
A Scheduling Web Service based on XML-RPC

Maria Leonilde R. Varela*, Joaquim N. Aparício†, and Sílvio do Carmo Silva+

*Dept. of Production and Systems, University of Minho, Campus Azurém, 4800-058 Guimarães, Portugal, Phone: +351 253 510341,
Fax: +351 253 510343, Email: leonilde@dps.uminho.pt

†Dept. of Computer Science, New University of Lisbon, Quinta da Torre, 2829-516 Monte de Caparica, Portugal, Phone: +351 21
2948536, Fax: +351 21 2948541, Email: jna@di.fct.unl.pt

+Dept. of Production and Systems, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal, Phone: +351 253 604745, Fax:
+351 253 604741, Email: scarmo@dps.uminho.pt

Abstract
In this paper we make an XML-based modeling and
communication contribution to production scheduling
activity. Scheduling problems and resolution methods are
modeled in XML1. This information modeling is the
basis of a web service oriented to scheduling problem
solving, which is under development. The resolution of
scheduling problems is carried out with the aid of a web
system that uses the XML-RPC protocol for the
execution of methods, local or remotely available
through the Internet.

Keywords: Production scheduling and the new
information technology: XML Modeling and Web
Service with XML-RPC.

Introduction

The scheduling activity in a production environment
seeks to optimize the use of available production means
or resources, ensuring short time to complete jobs and to
satisfy other organizational optimizing criteria.
Production Scheduling may be defined as the activity, of
allocating tasks or jobs to production resources, or vice
versa, over time, for achieving good operating
performance. The resulting schedule or scheduling plan
can be more or less detailed, in accordance with the
intended objectives and the planning time horizon.
Thus, there are cases where we are only interested in
obtaining the sequence in which the jobs should be
processed in certain machines of a production system,
and other cases where we are interested in knowing the
planned start and finishing times of each job operation
on each machine.

The effective and efficient resolution of scheduling
problems begins with the identification of suitable
scheduling methods to solve them. Sometimes we may
encounter methods, which find optimum solutions.
Frequently, however, for real world problems, this is not
the case, due to the complexity of the problems. So we
might have to draw upon available methods, which are
likely to find good solutions but not necessarily optimum
ones.

1 eXtended Markup Language.

When there are alternative methods to solve a problem
we can obtain alternative solutions, which should be
evaluated against specified criteria or objectives to be
reached. Thus, we are able to solve a problem, through
the execution of one or more scheduling methods and,
subsequently, select the best solution provided by them.
These methods can either be local or remotely accessible
through the Internet.

In our work we seek to improve the resolution process
for scheduling problems by means of a web system. This
system requires the specification of each problem to be
solved and the access to resolution methods, which are
available for solving them. For problems specification
we propose a problem classification framework. Based
on this, the XML language is used as a specification
language for scheduling data modeling and processing
on the Internet. This kind of data modeling allows, for
instance, identifying scheduling problems, and methods
for its resolution, as well as the communication
necessary for the execution of implemented scheduling
methods through the web.

This paper is organized as follows. The next section
describes the nature of scheduling problems and the
classification model proposed. References to some well
known scheduling problem classes and corresponding
resolution methods are shown. The section also presents
a brief summary of the main search techniques used by
scheduling methods. Next, the XML-based specification
for scheduling concepts modeling is presented. It is
illustrated with some examples of Document Type
Definitions (DTDs) and corresponding XML
documents. Subsequently, the XML-RPC, an XML-
based Remote Procedure Call protocol, is briefly
presented and its use is exemplified through an example
of a scheduling method execution for a certain problem
instance. Finally, some concluding remarks are
presented and planned future work is briefly referred.

