abstract plan is expressed as an interval having as up-
per and lower bounds the expected utility of the best and

1The higher bound (the maximal utility) of the new expected
utility interval is significantly lower than the higher bound of the
previous expected utility interval and the difference is above a cer-
tain (arbitrary) threshold.

the worst outcomes produced by substituting in the plan the
abstract actions with all the more specific actions they sub-
sume. This property is a key one for the planning process as
it makes it possible to compare partial plans which contain
abstract actions.

The representation of a plan is associated with its deriva-
tion tree (including both abstract and complex actions),
which has been built during the planning process and will
be used in the replanning phase. The planning process starts
from the topmost action in the hierarchy which achieves the
given goal and refines the current plan(s) by substituting
complex actions with their decomposition and abstract ac-
tions with all the more specific actions they subsume, until
it obtains a set of plans composed of primitive actions.
At each refinement cycle the planning algorithm re-starts
from a less partial plan, i.e., a plan that subsumes a smaller
set of alternatives in the plan space: at the beginning this
plan coincides with the topmost action which achieves the
goal, in the subsequent refinement phases it is constituted
by a sequence of actions.
After the refinement step, the expected utility of each plan
is computed by projecting it from the current world state;
suboptimal plans, i.e., plans whose expected utility upper
bound is lower than the lower bound of some other planp
are pruned. On the contrary, plans which have overlapping
utilities need further refinement before the agent makes any
choice.

The replanning algorithm

If a replanning phase is entered, it means that the current
plan does not reach the agent’s goal, or that it reaches it with
a very low utility compared with the initial expectations.
However, even if the utility of the current plan drops, it is
possible that the current plan is ‘close’ to a similar feasible
solution, where closeness is represented by the fact that both
the current solution and a new feasible one are subsumed by
a common partial plan at some level of abstraction in the
plan space.

The key idea of the replanning algorithm is then to make
the current plan more partial, until a more promising partial

2

procedure plan replan(plan p, world w)
begin
/* find the first action which will fail */

action a := find-focused-action(p,w);
mark a; //set a as the FA
plan p’ := p;
plan p’’ := p;

/* while a solution or the root not found */
while (not(achieve(p’’,w, goal(p’’)))

and has-father(a))
begin

/* look for a partial plan with better EU */
while (not (promising(p’, w, p))

and has-father(a))
begin

p’ := partialize(p’);
project(p’,w); //evaluate action in w

end
/* restart planning on the partial plan */

p’’ := refine(p’,w);
end
return p’’;

end

Figure 2: The main procedure of the replanning algorithm,
replan.

plan is found: at each partialization step, the current plan
is replaced by a more partial plan by traversing the abstrac-
tion and decomposition hierarchies in a upsidedown manner,
and the planning process is restarted from the the new par-
tial plan in search for more promising alternatives. The ab-
straction and the decomposition hierarchy play complemen-
tary roles in the algorithm: the abstraction hierarchy allows
identifying the alternatives to the current plan steps, while
the decomposition hierarchy focuses the replanning process
on a portion of the plan (see (Boella and Damiano, 2002a),
(Boella and Damiano, 2002b) and (Damiano, 2002) for a
detailed description of the algorithm).

Notice that, if a plan with a higher utility than the failed
one exists, the replanning algorithm finds it: if a solution
cannot be found locally, the partialization process finally in-
vokes the refinement procedure on the action hierarchy root.

The task of identifying the next action whose precondi-
tions do not hold (the ‘focused action’) is accomplished by
the find-focused-actionfunction (see thereplan procedure
in Figure 2). Then, starting from the focused action (FA),
the replanning algorithm partializes the plan, following the
derivation tree associated with the plan (see thepartializes
function in Figure 3).
If the FA is directly subsumed by an abstract action type
in the derivation tree, the focused action is deleted and the
abstract action substitutes it in the tree frontier which con-
stitutes the plan. On the contrary, if FA appears in a decom-
position (i.e., it is directly subsumed by a complex action)
then two cases are possible (see the find-sibling function in
Figure 4):

