
Identifying executable plans

Tania Bedrax-Weiss
�

Jeremy D. Frank
Ari K. Jónsson

�
Conor McGann*

NASA Ames Research Center, MS 269-2
Moffett Field, CA 94035-1000,�

tania,frank,jonsson,cmcgann � @email.arc.nasa.gov

Abstract

Generating plans for execution imposes a different set of re-
quirements on the planning process than those imposed by
planning alone. Fully grounded plans will frequently become
inconsistent when executed in dynamic environments. In-
telligent execution permits making decisions when the most
up-to-date information is available, ensuring fewer failures.
Planning must acknowledge the capabilities of the execution
system, both to ensure robust execution in the face of uncer-
tainty, and to relieve the planner of the burden of making pre-
mature commitments. To do so, we formalize the notion of
executable plans in a planning and execution system through
the use of a declarative Plan Identification Function (PIF).
PIFs guide the planner in making only decisions that the exe-
cution system cannot handle and also determine when to stop
planning. We describe the implementation of PIFsfor a spe-
cific temporal, constraint-based planner. One of the motiva-
tions for this particular implementation is to support multiple
different plan identification functions within the same plan-
ner.

Introduction
Planning has been extensively studied in Artifcial Intelli-
gence, but this has too often been done without consider-
ing the execution of the plan. Most approaches are designed
to generate fully specified grounded plans. Unfortunately, a
fully grounded plan will often contain unfounded assump-
tions about the outcomes of actions, which cause execution
failures in unpredictable environments. Additionally, it is
inefficient for the planning process to commit to decisions
in advance that are likely to be invalidated during execution.
One way to avoid these problems is to have an intelligent
execution system that is able to “fill in the blanks” given a
plan that is not fully grounded. Intelligent execution may
range in complexity from simple computations to a process
resembling full-blown planning. This means that the level
of commitment and information in a plan should depend on
the characteristics of the execution environment.

Different execution systems have different capabilities
when it comes to executing plans that may not be fully spec-
ified. One engine may only be able to handle very specific
open decisions, such as which of two identical cameras to�

QSS Group, Inc.�
Research Institute for Advanced Computer Science

use, while another may be able to assign execution times to
actions whose order has been determined, but whose start
times are left flexible. Where multiple execution engines are
available, the same planner may be used to generate plans
for all of them. Furthermore, variation in the available com-
putational resources during execution can affect the amount
of flexibility the plan execution system can handle. As a con-
sequence, an important part of planning for execution is to
allow the planning system to generate plans at the right level
of abstraction and commitment given all relevant constraints
on the executive in question.

In this paper, we outline a formalization that allows us
to easily specify which plans are considered executable by a
given execution system. For a given execution engine, a plan
is executable if the engine can turn the plan into commands
that then are sent to the hardware interface. If a given plan
is not fully specified, then the execution engine must be able
to make the necessary decisions during execution, so that
the plan gets correctly executed. To formalize this notion,
we will define the notion of Plan Identification Functions
(PIFs). These functions are used to characterize execution
engines by specifying which plans can be handled and which
can not. Consequently, these functions give us the ability to
specify the boundary between planning and execution in a
flexible manner.

This technique has many advantages in building intelli-
gent agents combing planning and execution systems. The
PIFallows a formal description of the separation of duties
between the plannner and the executive. This formal frame-
work makes it easy to vary the boundary between planning
and execution, and also makes it possible to use different
planning and execution tradeoffs within the confines of a
single application. As we shall show later in the paper, a
declarative language can be used to easily specify the PIFs,
which makes the separation of duties part of a completely
declarative model of the agent.

A Simple Example
To examine the issues involved in generating plans for exe-
cution, let us consider a simple spacecraft that can slew (i.e,
turn to different orientations), take pictures, and download
pictures to Earth.

A plan request for this spacecraft might consist of a set of
picture requests, and then a request for downloading some

1

or all of these pictures to Earth. The planning process would
generate an “executable plan” that achieved those goals. An
execution agent would then execute the plan by thrusting
to rotate the spacecraft, activating camera components, and
transmitting data.

A traditional approach to this problem is based on sepa-
rating the planning from the execution at some fixed level of
abstraction. For example, the planning process would gen-
erate slew actions, orientation maintenance actions, picture-
taking actions, and download actions. The complete plan, at
that level of abstraction, would then be executed by break-
ing each high-level action down into specific commands that
together perform the action. The slew actions, for example,
would be broken down into engine warmup, thruster firing,
wait, opposite thruster firing, and then stabilization. This
would be done according to the parameters specifying the
details of each slew action.

A more sophisticated execution system might also be able
to determine when to start activities that have some tempo-
ral flexibility. Rather than waiting until the next action start
time, the execution system could determine that all earlier
actions have been completed, that the action in question can
start early in its feasibility window and then start that action
at that time. Temporal flexibility is not the only type of flexi-
bility an execution system may be able to handle. An execu-
tion system may be as simple or as complex as the problem
requires.