Scheduling Problems and Resolution
Methods

Scheduling Problems
Scheduling problems belong to a much broader class of
combinatorial optimization problems, which, in many

cases, are hard to solve, i. e. are NP-hard problems
(Ceponkus 1999, Jordan 1996, Blazewicz 1996, Brucker
1995). In presence of an NP-hard problem we may try to
relax some constraints imposed on the original problem
and then solve the relaxed problem. The solution of the
latter may be a good approximation to the solution of the
original one. Many times we do not have a choice and
have to draw upon what we may, generally, call
heuristic methods. These include both, those, which we
know how near their solutions may be from optimum
ones, known as approximation methods, and also a
variety of heuristic methods, which are likely to achieve
good solutions (French 1982).

In order to execute the scheduling process it is necessary
to clearly specify the problem to be solved. Scheduling
problems have a set of characteristics that must be
clearly and unequivocally defined.
Due to the existence of a great variety of scheduling
problems, there is a need for a formal and systematic
manner of problem classification and representation. A
framework for achieving this was developed by Varela
(1999), summarized in Table 1, based on published
work by Conway (1967), Graham et al (1979), Brucker
(1995), Blazewicz (1996), and Jordan (1996), as well as
on other information presented by (Morton 1993) and by
other authors namely (Artiba 1997), and (Pinedo 1995).
This framework allows identifying the underlying
characteristics of each problem to be solved, and is used
as a basis for the XML-based problem specification
model put forward with this work.

The referred framework for problem representation
includes three classes of notation parameters for each
corresponding class of problem characteristics, Table 1.

Class Factor Description Value

α1 Manufacturing system type Ο, P, Q, R, X, O,
J, F, PMPM, ... α

α2 Number of machines Ο, k
β1 Job/operation preemption Ο, pmtn

β2 Precedence constraints prec, chain,
tree,sp-graph, …

β3 Ready times Ο, rj

β4
Restrictions on
processing times

pj=1, pji=1,
pj=p, pinf≤pj≤psup,

…
β5 Due dates (deadlines) Ο, dj

β

β6 Batches/families processing Ο, batch

 β7
Number of jobs or of tasks
in a job (job shop case)

O, nj

 β8 Job/task priorities O, wj

 β9
Dynamic machine
availability

O, avail

 β10
Additional/auxiliary
resources

O, aux

 β11 Buffers O, no-wait
 β12 Setup (changeover) O, setup*

γ γ Performance measure
Cmax, Fmax, ∑Cj,
∑wjCj, Lmax, ∑Tj,

…
Table 1 – Scheduling problems characteristics.

The first class of characteristics, the α class, is related
with the environment where the production is carried
out. It specifies the production system type and the

number of machines that exist in the system. Another
class allows specifying the interrelated characteristics
and constraints of jobs and production resources, which
is done by the class β (β1 … β12) of parameters. Some
important processing constraints are imposed by the
need for auxiliary resources, like robots and
transportation devices and/or the existence of buffers,
among others factors. For the optimization criterion, the
third and last class of the framework, we use the
parameter γ. This allows specifying the schedule
evaluation or performance measure, which can be either
a single criterion measure or a multi-criteria one.

An example of the use of this notation is “F,3|n|Fmax”
which reads as: “Scheduling of non-preemptable and
independent tasks of arbitrary processing time lengths,
arriving to the system at time 0, on a pure flow shop,
with 3 machines, to minimize the maximum flow time.

Good schedules strongly contribute to business success.
This may mean meeting due dates, achieving short
delivery times for accepted orders, low flow times, few
ongoing jobs in the system, low inventory levels, high
resource utilization and, certainly, low production costs.
All these objectives can be better satisfied through the
execution of the most suitable scheduling methods
available for the resolution of each particular problem.

Resolution Methods
It is rather obvious that the time we often can devote for
solving particular scheduling problems is usually short.
Therefore, only low order polynomial time approaches
are likely to be acceptable to solve real world problems,
usually complex. Thus, the examination of the
complexity of these problems should be the basis for
further analysis to problem solving. Fortunately, not all
NP-hard problems are equally hard from a practical
perspective. Some NP-hard problems can be solved
pseudo-polynomially using approximation methods that
provide feasible solutions, which, although normally
sub-optimum, are of good quality. Examples of this kind
of methods are based on dynamic programming or
branch and bound techniques. Other approaches to
obtain good or at least satisfactory solutions, in
acceptable time, are based on the nowadays widely used
meta-heuristics, based on local or neighborhood search
techniques, such as Genetic Algorithms (GA),
Simulated Annealing (SA) and Tabu Search (TS). These
are also known as extended neighborhood search
techniques. We can still mention promising scheduling
approaches based on bottleneck resources, neural
networks, Petri-nets and computer simulation. Heuristic
methods tend to provide good results in the available
time to make decisions, reason why it is important to
incorporate them in the web scheduling system here
presented, as we are doing.