1. There is some action in the plan which is a descendant
of a sibling of FA in the decomposition and which has
not been examined yet: this descendant of the sibling be-
comes the current FA. The order according to which sib-
lings are considered reflects the assumption that it is better

function plan partialize(plan p)
begin /* a is the FA of p */
action a := marked-action(p);
/* if subsumed by a partial action */

if (abstract(father(a)))
begin

/* delete a from the tree */
delete(a, p);
return p;

end
/* we are in a decomposition */
else if (complex(father(a))

begin
a1 := find-sibling(a,p);
if (null(a1))

/* there is no FA in the decomposition */
begin

mark(father(a)) //set the FA
//delete the decomposition
delete(descendant(father(a)),p);
return p;

end
else

begin //change the current FA
unmark(a);
mark(a1);

end
end

end

Figure 3: The function for making a plan more abstract,par-
tialize.

to replan non-executed actions, when possible: so, right
siblings (from the focused action on) are given priority on
left siblings.

2. All siblings in the decomposition have been already re-
fined (i.e., no one has any descendant): all the siblings
of FA and FA itself are removed from the derivation tree
and replaced in the plan by the complex sequential action,
which becomes the current FA (see Figure 4).2

The complexity of searching the plan space for a new so-
lution starting from the current partial plan is alleviated by
the fact the planning algorithm, when invoked in the replan-
ning phase, exploits the pruning heuristics as in normal plan-
ning, by discarding suboptimal alternatives.

Each time a planp is partialized, the resulting planp′ may
subsume other plans whose outcomes is more advantageous
than the outcome ofp (by the definition of abstraction previ-
ously discussed, the outcome of an abstract action includes
the outcomes of all the actions it subsumes). In other words,
the utility of p′ may have an higher higher bound with re-
spect top, makingp′ a more promising plan thanp. If this
is the case (see thepromisingcondition in the procedurere-
plan) the refinement process is restarted on the current par-
tial plan; if not, the current partial plan is partialized.

2Since an action type may occur in multiple decompositions, in
order to understand which decomposition the action instance ap-
pears into, it is not sufficient to use the action type library, but it is
necessary to use the derivation tree.

3

function action find-sibling(a,p)
begin
/* get the next action in the plan to be
refined (in the same decomposition as a) */

action a0 := right-sibling(a,p);
action a1 := leftmost(descendant(a0,p));
while(not (null (a1)))

begin
/* if it can be partialized */

if (not complex(father(a1)))
begin

unmark(a); //change FA
mark(a1);
return a1;

end
/* move to next action */

a0 := right-sibling(a0,p);
a1 := leftmost(descendant(a0,p));

end
/* do the same on left side of the plan */

action a0 := left-sibling(a,p);
action a1 := rightmost(descendant(a0,p));
while(not (null (a1)))

begin
if (not complex(father(a1)))

begin
unmark(a);
mark(a1);
return a1;

end
end

action a1 := left-sibling(a,p);
end

Figure 4: The procedure for finding the new focused action.

Plan Execution
As described in the previous section, the agent’s deliberation
and meta-deliberation are based on its subjective representa-
tion of the world, maintained by the sensing component.

The representation of a world is constituted by a set of
attribute-value pairs. In the objective representation of the
world, all attributes have a certain value, while the subjec-
tive representation of the world, an attribute can have a prob-
ability distribution on its values. Associating attribute-value
pairs with a probabilistic value is a way to represent a set of
alternative worlds in a compact fashion: a probability distri-
bution on the value of one or more attributes determines a
probability distribution on a set of worlds.

Representing the agent beliefs about the world separately
from the the objective representation of the world allows us
to model situations in which the subjective world represen-
tation is uncertain, while the objective world representation
does not contain any uncertainty. When execution begins,
the representation of the objective world in the simulation
module consists of a world where each attribute has a cer-
tain value, representing the actual world, while the agent’s
initial representation of the world is constituted by a proba-
bility distribution over worlds.

The representation of the external world is updated by a
simulator according to the messages it receives from the ex-
ecution module. When the agent executes an action, the sim-
ulator matches the action conditions against the world rep-

resentation, and updates it with the effects associated to the
condition which holds in it. If the agent executes an action
which has non-deterministic effects, the simulator generates
n worlds corresponding to then alternative effects of the ac-
tion being executed, then picks up a world according to the
probability distribution associated to the action effects.