The PIF provides a general mechanism for specifying the
sets of decisions that an execution system can handle. In this
case, the PIF would indicate that all temporal decisions can
be left to the execution system. It would let the planner know
which decisions to make and when it can stop by comparing
the sets of outstanding decisions with the set of decisions
that the execution system can handle.

It is possible to specify the domain model for the plan-
ner and the execution system in the same modeling lan-
guage. Having the same language makes it easy to verify
shared semantics and synchronize model changes. Informa-
tion flows seemlessly between the execution system to the
planner. Furthermore, changes in the planning model are
then automatically propagated to the execution model. In
addition, it provides flexibility in specifying the boundary
between planning and execution systems.

For the remainder of this paper, we will assume a single
shared model. However, the basic notion of plan identifi-
cation can also be used in systems that have different lan-
guages, as long as the executability criteria can be translated
from the execution plan language to that of the planner.

The rest of the paper is organized as follows. We first pro-
vide a formal definition of PIFs and characterize some useful
properties of PIFs. We then describe an implementation of
PIFs in a planning framework called EUROPA. We identify
some important implementation details that arise when im-
plementing PIFs in this framework. We then conclude and
discuss several open issues.

Plan Identification
We now turn our attention to formally defining the concepts
related to general plan identification. We begin by outlining

a general and expressive approach to planning, which sup-
ports arbitrary variables, quantitative temporal relations, ar-
bitrary constraints, and expressive activity-state rules. This
approach generalizes traditional STRIPS planning, but is
significantly more expressive.

Constraint-based planning
In order to address realistic problems, a planning paradigm
must support actions and states with temporal extent, com-
plex relations among action and state arguments, as well
as complex model rules about conditions and effects of ac-
tions and states. In recent years, different approaches have
been proposed for moving away from the classic STRIPS
paradigm, and towards more realistic approaches that incor-
porate explicit representations of time and resources. These
approaches fall into a broad category called Constraint-
Based Planning (CBP) (SFJ00).

The basic idea behind CBP is to use variables to represent
all aspects of states and actions, and to use constraints to
enforce relations between those variables. The basic element
in constraint-based planning is an interval. An interval is
simply a predicate holding over a period of time. The start
and end of the interval and the parameters of the predicate
are described by variables. More formally, an interval is a
tuple,

���������	�
����
, where

�
is a predicate name,

�
is a vector

of variables defining the arguments to the predicate, and
�

and
�

are temporal variables, defining the start and end of
the interval.

A planning domain is defined by the set of interval types,
and a set of configuration rules. A configuration rule is a
generalization of the notion of preconditions and effects. It
consists of a head and a set of consequences. The head of a
configuration rule is a pattern for an action or a state. Each
of the consequences specifies a state or action, along with a
set of constraints. A configuration rule is applicable if its
head matches some action or state in a plan. To satisfy the
rule, all the consequences must also be in the plan, satisfy-
ing the associated constraints. The configuration rules are
very expressive. Instead of specifying only state values be-
fore and after an action, they can specify arbitrary temporal
relations between actions and states that must hold in a valid
plan.

In our spacecraft example, we might have a configuration
rule with a head specifying a takePicture(x) interval,
and a consequence specifying that if � is such an interval,
the plan must also contain a pointingAt(y) interval, � ,
such that ����� , the start of � is at least 10 seconds before
the start of � , and the end of � is no earlier than the end of
� .

Partial plans and completions
In CBP, a partial plan consists of a set of intervals and a set
of constraints among the variables representing those inter-
vals.

A partial plan � is valid, if for every applicable configu-
ration rule, all the intervals and constraints required by those
rules are in � . A partial plan � is instantiated, if each vari-
able has been given a single value. A partial plan � is con-

2

sistent if none of the constraints in the plan are violated and
inconsistent otherwise.

A planning problem is simply a partial plan. This no-
tion generalizes the very restrictive STRIPS notion of only
specifying an initial state and a set of goals. The notion of
a planning problem as a partial plan allows specific actions
as goals, supports the specification of maintenance goals,
makes it easy to define exogonous events, and much more.
Planners can modify plans in two ways. A restriction is de-
fined as the binding of a variable or the addition of a con-
straint. A relaxation is defined as the unbinding of a variable
or the removal of a constraint. An extension of a given par-
tial plan, � , is a plan

�
such that each interval in

�
can be

mapped to a compatible interval in � , and each constraint in
� is in

�
. Thus, restricting a plan � results in an extension�

, and relaxing a plan
���

results in a plan � �
such that

���
is

an extension of � �
.

A partial plan,
�

is complete if every interval is instanti-
ated and the plan is valid.

�
is a completion of every relax-

ation of
�

. We say that a problem instance � has a solution
if it has a consistent completion

�
.

The strictest notion of solving a planning problem � is
to find a consistent completion of � . However, when plan-
ning for execution agents, a more general notion becomes
more useful. A solution is any extension of � that can be
executed by the execution agent. Since the execution agent
capabilities vary, the specification of what is an executable
plan becomes part of the planning problem statement. We
now turn our attention to formalizing that notion.