Table 2 shows a small sample of makespan optimization
flow shop scheduling problems, for which methods are
referenced, collected from Brucker (1995), and which
may appear in real world production systems.

Information like this is used and available for retrieval
through the web scheduling system. The system is able
to quickly suggest methods for solving problems that
occur in real world manufacturing environments and
solve them through the execution of an appropriate
method implementation, local or remotely available
through the Internet. This draws upon the web system
knowledge base for scheduling problems and methods.

Problem class Method reference Observations

F2 | | Cmax Johnson (1954)
Maximal polynomially
solvable
Without preemption

F2 | rj | Cmax Lenstra et al (1977) Minimal NP-hard
Without preemption

F2 | rj; no-wait |
Cmax Roeck (1984)

Maximal polynomially
solvable
With no wait

F3 | pmtn | Cmax
Gonzalez & Sahni
(1978) Cho & Sahni
(1981)

Maximal polynomially
solvable
With preemption

F3 | | Cmax Garey et al (1976) Minimal NP-hard
Without preemption

F | pji=1; prec |
Cmax

Leung et al (1984),
Timkovsky (1998)

Minimal NP-hard
Without preemption

FMPT | n=3 |
Cmax

Kraemer (1995) Minimal NP-hard
With multiprocessor task

FMPT, m | rj;
pji=1|Cmax

Brucker & Kraemer
(1996)

Maximal polynomially
solvable
With multiprocessor task

FMPM, m |
rj;pji=1|Cmax Brucker et al (1997)

Maximal polynomially
solvable
With multipurpose machines

FMPM |
prec; pji=1| Cmax

Ullman (1975) Minimal NP-hard
With multipurpose machines

Table 2 – Scheduling methods assigned to problems.

Scheduling Concepts Modeling using XML

Since 1995 great happenings have changed the world of
information technology, especially the emergence of
new Internet technologies. The eXtensible Markup
Language (XML) is one of those new technologies that
has been having a wide acceptance and is causing a
great impact on Internet real world applications, since
its release by the World Wide Web Consortium (W3C)
in 1998 (Pardi 1999). XML enables to describe
structures and meanings of data, with a simple syntax,
and is an ideal candidate format for exchanging and
processing data through the Internet. Other advantages
of XML based representation are its openness, simplicity
and scalability (Abiteboul et al 2000). These were
important reasons for choosing XML to develop our web
application. For details about XML and related
technologies (DTD, XSL, XML Schemas, Namespaces,
etc.) see, for example, Ceponkus and Hoodbhoy (1999)
or Harper (2001).

The web applications can use XML for data storage and
processing, for showing multiple views of the data and
for representing complex data structures. Therefore,
XML may guarantee the future utilization of data
formats and the exchange of data structures, so that the
web documents and the platforms become more robust
for systems integration (Pardi 1999).

Some interesting XML applications, which are more or
less related with this work, are PDML (Product Data
Markup Language), RDF (Resource Description Format)
and STEPml (Harper 2001). Other XML specifications
devoted to manufacturing processes are JDF (Job
Definition Format), PSL (Process Specification
Language), PIX-ML (Product Information Exchange),
PIF (Process Interchange Format) and XML-based
workflow (Abiteboul et al 2000).

There are many other web-based technologies available
for data storage and transferring, but we think that it is
more adequate and easier to develop a new system using
these new techniques rather than using conventional
techniques such as EDI (Electronic Data Interchange).
XML based data exchange is becoming very popular in
global manufacturing, and this will cause connectivity
becoming more and more convenient and necessary.