Given the agent loop introduced before, the representation
of the world contained in the simulation module can be al-
tered between two subsequent sensing acts, by reproducing
a multiplicity of real-world situations. By modifying the ob-
jective representation of the world between the execution of
a step and the subsequent monitoring, it is possible to repro-
duce the situation in which the world changes immediately
after the agent has executed an action, possibly altering the
action effects. Or, by modifying the objective representation
of the world between the agent’s deliberation and execution,
it is possible to model a situation where the world changes
unexpectedly immediately after agent’s deliberation, so that
the execution of the selected course of action takes place in
a different world than expected.

Empirical Evaluation
Experimental Methodology
In order to experimentally tests the issues expressed in the
Introduction, we arranged two different experimental set-
tings, that we applied to three different domains. In both
cases, the process of running execution experiments involve
the following steps: generating the initial subjective and ob-
jective representations of the world, setting the deliberation
and meta-deliberation parameters of the agent (the agent’s
goal and utility function, its planning library, and the ra-
tio which determines the replanning threshold), invoking the
agent loop by recording the relevant data.

The first setting depicts the situation in which the agent
has incorrect initial beliefs about the world. Due to a dis-
crepancy by its subjective representation of the world and
the world itself, as represented in the simulator, the expected
utility of the plan devised by the agent is likely to drop dur-
ing execution. However, the initial subjective and objective
representation of the world are not assumed to be arbitrarily
different: rather, the objective world representation is ob-
tained from the subjective representation of the world fed to
the agent’s deliberation process.
The process of generating the initial subjective and objec-
tive world representations is accomplished in the following
way: first, the subjective world is generated, then, the objec-
tive representation is generated by altering it. The subjective
representation is generated according to a set of attribute-
range pairs, which express plausible value ranges for the
world attributes in the initial world. For each attribute, it
is also specified whether its value is to be uncertain or not
in the initial world. By doing so, it is possible to obtain
a subjective world representation characterized by uncer-
tainty, which represents in a compact way a probability dis-
tribution on a set of worlds (see Section on Execution).
If the agent’s subjective representation does not contain any
uncertainty, then a random number of attributes in the sub-
jective world (drawn from a predefined set) are altered, by

4

substituting their values in the subjective world with a new
random value in the prescribed range. If the world is char-
acterized by uncertainty, then the we exploit it to generate
the objective world, by drawing one of the worlds it sub-
sumes (the drawing accounts for the probability distribution
on simple worlds associated to a complex world).

Then, given the initial subjective and objective world, the
agent loop is launched on these representation. The agent’s
deliberative component devises an executable plan and starts
to execute it. If the agent’s meta-deliberation component de-
tects a significant drop of the expected utility during the ex-
ecution of this plan, the replanning process starts. In order
to compare the strategies of replanning and planning from
scratch, if the replanning algorithm outputs a new plan, the
agent attempts to elaborate a new plan by planning from
scratch given the subjective world representation at the mo-
ment of the expected utility drop.

The second setting is characterized by the initial coinci-
dence of the subjective and objective representations of the
world. In order to introduce an uncertainty factor in the
execution (besides that constituted by the presence of non-
deterministic plan steps), the effects of the plan steps are
randomly altered after they have been executed, to simulate
execution failures and unexpected world changes. In prac-
tice, the objective word representation is altered (prior to the
agent’s sensing action) by modifying the effects of the last
executed action in the following way: given the world at-
tributes involved in the action effects, a subset of them is
randomly drawn, and for each of them, a new value is ran-
domly drawn in the range given by its value prior to the ex-
ecution and its value after the execution.

Experiment Scenarios
In order to investigate the impact of plan failures and the
trade-off between planning and replanning in a domain-
independent way, the scenarios described above have been
applied to three different domains. These domains have been
chosen for their availability, but differ along several dimen-
sions: plan library complexity (maximal and minimal plan
length, action hierarchy depth), non-determinism degrees in
actions types, world representation complexity (number of
attributes involved in world definition and initial world un-
certainty).

The first domain (A) concerns industrial brewing plan-
ning and is characterized by non-deterministic actions; plans
have a minimal length of 3 steps and a maximal length of 7
steps (Haddawy and Suwandi, 1994).