Plan identification functions
Consider a partial plan encountered during the course of
planning. We would like a declarative description of the set
of plans that can be accepted for execution by the execution
system. This is the notion of plan identification functions
(PIFs). The basic idea is to have a mapping that indicates
whether or not a partial plan is suitable for a given execution
engine or not.

The original notion of a PIF appeared in (JMM � 00), but
it was slightly different. The original definition combined
the notion of consistency with executability, and therefore
used three return values, T, F and ?. Although not required,
a common aspect of executable plans is that they are consis-
tent. However, it is computationally expensive to determine
whether a given partial plan is inconsistent or not. Conse-
quently, it is useful to think of a “consistency identification
function” that maps partial plans to T, F, or ?, where the T
value indicates that the plan is consistent, F indicates it is
inconsistent, and ? indicates that the consistency of the plan
is not known. In the original definition of PIFs , the value
T indicated that the plan was consistent and executable, the
value F meant the plan was inconsistent, and ? was used
to indicate that either the consistency or executability of the
plan was not known yet.

In this paper we generalize the notion of PIFs . A PIF
maps partial plans to the values Y and N. A return value of
Y indicates a plan is executable and a return value of N in-
dicates a plan is not executable. Keeping the definitions as
general as possible, we do not impose any more restrictions

on the evaluations of partial plans. For example, we do not
require that a PIF must return N if the partial plan is incon-
sistent. The reason is that some plan execution systems may
be able to work in the space of inconsistent plans, to repair
a broken plan before execution.

Characteristics of plan identification functions
The idea behind PIFs is to specify to a planner what is ac-
ceptable to a given execution agent. However, many classes
of execution agents have elements in common, such as not
being able to execute inconsistent plans. We now define
some common characteristics that designers of PIFsmay
wish to enforce. The first characteristic we define is con-
sistency.

A PIF, � , enforces consistency if, for any partial plan � ,
such that � � � � � , � has at least one consistent completion.

Another useful characterization is based how much work
needs to be done by an execution engine to find a consistent
completion in different circumstances. This is a particularly
interesting question if uncertainty during execution is taken
into account. The simplest case to handle is where the ex-
ecution agent can make arbitrary choices to complete the
given partial plan:

A PIF, � , enforces solvability if, for any partial plan � ,
such that � � � � � , all extensions of � are complete and
consistent.

Requiring solvability is often unnecessarily expensive
for the planner and needlessly restrictive for the execution
agent. A more relaxed notion is that a partial plan requires
only a bounded amount of time to solve:

A PIF, � , enforces � ��� �	��� solvability if, for any partial
plan � satisfying � � � � � , then in time � ��� ��
 �
 �

either a
consistent completion of � can be found or it can be shown
that no consistent completion of � exists.

As noted above, our formalization also covers execution
agents that are capable of repairing inconsistent plans. For
such agents, the PIF may return y for inconsistent plans.
In that case, it is useful to characterize the amount of time
required to repair the plan, in order to find a consistent com-
pletion of the original problem. If the original problem is�

, we say that a PIF, � , enforces � ��� ���� transformability
if, for any partial plan � satisfying � � � � � , then in time
� ��� ��
 �
 �

a series of restrictions and relaxations of � re-
sulting in a

�
, a consistent completion

�
, can be found, or

it can be shown that no such completion exists.

Examples of Plan Identification Functions
The capabilities of the Remote Agent Executive were lim-
ited to handling temporal flexibility (MNP � 98; JMM � 00).
Furthermore, the RA Executive had to guarantee a timely re-
sponse, so the time required to deal with the flexibility had to
be bounded. As a result, the PIF used with the Remote Agent
Planner accepted only consistent and valid plans where all
parameter variables had been assigned specific values, but
tolerated unassigned temporal variables forming a dispatch-
able simple termporal network (JMM � 00). The restriction
that the resulting temporal network be dispatchable provided
a linear bound on how much time it would take the execu-

3

tion engine to complete a given plan. In other words, the RA
Planner used an � ��� solvable PIF.

Recent techniques have extended the ability of execution
systems to handle uncertainty in temporal quantities. In par-
ticular, (MMV01) presents an algorithm that can determine
that a temporal network with uncertainty can be executed
without failure, and (MM01) presents an algorithm for exe-
cuting such networks in polynomial time. Execution agents
based on these techniques would lead to PIFs are � ��� ��
 �
 �
solvable, where

�
is a polynomial.

From Plan Identification to Flaws
We have formally defined the PIF as a function from a plan
and a model to an answer of either Y or N. This is sufficient
for defining the capabilities of the execution agent and re-
strict the planner to returning only plans that are executable
by that agent. However, when the planner gets the answer
N, it is often difficult to determine what is keeping that plan
from being executable. To address this issue, we look at a
generalization of plan identification that can provide more
information to the planner.

Consider an execution agent that is only capable of han-
dling temporal flexibility. The corresponding PIF will return
N for any plans that have unbound non-temporal variables.
But more information is available; the PIF could indicate
that the set of non-temporal variables

�
are what stands in

the way of the plan being executable. To support this exten-
sion, we extend the definition of a PIF to provide such an
indication when possible.