Problems Specification
Following the lines already presented in (Varela 1999,
Varela 2002a, and Varela 2002b), problems are
classified and modeled by a DTD - Document Type
Definition (c.f. Listing 1). Elements introduced in the
referred DTD are expected to become part of a common
namespace. Elements on the problem DTD file precisely
characterize a scheduling problem, meaning that in
order to interact with the system a problem must be
described according to that grammar.

<!-- Elements and attributes declaration -->
<!ELEMENT problems (problem+)>
<!ELEMENT problem (alpha?, beta?, gamma?)>
<!ATTLIST problem
 problem_class CDATA #REQUIRED
 preferred (true | false) "false">
<!-- Alpha elements -->
<!ELEMENT alpha (alpha1?,alpha2?)>
<!ELEMENT alpha1 EMPTY>
<!ATTLIST alpha1 system_type (0 | P | Q | R | F |…) "0">
<!ELEMENT alpha2 EMPTY>
<!ATTLIST alpha2 value (0 | m) "0"
 machines_quantity CDATA #REQUIRED>
<!-- Beta elements -->
<!ELEMENT beta (beta1?, beta2?, ... , beta12?)>…
<!ELEMENT beta4 (job_times*)>
<!ATTLIST beta4 value (0 | pj) "0">
<!ELEMENT job_times EMPTY>
<!ATTLIST job_times
 name CDATA #REQUIRED machine CDATA
 #REQUIRED
 time CDATA #REQUIRED >…
<!ELEMENT beta7 EMPTY>
<!ATTLIST beta7 value (0 | nj) "0"
 job_quantity CDATA #REQUIRED>…
<!-- Gamma element -->
<!ELEMENT gamma EMPTY>
<!ATTLIST gamma measure (Cmax | SumCj | Cj_mean |
SumWjCj | Lmax | SumLj | Lj_mean | SumWjLj | Tmax |
SumTj | Tj_mean | SumWjTj | Emax | SumEj | Fmax …)
“Cmax”>

Listing 1 – DTD for problem example (problems.dtd).

From Listing 1, one can read that, in order to define a
problem we must optionally define the alpha, beta and
gamma factors, because we always have a default value
in the problem classification model assigned to each
factor in the nomenclature.
The problem we are going to exemplify is known to
belong to class F,3|n|Fmax and can be defined by an
XML file as follows.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE problems SYSTEM "problems.dtd">
<problems>
 <problem problem_class="F,3|n|Fmax">
 <alpha>
 <alpha1 system_type ="F"/>
 <alpha2 machines_quantity="3"/>
 </alpha>
 <beta>…
 <beta4 value="0"><job_times name="J1"

machine=”M1” time="3"/>…</beta4>…
 <beta7 value="0" job_quantity="4"/>…
 </beta>
 <gamma measure="Fmax"/>
 </problem>
</problems>

Listing 2 – XML for problem example (problems.xml).

Methods Specification
In order to match problem instances to resolution
methods we must be able to identify those problems and
retrieve appropriate methods for its resolution. The
scheduling methods and its implementations are
described by a given DTD (c.f. methods.dtd and
implementations.dtd below). Many scheduling methods
may be more or less adequate to solve a given class of
problems. In the methods knowledge base the system
records the scheduling method(s) that can be used for
solving a certain problem class.

<!ELEMENT methods (method*)>
<!-- Element method -->
<!ELEMENT method (information, implementation,
description?, input?, output?)>
<!ELEMENT information EMPTY>
<!ATTLIST information
 id CDATA #REQUIRED
 name CDATA #REQUIRED
 problem_class CDATA #REQUIRED
 method_class CDATA #REQUIRED>
<!ELEMENT implementation EMPTY>
<!ATTLIST implementation
 href CDATA #REQUIRED
 preferred (true | false) "false"
 description CDATA #REQUIRED>
<!ELEMENT description (#PCDATA)>
<!ELEMENT input (#PCDATA)>
<!ELEMENT output (#PCDATA)>
Listing 3 – DTD for a B&B method (methods.dtd).