The second domain (B) represents an office toy world and
concerns the planning of a mail delivery task. It is drasti-
cally less complex than the previous ones for what concerns
the depth of the abstraction and decomposition hierarchy, ac-
tions are prominently non deterministic and the initial world
definition is characterized by a lower number of defining at-
tributes (Boella and Damiano, 2002b), (Boella and Dami-
ano, 2002a).

The third domain (C) concerns medical diagnosis and
therapy (Haddawy et al., 1996); it is characterized by high
level of uncertainty in initial world and an high level of
non-determinism in action definition. Plans have a mini-

mal length of 2 steps, and a maximal length of 6 steps. The
action hierarchy is quite complex, and includes several ab-
straction and decomposition levels.

Discussion of the Data

In the following, we give a sketch of the data in the three do-
mains, and make some tentative hypotheses about the cor-
relation between the features of the domain and the result.
Finally, we will try to assess the significance of each exper-
iment set.

For each domain, we performed a separate set of experi-
ments by applying each of the two settings presented in the
previous section. Since these experiments constitute a pre-
liminary attempt to assess the performance of the replanning
algorithm in different domains, we arbitrarily set the size
of the experiment set to a minimum of100 items for each
setting-domain pair.3

For the evaluation of each set of experiments, we consid-
ered the following parameters:

• First of all, we measured theoverall replanning rate.
This value provides useful indications about the proba-
bility that the current plan encounters a failure during its
execution in the given domain. Apart from the inherent
features of the domain (non-determinism, initial uncer-
tainty), the absolute replanning rate is influenced by two
main factors: the experimental setting, and the threshold
under which replanning is triggered. The latter value is
obtained by applying a constant ratio to the initial ex-
pected utility.4

In order to verify the effectiveness of the replanning algo-
rithm we measure the success rate of the replanning pro-
cess; thesuccessful replanning rateapproximately tells
us the probability that the replanning process, when in-
voked in that particular domain, outputs a new plan. By
calculating theabsolute successful replanning rate, it is
then possible to evaluate the relevance of successful re-
planning in the overall experiment set.

• The replanning time vs. the time required by planning
from scratch. Theaverage replanning time(expressed
as a percentage on the time needed to plan from scratch)
indicates how much time is saved (or wasted) by replan-
ning instead of re-invoking the planning algorithm from
the start. In other words, it provides a comparison of the
efficiencyof the two strategies.

• The difference between the (higher) expected utility of
the plan obtained by replanning and the (higher) expected
utility of the plan obtained by planning from scratch. This
value, by comparing the quality of the plans obtained by

3The exact number of items contained in each set of experi-
ments is the following: domainA, setting1: 400 items; domainA,
setting2: 400 items; domainB, setting1: 100 items; domainB,
setting2: 100 items; domainC, setting1: 200 items; domainC,
setting2: 300 items. We leave to future work the assessment of the
statically appropriate test set size for each domain.

4In the experiments, we obtained the threshold by applying a
fixed ratio of0, 1 to the upper bound of the initially expected utility.

5

the two approaches, provides an evaluation of theeffec-
tivenessof the two approaches. If the value of theaver-
age expected utility(again, expressed as a percentage) is
below100, the plans obtained by replanning are more ad-
vantageous than the the plans obtained by planning from
scratch.

The empirical evaluation conducted in the three domains
(see Figures 5 and 6) seems to suggest that the domain con-
stitutes a important factor in determining both the relevance
of replanning and the effectiveness and efficiency of the re-
deliberation strategies we tested (replanning and planning
from scratch). For this reason, we will discuss the data
grouped by the three domainsA, B, andC.

In domainA, the replanning rate is quite low if compared
to the other two domains (26% in setting1 and38, 5% in set-
ting 2), and the successful replanning rate is, respectively, of
18, 44% and19% in the two settings; this value reduces to
5% and 6, 75% if we consider the absolute successful re-
planning rate (see Figure 5, rowsA1 andA2). Although the
impact of plan failures and replanning does not appear to
be high in this domain, the analysis of efficiency (time) and
effectiveness (expected utility) of the replanning algorithm
in this domain points out a better performance of this ap-
proach with respect to the planning from scratch approach
(see Figure 6, rowsA1 andA2). The average replanning
time is8, 68% of the planning time in setting1, and0, 6% in
setting2. The average expected utility of the plans obtained
by planning from scratch is69, 13% of the average expected
utility of the plans obtained by replanning in setting1, and
51, 87% in setting2.