To do this, we need to find a way to describe what prevents
a plan from being executable. Let us first look at traditional
planning, where the goal is to find a valid and consistent
completion. For any plan that is not complete, not valid or
inconsistent, it is possible to identify the cause. For exam-
ple, if the plan is not valid, there must exist an applicable
configuration rule such that one of its consequences is not
enforced. This has led to the notion of plan flaws, or simply
flaws.

Formally, a flaw in constraint-based planning is one of the
following:
� A violated constraint
� An unbound variable
� An unenforced consequence of an applicable configura-

tion rule

For a given plan � , let us denote the set of flaws by � � � .
Let us return to our example of an execution agent that

only handles flexiblility in temporal variables. Let � be a
partial plan being considered for execution by this agent. If
the set of flaws, � � � , has any flaws other than unbound
temporal variables, the plan is not executable. But, instead
of simply returning N to the planner, the execution agent
function could indicate which flaws need to be addressed to
make the plan executable. These are all of the non-temporal
variable flaws. On the other hand, if the set of flaws for
this plan, � � � , only has unbound temporal variable flaws,
then the PIF returns Y. This leads us to viewing the PIF as
a flaw filter that filters out any flaws that can be handled by

Model

Partial Plan

PlanId

Flaws == {}

Flaws != {}

YES

NO

Figure 1: The Plan Identification Function as a Flaw Filter

the exeuction engine, and thus need not be handled by the
planner. This relation is shown in Figure 1.

We can now redefine a PIF as a function that maps a set of
flaws to a subset of these flaws. In other words, if � is a PIF,
then � � � � � ��� � � � , and a partial plan � is executable if
� � � � � � ��� .

An Implementation of Plan Identification
We now turn our attention to describing an example sys-
tem that implements a general architcture for using PIFs.
The system, called EUROPA (Extensible Universal Remote
Operations Planning Architecture), is an instantiation of
the the Constraint-based Attribute and Interval Planning
framework (FJ03) (CAIP). In this section, we first give an
overview of EUROPA, then describe how PIFs are imple-
mented as flaw filters. Further details on EUROPA imple-
mentation can be found in (FJ03); in this section, we focus
on those aspects that are most relevant to PIFs.

EUROPA Overview
CAIP is an extension of CBP. Like the basic constraint-based
planning paradigm, intervals represent actions with dura-
tions and states with temporal extent. The key addition in
CAIP is the notion of an attribute. An attribute represents
some system, subsystem or other aspect of the domain for
which planning is being done. An attribute can only take
on one value at a given time, so attributes enforce a mu-
tual exclusion relation among intervals that are assigned to
the same attribute. In addition, each interval must be placed
on an attribute. This requirement enforces mutual exclusion
among all intervals.

Consider the following simple model of the spacecraft do-
main. The first half of the model specifies the intervals that
can appear on each attribute, and the second half specifies
the configuration rules. We use the simple temporal rela-
tions of Allen’s Algebra to specify constraints between the
timepoints of required intervals. We assume that parameters
of different intervals with the same variable name require the
parameters to take on the same value.

EUROPA enforces configuration rules by means of the
following plan invariant: whenever a plan modification re-
sults in a change to the set of plan completions, the intervals
in the plan are updated. In the case of relaxations, some
intervals that were part of the plan may no longer be justi-
fied, and if so, the intervals and all associated variables and
constraints are removed. In the case of restrictions, new in-
tervals, variables and constraints may be needed in the plan,

4

Attitude:
�
pointAt(object),

turnTo(object) �
Camera:

�
off(), ready(), takePic(object) �

Take-Picture(�) � met-by ready()
Take-Picture(�) � contained-by
pointAt(�)
ready() � met-by off()
pointAt(�) � met-by turnTo(�)

Figure 2: A simple model of the spacecraft domain.

Attitude

Camera off ready takePic(B)

pointAt(D=d)

pointAt(A)

turnTo(C)

LEGEND

Interval Temporal
Variable

Precedence
Constraint

predicate

Equality
Constraint

Figure 3: A simple partial plan for the model described in
Figure 2

and if so, they are added. If new intervals are added, they
remain as free intervals until the planner decides which at-
tribute to sequence it in.

Figure 3 shows a plan fragment based on the simple
model. The Camera attribute is initially turned off, then it
is ready, and then it is taking a picture. While the Camera
is taking a picture of the object, the Attitude is pointing
at the object. Notice that there are two free intervals, one
with predicate turnTo and one with predicate pointAt.
The free interval turnTo was generated by the plan invari-
ant, while the free interval pointAt was part of the initial
problem instance.

Consider the interval pointAt(�) which is inserted
on the Attitude attribute. In this case, the rule
pointAt(�) � met-by turnTo(�) means that
if a pointAt(�) interval exists in a plan, then a
turnTo(�) must preceed the pointAt(�). The pres-
ence of the pointAt(�) interval forces the addition of the
free turnTo(�) interval due to the plan invariant. Simi-
larly, if the pointAt(�) interval is removed from the At-
titude attribute, then the free interval TurnTo(�) is no
longer justified, and is removed from the plan.