<?xml version="1.0"?>
<!DOCTYPE methods SYSTEM "methods.dtd">
<methods>
 <method>
 <information id="001" name="ExactBranchBound"
problem_class="F,m|n|Fmax" method_class="Exact B&B"/>

 <implementation href="http://localhost:5001/"
description="This implementation ..."/>
 <description>This method can be used …</description>
 <input>The method input is …</input>
 <output> The method output is …</output>
 </method>
</methods>

Listing 4 – XML for a B&B method (methods.xml).

Methods Implementations Specification

In the Internet many implementations may exist for a
given method. From the point of view of the web system
two implementations of the same method may differ if,
for example, they differ on its outputs. Unfortunately not
all implementations work in the same way and in order
for the system to use those implementations in a
programmatic way, implementations must also be
described within the system. This description must
include, among other things, the address to the running
method or program and its signature, which, in turn,
includes the definition of the parameters that are
necessary for its execution and its output format. All this
information is described in the implementation.dtd file
(Listing 5) and an instance of an XML document for our
example can be seen in Listing 6.

<!ELEMENT implementations (implementation*)>
<!ELEMENT implementation (information, signature)>
<!ELEMENT information EMPTY>
<!ATTLIST information
 id CDATA #REQUIRED
 name CDATA #REQUIRED
 href CDATA #REQUIRED
 preferred (true | false) "false"
 description CDATA #REQUIRED>
<!ELEMENT signature (input, output)>
<!-- Element input -->
<!ELEMENT input (input_information, jobs_information)>
<!ELEMENT input_information EMPTY>
<!ATTLIST input_information
 input_information CDATA #REQUIRED
 results_file CDATA #REQUIRED
 jobs_quantity CDATA #REQUIRED
 machines_quantity CDATA #REQUIRED>
<!ELEMENT jobs_information (job_input*)>
<!ELEMENT job_input EMPTY>
<!ATTLIST job_input
 name CDATA #REQUIRED
 machine CDATA #REQUIRED
 time CDATA #REQUIRED>
<!-- Element output -->
<!ELEMENT output (output_information, sequence?,
measures,
jobs_results?)>
<!ELEMENT output_information EMPTY>
<!ATTLIST output_information
 output_information CDATA #REQUIRED>
<!ELEMENT sequence (#PCDATA)>
<!ELEMENT measures (measure*)>
<!ATTLIST measures
 information CDATA #REQUIRED>
<!ELEMENT measure EMPTY>
<!ATTLIST measure
 name CDATA #REQUIRED
 value CDATA #REQUIRED>

<!ELEMENT jobs_results (job_output*)>
<!ELEMENT job_output EMPTY>
<!ATTLIST job_output
 name CDATA #REQUIRED
 machine CDATA #REQUIRED
 start CDATA #REQUIRED
 conclusion CDATA #REQUIRED>

Listing 5 – DTD for the implementation of a B&B
method (implementations.dtd).

<?xml version="1.0"?>
<!DOCTYPE implementations SYSTEM
"implementations.dtd">
 <implementations>
 <implementation>
 <information id="1001"

name="getExactBranchBound"
href="http://localhost:5001" description="The Ignall-Schrage
B&B method, for problem class F,m|n|Fmax belongs to …" />
 <signature>
 <input>
 <input_information input_information="The input
required by…" results_file="results.xml" jobs_quantity="4"
machines_quantity =”3”/>
 <jobs_information>
 <job_input name="J1" machine="M1"

time="3"/>…
 </jobs_information>
 </input>
 <output>

<output_information output_information="The
output..."/>

 <sequence>J1,J3,J4,J2</sequence>
 <measures information="The measures of ...">
 <measure name="Fmax" value="39"/>
 </measures>
 <jobs_results>

 <job_output name="J1" machine="M1" start="3"
conclusion="3"/>

 </jobs_results>
 </output>
 </signature>
 </implementation>
 </implementations>

Listing 6 – XML code for the implementation of a B&B
method (implementations.xml).