In domainB, we observe a replanning rate of20, 5% in
setting1 and30, 33% in setting2, and a replanning success
rate of100% in setting1 (the replanning process always suc-
ceeded) and of32, 4% in setting2 (see Figure 5, rowsB1
andB2). For what concerns efficiency and effectiveness of
replanning (see Figure 6, rowsB1 andB2), in both setting
the successful replanning, on average, took longer than plan-
ning from scratch (with a value of140, 4% 137, 95% respec-
tively). The average expected utility of the replanned plans
is the same as the average expected utility of the plans ob-
tained by planning from scratch.5

In domainC, the replanning rate is the highest, with a
90% replanning in the two settings. However, a poor perfor-
mance of the replanning algorithm corresponds to the high
relevance of plan failures (and the consequent replanning at-
tempts) in this domain (with a replanning success rate of0%
in setting1, and of4, 44% in setting2, see Figure 5, rows
C1 andC2). Consequently, no data are available about re-
planning efficiency and effectiveness in setting1, and very
few are available in setting2 (the an average replanning time
is 152, 46% of the average time needed for planning from
scratch, and the average expected utility value obtained by
planning from scratch is equal to the value obtained by re-
planning, see Figure 6, rowsC1 andC2).

Given the preliminary data presented above, we believe

5The reason for the coincidence of the expected utility values is
that, in this domain, the replanning process outputs the same plans
as the planning from scratch process.

that they express a correlation between the planning domain
and the performance of the re-deliberation strategies. For
what concerns the performance of the replanning algorithm,
in particular, data show that it constitutes by far the best ap-
proach in domainA, while planning from scratch may be
preferable in domainsB andC. However, in none of the
three domains the performance of the replanning algorithm
is worse than the planning from scratch strategy by both pro-
cessing timeandquality of the output plans. Regarding pro-
cessing time, the ratio of average time performance of the
replanning algorithm on the average time performance of the
planning time is never over1, 5.

Moreover, for what concerns the replanning success rate,
its efficiency (replanning time), and effectiveness (expected
utility of the plans), a discussion of the results cannot ab-
stract from the peculiarities of each domain. In particular,
while the replanning algorithm is based on the assumption
that it is more advantageous to look for a local, non-optimal
solution instead of climbing the entire action hierarchy in
the replanning process, the limited depth of the action hier-
archy in domainB makes this hypothesis invalid: this con-
sideration partly explains the performance of the replanning
algorithm in this domain.
Regarding domainC, it is necessary to notice that the ex-
periments conducted in this domain lead to an initial plan of
two-steps in almost the90% of the cases: in this domain, the
method that we applied for the generation of initial worlds
has proven to be inappropriate, as it heavily depends on the
correct assessment of initial value ranges (see Section on Ex-
perimental Methodology). Unfortunately, the impossibility
of finding an appropriate combination of value ranges for the
generation of the initial worlds has resulted in a large major-
ity of “trivial plans”, which do not constitute an appropriate
test bed for the simulation of plan failures during execution.
Given these observations, the replanning algorithm we
tested appears to perform best in domainA, characterized
by a relatively high action hierarchy and a fair level of non-
determinism. The experiments performed in this domain
show a preferability of replanning on planning from scratch,
by both efficiency and effectiveness.

For what concerns significance of plan failures during ex-
ecution, several factors seem to influence this value. On the
one side, the agent deliberation and meta-deliberation pa-
rameters (utility function, plan failure ratio, etc.) contribute
to determine the number of plan failures in a certain do-
mains, together with the domain intrinsic features. On the
other side, the experiment setting also appears to be rel-
evant to determine the failure rate, although the data col-
lected by using setting1 and2 seem to be comparable. In
order to assess the relevance of each of factors mentioned
above, further experiments are needed. For example, for
what concerns the deliberation and meta-deliberation pa-
rameters, different plan failure ratios and different utility
functions should be tested. For what concerns experiments
settings, all experimental parameters should be varied in or-
der to assess their correlation with the results.