In EUROPA, the parameter equivalence is handled by cre-
ating a new variable for the required turnTo interval and
posting an equivalence constraint between the parameters.
In this example, the parameter � of the turnTo predicates
has been equated with the parameter � of the sequenced

Execution
System

Plan Database

Planner

Plan
Identification

Partial Plan Partial Plan’

Token Network

Constraint
Network

Temporal
Network

Model

EUROPA

Figure 4: Planning For Execution With EUROPA

pointAt() interval. Finally, we note that � has not been
bound to any particular value, while parameter � of the
other turnTo has been bound to value � .

A partial plan in EUROPA consists of a mapping of at-
tributes to sequences of intervals, a set of free intervals, and
a set of constraints on variables in the given intervals. We
assume for simplicity that the set of flaws of a partial plan
is comprised of free intervals and unbound variables 1. A
plan identification function, then, takes the set of free inter-
vals and unbound variables in the plan database and returns
a subset of these in response to a query from the planner.

Plan Identification in EUROPA
Figure 4 shows the overall architecture of EUROPA in the
context of planning for execution. The system is composed
of the following modules: a planner, a plan database, and a
plan identification module. Planning begins when the plan
dabase is initialized with a partial plan and a domain model.
During planning, a planner can query the plan database
through the plan identification module for flaws in the ini-
tial partial plan. Flaws filtered by the PIF are assumed to
be handled by the execution system. If no flaws remain
and the plan is consistent, the planner concludes that a plan
has been found. If flaws remain, however, the planner re-
solves the remaining flaws by updating the plan database.
The plan database uses a constraint network to manage the
consistency of variables and constaints and uses a temporal
network to maintain consistency between temporal variables
and the temporal relationships imposed by the configuration
rules. The planning process continues to alternate, asking
the plan identification module for flaws, and updating the
plan database until a plan is found that satisfies the model
configuration rules and the PIF.

In EUROPA, the PlanId function is implemented as a fil-
tering operation on the set of flaws in the plan database. To

1Note that this set of flaws is only useful for planners that search
in feasible space, but EUROPA can support other flaws as well.

5

Planner

Flaw
Query

Planner

Plan Datbase

Plan
Identification
Module

FlawCache

Condition
Condition

Connection

Filter
Criteria

Flaw
Query

LEGEND

BA

A B

Module

Class

A contains B

A calls B

1 or more
instances

Figure 5: Class Diagram of the PlanId Framework

support this, the system must provide capabilities to:

1. obtain access to the set of flaws in the plan database;

2. define a filter expressing criteria for including or exclud-
ing a flaw;

3. obtain a set of filtered flaws by applying such a filter.

These capabilities are accomplished by providing:

1. a flaw storage mechanism, referred to as the Flaw-
Cache, which keeps the set of flaws in the plan database
synchronized with changes made through explicit com-
mitments by the planner or derived through inference.

2. a highly customizable filtering structure which allows pre-
defined conditions and/or new custom conditions to be
seamlessly integrated in a single filter.

3. a flaw querying facility which handles all access to the
FlawCache and applies filtering criteria defined by the
planner.

The remainder of this section describes in more detail the
framework developed to achieve this in an efficient and cus-
tomizable manner.

Framework Class Diagram
Figure 5 presents the internal details of the PlanId mod-
ule referenced in Figure 4. The PlanDatabase generates
events indicating changes to intervals and variables when the
plan invariant is invoked. These events are received by the
FlawCache and used to maintain the set of all flaws in the
system, i.e. all free intervals and unbound variables. Events
indicating a restriction may cause a flaw to be removed from
the FlawCache e.g. inserting a free interval or assigning
a value to an unbound variable. Events indicating a relax-
ation may cause a flaw to be inserted into the FlawCache
e.g. relaxing to domain of a variable or freeing an inserted
interval.

A planner creates a FlawQuery at the beginning of the
planning process. It is by means of a FlawQuery that a
planner obtains the relevant subset of flaws as indicated by
a filter. Planner-specified filters are defined in a Filter-
Criteria object, which is just a collection of Condi-
tions. Each FlawQuery has exactly one FilterCri-

teria instance, provided to it during construction. Con-
dition objects provide the customization necessary for
planners to filter out flaws they wish to ignore. For a Flaw
in the FlawCache to be returned by a FlawQuery, all
Conditions must be satisfied.

In order to gain access to the set of flaws and the set of
flaw changes, each FlawQuery establishes a Connec-
tionwith the FlawCache. A Connection provides ac-
cess to all flaws in the FlawCache. A Connection also
provides a location to store information on changes in the
FlawCache since the the FlawQuery was last queried.
Notifications of changes in the contents of the FlawCache,
i.e. flaws inserted or removed, are pushed to each connec-
tion from the FlawCache as the latter is synchronized with
the PlanDatabase.