The system here described has been designed and
implemented as a web service (http://www.w3.org)
using the XML-RPC (eXtended Markup Language –
Remote Procedure Call) protocol (Laurent et al. 2001).
In a web service a certain method accepts as input a
problem definition and returns a result in some
particular form.
Different implementations may provide results in
different formats, and the system must have a
description of them in order to format them according to
the problem output to be returned to the client as the
very last step of the service.
The result from running a method implementation on
the given problem instance can then be delivered to the
client as an XML file and/ or can be transformed into
some more expressive output, like a Gantt chart or even
other data representation.

Methods Invocation through XML-RPC

As mentioned above the main purpose of this work is to
provide a framework to improve the resolution of
scheduling problems based on XML modeling and
related technologies. Figure 1 illustrates a general
outline of the system architecture.

Remote
XML-KB

Scheduling
System

XML
DTD

Centralized
Problems/
Methods

KB-system

(Repository)

Server

HTTP Get

HTTP

response

.

.

.

XML/RPC-methods servers

Server

Server

Data

Data

Browser

Browser

XML-RPC

XML-RPC

Figure 1 – Web-system architecture.

The main element of the web system structure is an
interface located in the Centralized Problems/ Methods
Knowledge Base (CPM-KB) unit, for introduction,
validation, and transformation of manufacturing
scheduling data. This interface is mainly controlled by
DTD and XSL (eXtended Stylesheet Language)
documents stored in a database. The scheduling
information is also stored in XML documents and these
documents are verified using DTDs, before being placed
in the XML database. The XML and related documents
may either be located on the server or on the client side.
In this work the documents are stored on the server (e.g.
XML, DTD, XSL and other documents) in order to
achieve easy and efficient data transferring.

The system is being implemented as a web service and
allows the execution of either local or remote scheduling
methods through the XML-RPC protocol.
The term Web Services has emerged as a general
category for loosely coupled, dynamically connected
web-based services and are a set of tools that let us build
distributed applications on top of existing web
infrastructures.
These services use XML to encode both the message
wrapper and the content of the message body. As a
result, the integration is completely independent of
operating system, language or other middleware product
used by each component participating in the service.
The only fundamental requirement is that each
component has the ability to process XML documents
and that each node connected in a distributed system
supports HTTP as a default transport layer.

These Web Services are most commonly used to invoke
remote application services or methods using a Remote
Procedure Call (RPC) interaction implemented using
only XML messages (Carlson 2001).
The XML-RPC protocol is the sequence and structure of
requests and responses required to invoke
communications on a remote machine. Several other
protocols that could also be used exist, namely SOAP
(Simple Object Access Protocol), UDDI (Universal
Description, Discovery, and Integration of business for
the web), WSDL (Web Services Description Language),
or other well known, like CORBA (Common Object
Request Broker Architecture), RMI (Remote Method
Invocation) or DCOM (Distributed Component Object
Model). Nevertheless, XML-RPC is among the simplest
and most foolproof web service approaches, and makes
it easy for computers to call procedures on other
computers (Laurent et al. 2001). The XML provides a
vocabulary for describing remote procedure calls, which
are then transmitted between computers using the Hyper
Text Transfer Protocol (HTTP).

XML-RPC clients make procedure requests of XML-
RPC servers, which return results to the XML-RPC
clients. XML-RPC clients use the same HTTP facilities
as web browser clients, and XML-RPC servers use the
same HTTP facilities as web servers.
XML-RPC requires a minimal number of HTTP headers
to be sent along with the XML method request. Listing
7 shows an example that joins the headers and XML
payload to form a complete XML-RPC request for our
example.