6

DOMAIN REPLANNING
RATE

SUCCESSFUL
REPLANNING

% (relative)

SUCCESSFUL
REPLANNING %

(absolute)

A 1 26 18,44 5

B 1 20,5 100 20,5

C 1 90 0 0

A 2 38,5 17,995 6,75

B 2 30,33 32,4 9,66

C 3 90 4,44 4

Figure 5: The replanning rate in each domain-setting pair (first column) and the successful replanning rate, relative (middle
column) and absolute (right column).

DOMAIN AVG REPLANNING TIME

(% on avg time of

planning from scratch)

DOMAIN AVG EU BY PLANNING FROM

THE SCRATCH

(% on avg. EU by replanning)

A1 8,68 A 1 69,13

B 1 140,4 B 1 100

C 1 - C 1 -

A 2 0,6 A 2 51,87

B 2 137,95 B 2 100

C 2 152,46 C 2 100

 Figure 6: The relation between the replanning time and the time required by planning from scratch (left), and the relation
between the expected utility of the plan obtained by planning from scratch and the expected utility of the plan obtained by
replanning (right).

Conclusions and Future Work

Although the data collected by preliminary experiments
point out the need for more extended and more detailed ex-
periments, we believe that the results we collected lead to
hypothesize a methodology according to which it is essen-
tial to assess the impact on plan failures by extended simula-
tions in the given domain (and the effectiveness of different
replanning strategies) before committing to a re-deliberation
strategy. In some cases, simulations may point out the irrel-
evance of replanning itself, while in other cases, they may
reveal the need for predisposing effective replanning strate-
gies. Although there are intrinsic correlations between the
planning domain, the relevance of replanning and the re-
deliberation strategies, simulations certainly help point out
the exact nature of these correlations. For example, the em-
pirical evaluation we conducted seems to suggest that the
replanning algorithm performs well when on complex plan
libraries, if compared with the strategy of replanning from
scratch: however, to test this claim, it is necessary to ensure
that the initial plans generated along the experiments have a
sufficient degree of complexity.

Investigating the interleaving of execution and re-
deliberation is another issue which deserves future work.
Preliminary studies, in fact, show that the agent architec-
ture we used to carry out the experiments presented here is
suitable for investigating this issue, as it provides an appro-
priate framework for the interleaving of execution and re-
deliberation.

Finally, other reasons, external to the replanning time
and plan quality considerations, may be relevant in certain
contexts, like cooperative and interactive context: in these
contexts, the rational properties of intentionality may set
an a priori preference for conservative replanning solutions,
making the issue of performance even more relevant.

References
Boella, G. and Damiano, R. (2002a). An architecture for
normative reactive agents. In Kawabara, K. and Lee, J.,
editors,Intelligent Agents and Multi-Agent Systems (Proc.
of Prima 02), LNAI 2413, pages 1–17, Tokyo.
Boella, G. and Damiano, R. (2002b). A replanning algo-
rithm for a reactive agent architecture. In Scott, D., editor,
Artificial Intelligence: Methodology, Systems, and Appli-
cations (Proc. of Aimsa 02), LNCS 2443, pages 183–192,
Varna.
Bratman, M. E. (1987). Intention, Plans, and Practical
Reason. Harvard University Press, Cambridge (MA).
Bratman, M. E., Israel, D. J., and Pollack, M. E. (1988).
Plans and resource-bounded practical reasoning.Compu-
tational Intelligence, 4:349–355.
Damiano, R. (2002).The Role of Norms in Intelligent Re-
active Agents. Ph.d. thesis, Universitá di Torino, Torino,
Italy.
Haddawy, P., Doan, A., and Kahn, J. (1996). Decision-
theoretic refinement planning in medical decision making:
Management of acute deep venous thrombosis.Medical
Decision Making.
Haddawy, P. and Hanks, S. (1998). Utility models for goal-
directed, decision-theoretic planners.Computational Intel-
ligence, 14:392–429.
Haddawy, P. and Suwandi, M. (1994). Decision-theoretic
refinement planning using inheritance abstraction. InProc.
of 2nd AIPS Int. Conf., pages 266–271, Menlo Park, CA.
Wooldridge, M. and Parsons, S. (1999). Intention reconsid-
eration reconsidered. In M̈uller, J., Singh, M. P., and Rao,
A. S., editors,Proc. of ATAL-98), volume 1555, pages 63–
80. Springer-Verlag.

7