This architecture provides a number of useful features.
First, the FlawCache can support many connections at once,
enabling it to provide flaws to many planners. Second, a
wide variety of simple conditions are provided, enabling a
very large number of different PIFs to be expressible. Third,
it is very straightforward to develop additional conditions
making the approach very extendible. Finally, emphasis on
lazy evaluation and event-based synchronization leads to ef-
ficient implementation.

while(done==false)
if (isConsistent())

filteredFlaws=getFlawsFromQuery()
if (filteredFlaws.isEmpty()==false)

nextFlaw = choose(filteredFlaws)
resolve(nextFlaw)

else done=true
else... // rest of the algorithm omitted

end while

Figure 6: Planning with Flaw Queries.

Step 1:
FlawCache=

� � � � � � ,pointAt(� � �),turnTo(�) �
FilteredFlaws:

� � � � � � ,pointAt(� � �) �
nextFlaw: pointAt(� � �)

Step 2:
FlawCache=

� � � � � � � �
,turnTo(�),turnTo(�

) �
FilteredFlaws:

� � � � � � � � �
nextFlaw:

�

Step 3:
FlawCache=

� � � � � � � turnTo(� � �),turnTo(�) �
FilteredFlaws:

� � � � � � �
nextFlaw: �

Figure 7: Evolution of the flaws for the partial plan in Figure
3.

To see how the flaw filtering works, consider the sam-
ple partial plan shown in Figure 3. There are five flaws:

6

the variables � � � and � , the turnTo(�) interval and the
pointAt(� � �) interval; the FlawCache has these five
flaws. Now suppose that the PIF filters out intervals with
predicate turnTo. Then the set of filtered flaws consists of
the three variables and the pointAt(� � � interval.

The basic loop of a planner is similar to the fragment pre-
sented in Figure 6. At each step, the planner requests the
filtered flaws. Once the flaws are retrieved, the planner uses
some criteria to select a flaw, then uses another criteria to re-
solve the flaws. Application of the plan invariant and propa-
gation of variable changes in the constraint network result in
updates to the FlawCache. Subsequent queries to the Flaw-
Query will return a new set of flaws that accounts for these
updates and the filtering of these flaws by the PIF.

To see this process in action, let us consider a few steps
of planning given the partial plan and PIF that we have de-
scribed. This process is shown in Figure 7. Let us assume
that choose selects flaws according to some arbitrary order.
Also suppose that resolve performs an insertion for free in-
tervals or a variable assignment for unbound variables. After
inserting pointAt(� � �) we see that the plan invariant
ensures the creation of a turnTo(

�
) interval. The Flaw-

Query, however, indicates that the set of filtered flaws at step
2 only includes the variables � � � � � � �

. At the next step,
choose() returns flaw

�
; there is only one possible value, � ,

and thus the plan invariant doesn’t lead to the creation of any
new variables or intervals.

Such a simple filter could be achieved with a single condi-
tion which would check the predicate name of each interval
flaw and exclude it if it matched the name turnTo.

EUROPA Plan Identification Function Capabilities

EUROPA’s PIF framework supports the following condi-
tions, among others:
� Interval predicate filtering - filters all intervals of a partic-

ular predicate.
� Interval variable filtering - filters selected variable of all

intervals with a particular predicate.
� Attribute filtering - filters all intervals and all variables of

all intervals from a particular attribute.
� Temporal filtering - filters intervals according to a variety

of temporal specifications. One example is a filter for in-
tervals guaranteed not to happen within a temporal extent
(a horizon filter).

In practice, different applications will impose different re-
quirements on plan executives. The PIF framework allows
considerable latitude in defining the capabilities of execu-
tion systems, and thus enables the planning technology to
be more widely useful. However, it also provides consid-
erable flexibility within a single application. Engineers can
design different PIFs and analyze the resulting performance
of the integrated planning and execution system, and choose
the PIF that works best.

An execution system will typically only care about the
plan developing inside the current execution window. If this
execution system is implemented as a planner, a PIF could

be used to focus the planning effort on that execution win-
dow only using the horizon filter. Such a PIF would contain
a horizon condition that would specify, for each free inter-
val and each unbound variable, whether it falls within the
horizon or not. A free interval falls within the horizon if its
start time and end time variable domains include the horizon
timepoints. An unbound variable will fall inside the horizon
if it belongs to one of the intervals that falls within the hori-
zon.

The time at which an event actually occurs is usually dif-
ferent from the planned time. This difference can sometimes
prove costly since it may cause some assumptions that were
made in the planning stage to fail. In EUROPA, the tempo-
ral network is implemented as a Simple Temporal Network
(DMP91). Simple Temporal Networks guarantee that if the
network is consistent, an appropriate set of bindings of the
temporal variables can be found in polynomial time. Thus, if
the temporal network is consistent, no further commitments
on time have to be made during planing. This is assuming
that the executive is intelligent enough to be able to find this
appropriate set. A PIF provides the means to define this flex-
ibility using a condition that filters temporal variable flaws.
If no temporal variable flaws are resolved by the planner,
these decisions will remain unbound (though constrained by
the temporal network) until execution time.

Overcommitment at planning time may prove costly in
other ways. In cases where a plan consists of abstract and
concrete tasks, the detailed task expansion of the abstract
tasks may depend highly on when these tasks are executed.
In such cases, it is better to let the execution system map ab-
stract tasks into concrete tasks during execution. This frees
the planner from generating concrete tasks, and allows the
executive to choose the concrete tasks that best fit the actual
execution. A EUROPA model can force abstract and con-
crete tasks to be inserted on different attrnibutes, and the PIF
can filter flaws depending on whether they are allowed to be
placed on “abstract attributes” or not. The EUROPA PIF
mechanism associates variable flaws with the attributes that
their parent intervals belong to, and so only unbound vari-
ables associated with “abstract attributes” will be returned
as flaws.

There are instances of planning for execution when some
planning decisions inside one execution cycle may deter-
mine what will happen in a future execution cycle. These
commitments are sometimes unnecessary, especially in un-
controlled execution environments. These planning deci-
sions may manifest themselves as particular predicate logic
statements or as arguments to predicate logic statements. A
PIF povides the means to delay commitment on these predi-
cates or variables through a condition that filters flaws based
on these predicates or variables.

Complexity Analysis
In the simplest implementation, one could omit the Flaw-
Cache and Connection infrastructure. Resolving a
query would be accomplished by iterating over all intervals
and variables in the plan database and for each, applying the
filter to test for inclusion or exclusion. This would result in
a worst-case time-complexity given by

� ��������� 	� ��
 � �

7

where
���

is the number of variables,
���

is the number of
intervals,

��

is the number of conditions in the filter, and �

is the average cost of evaluating a condition. 2

Since the points of greatest cost are in the evaluation of
conditions, we seek to reduce the execution of condition
tests. This is accomplished in a numnber of ways:

1. The last set of filtered flaws are cached in each Flaw-
Query.

2. The current set of flaws in the plan database are cached in
the FlawCache.

3. Each cache is maintained through notifications of
changes.

4. Conditions may be ordered to fail fast, based on the char-
acteristcis of each problem.

5. The FlawQuery is updated only when the planner consults
it for the latest set of flaws. Thus, the queries are only run
on the set of flaws that were added since the last query.

The resulting worst-case cost of a query is approximated
by:

�
�
� ��
 � �
 where

�
� is the number of flaws inserted

into the flaw cache since the last query.3 The approximation
omits the cost of caching events during synchronization of
the FlawCache and the PlanDatabase. This is reasonable
since the costs of caching are much less than the cost of
evaluating the conditions over all insertions. Notice that we
do not need to worry about flaws that are removed from the
cache, since they aren’t returned to the planner in any case.

Related Work
A wide variety of agent architectures have been designed to
support both planning and execution. We will not describe
all aspects of these systems here; instead, we focus how
these systems characterize the interaction between planning
and execution.

Many integrated planning and plan execution frameworks
define a fixed boundary between their components. These
systems also use different modeling languages, in some
cases with different semantics, and thus have potential prob-
lems with model synchronization. Finally, these systems do
not have a crisp declarative characterization of the bound-
ary between the components. Examples of integrated plan-
ning and plan execution systems in this category are O-Plan
(TDK94), 3T (BFG � 97), and Propice-Plan (DI99).

Cypress (WMLW95) is a planning and plan execution
framework designed for a variety of applications, including
military operations. Cypress is a loosely coupled integration
of the SIPE planner, the PRS reactive execution system, and
Gister-CL system for reasoning under uncertainty. Cypress
enables human intervention during planning and plan exe-
cution. Cypress uses the ACT representation to model both
planning and execution. The boundary between SIPE and
PRS is flexible, as PRS can invoke SIPE to handle run-time

2In practice only some of the conditions will be executed since
we discard the flaw after the first condition fails.

3 �����������
	���
��� since there are relatively few flaw inser-
tions resulting from each planner commitment.

plan failures. However, there is no facility in Cypress to de-
scribe the boundary between the planner and plan execution
in a declarative way.

The Remote Agent (RA) (MNP � 98; JMM � 00) is an
agent architecture for spacecraft control that was used in a 2-
day experiment of an autonomous probe. The RA consisted
of a planner, a plan execution system, and a mode identi-
fication and reconfiguration system. The RA planner built
plans that were temporally flexible so that the plan execu-
tion system could decide on-the-fly which tasks to start and
end (MMT98). This represented a significant advance at the
time; however, other applications using the RA could not
use any other divide between planning and execution. Fur-
thermore, the three components of the system used different
modeling languages with different semantics, requiring con-
siderable effort to ensure model synchronization.

IDEA (MDF � 02; DLM03) is an agent architecture de-
signed to overcome shortcomings in the RA approach to
agent modeling. IDEA provides a simple virtual machine
that supports plan execution, consisting of a model, plan
database, plan runner, and reactive planner. The job of the
reactive planner component of an IDEA agent is to ensure
that a “locally executable” plan is returned. Thus, a crucial
task is to define the scope of the Reactive Planner’s job. The
PIF is a natural way to focus on those parts of the model that
must be addressed by the Reactive Planner. IDEA also sup-
ports many planners operating on the same plan database,
and thus the same model. PIFs are a natural way to define the
scope of these various planners in order to ensure that plan-
ners do not step on each others’ toes. IDEA also supports
multi-agent architectures using inter-agent communication.
The original notion of IDEA is to separate models for each
agent; these models are intended to be written in the same
language and share components. Partial plans serve as the
medium by which planners communicate with the executive,
as well as the medium by which IDEA agents communicate
with each other. However, the PIF can (in principle) be used
to simply divide up the model amongst the agents in a sim-
ilar manner to the way it divides up models amongst plan-
ners; the crucial problem to solve is dividing plan databases
efficiently among the IDEA agents.

Conclusions and Future Work
We have described plan identification functions as a way of
circumscribing the planning problem that must be solved in
order to create an executable plan. PIFs have the advantage
of enabling a single model to characterize both the plan-
ning problem and the plan execution problem. They also
enable easy characterization of the boundary between plan-
ning and plan execution, even in cases where different mod-
els for planning and execution are used. They also provide
considerable flexibility, as they allow the boundary between
planning and execution to be adjusted. We have described
the implementation of the PIF framework of EUROPA, and
shown how it can be used to implement many PIFs for dif-
ferent type of plan execution systems.

We have implicitly assumed that a single model of system
behavior can be written, so that PIFs can be used to separate

8

the part of system behavior that pertains to the execution sys-
tem. The IDEA project (MDF � 02) is pursuing this notion,
but it remains to be seen how the concepts extend to more
sophisticated planning and control architectures.

We have described one way of using PIFs to divide a
model amongst many planners. This approach does not ad-
dress important architectural issues of mutli-agent access to
a shared plan representation. It also doesn’t address the issue
of how to structure the plan representations used by planners
and executives. The efficient implementation of PIFs may be
impacted by this architecture.

Note that while the plan that is passed to the executive
may define a set of plan completions, there is no reason to
assume that the executive chooses one of these completions,
and in fact no way to characterize the actions of the executive
in a declarative way.

PIFs can be used for more than just separating planning
from the execution system. One can also imagine partition-
ing the planning problem into many different problems using
a collection of PIF functions.

References
R. Bonasso, R. Firby, E. Gat, D. Kortenkamp, D. Miller,
and M. Slack. Experienences with an architecture for intel-
ligent, reactive agents. Journal of Experimental and Theo-
retical Artificial Ingelligence, 9(2), 1997.
O. Despouys and F. Ingrand. Propice-plan: Towards a uni-
fied framework for planning and execution. In Proceedings
of the 5th European Conference on Planning, 1999.
M. Dias, S. Lemai, and N. Muscettola. A real-time rover
executive based on model-based reactive planning. In Pro-
ceedings of the International Conference on Robotics and
Automation, 2003.
R. Dechter, I. Meiri, and J. Pearl. Temporal constraint net-
works. Artificial Intelligence, 49:61–94, 1991.
J. Frank and A. Jónsson. Constraint based attribute and
interval planning. Journal of Constraints, To Appear, 2003.
A. Jónsson, P. Morris, N. Muscettola, K. Rajan, and
B. Smith. Planning in interplanetary space: Theory and
practice. In Proceedings of the Fifth International Con-
ference on Artificial Intelligence Planning and Scheduling,
2000.
N. Muscettola, G. Dorais, C. Fry, R. Levinson, and
C. Plaunt. Idea: Planning at the core of autonomous re-
active agents. In Proceedings of the 3d International NASA
Workshop Planning and Scheduling for Space, 2002.
N. Muscettola and P. Morris. Execution of temporal plans
with uncertainty. In Proceedings of the

�������
National Con-

ference on Artificial Intelligence, 2001.
P. Morris, N. Muscettola, and I. Tsamardinos. Reformulat-
ing temporal plans for efficient execution. In Proceedings
of the

�������
National Conference on Artificial Intelligence,

1998.
N. Muscettola, P. Morris, and T. Vidal. Dynamic control of
plans with temporal uncertainty. In Proceedings of the

���	���

International Joint Conference on Artificial Intelligence,
2001.

N. Muscettola, P. Nayak, B. Pell, , and B. Williams. Re-
mote agent: To boldly go where no ai system has gone
before. Artificial Intelligence, 103(1-2), 1998.
D. Smith, J. Frank, and A. J/‘onsson. Bridging the gap
between planning and scheduling. Knowledge Engineering
Review, 15(1), 2000.
A. Tate, B. Drabble, and R. Kirby. O-plan2: An open ar-
chitecture for command, planning and control. Intelligent
Scheduling, 1994.
D. E. Wilkins, K. L. Myers, J. D. Lowrance, and L. P. Wes-
ley. Planning and reacting in uncertain and dynamic envi-
ronments. Journal of Experimental and Theoretical Artifi-
cial Ingelligence, 7(1), 1995.

9