POST /rpchandler HTTP/1.0
User-Agent: AcmeXMLRPC/1.0
Host:localhost:5001
Content-Type: text/xml
Content-Length: 832
<?xml version=“1.0”?>
<methodCall>
<methodName>getExactBranchBound</methodName>
<params>
 <param><value><int>4</int></value></param>
 <param><value><int>3</int></value></param>
 <param><value>
 <array><data>
 <value><string>J1</string></value>
 <value><string>M1</string></value>
 <value><double>3</double></value>…
 </data></array>
</value></param></params></methodCall>

Listing 7 – A complete XML-RPC request.

Upon receiving an XML-RPC request, an XML-RPC
server must deliver a response to the client. The
response may take one of two forms: the result of
processing the method or a fault report, indicating that
something has gone wrong in handling the request from
the client. As with an XML-RPC request, the response
consists of HTTP headers and an XML payload.
Listing 8 shows a complete response from an XML-RPC
server, including both the HTTP headers and the XML
payload.

HTTP/1.0 927 OK
Date: Fri, 25 Oct 2002 07:38:05 GMT
Server: MyCustomXMLRPCserver
Connection: close
Content-Type: text/xml
Content-Length: 868
<?xml version=“1.0”?>
<methodResponse>
<params>
 <param><value><string>J1,J3,J4,J2</string></value>
 </param>
 <param><value><double>39</double></value></param>
 <param><value>
 <array><data>
 <value><string>J1</string></value>
 <value><string>M1</string></value>
 <value><double>0</double></value>
 <value><double>3</double></value>…
 </data></array>
</value></param></params></methodResponse>

Listing 8 – A complete XML-RPC response.

The response is provided to a call to the method
getExactBranchBound, which returns a solution to the
F,3|n|Fmax problem.

Figure 2 schematizes our web service framework, based
on this protocol.

User
Browser

ASP

(CPM-KB

System)

Methods
Server

XML/
RPC

XML/
RPC

XML/
RPC

C++

Java

ASP
Legacy
System

...

I
N
T
E
R
N
E
T

javascript(Client)

Figure 2 – Web-service based on XML-RPC.

By using the XML-RPC protocol we are able to execute
scheduling methods implemented in different
programming languages. Moreover, these methods,
local or remotely available, may be running on different
platforms.

As shown previously in Figure 1, our web scheduling
system includes a Centralized Problem/ Methods
Knowledge Base (CPM-KB) unit that encompasses all
the knowledge and components necessary for remote
methods invocation and for performing all other system
functionalities. This unit is controlled by ASP (Active
Server Pages) and corresponding server-side XML-RPC
components.
On the other hand, there are also correspondent XML-
RPC components for each of the methods servers
waiting for RPC requests.

This environment is heterogeneous as servers can use
their own technology, i.e. use different implementation
languages or/ and different operating systems.
More detailed information about the XML-RPC protocol
can be obtained from http://www.xmlrpc.com.

System Functionalities

This web system encompasses several functionalities,
which include knowledge insertion, about scheduling
problems and resolution methods, and correspondent
information searching. Users can make requests for
visualizing scheduling problem classes and methods
information or even browse information about other
concepts presented by the system. The data can be
shown in different views, using existing XSL
documents, adequate for each specific visualization
request. Another important functionality is the execution
of scheduling methods, given the scheduling problem
definition. The selection of one or more specific
methods is made by the system through a searching
process on the knowledge base about scheduling
methods (CPM-KB). The system also enables problem
results presentation and storage.

The fundamental system functionalities are those related
to information modeling, which can be summarized as
follows:
- The easy classification and identification of scheduling
problems, by using the notation for the classification of
those problems, presented in a previous section.
- The easy classification and identification of scheduling
methods.
- The automatic association of scheduling methods to
problems for its resolution and, finally,
- The possibility of solving scheduling problems,
through the selection of one or several methods
implemented, allowing results comparison and the
selection of the most suitable one, for each particular
case.

For a better illustration of system functionalities we will
explain the resolution of an instance of the previously
described F,3|n|Fmax problem class.

In order to find out which method’s implementations are
available for solving this problem, first of all, a set of
problem factors has to be specified, according to the
α|β|γ characterization model previously summarized in
Table 1.

After having defined our problem the system returns the
problem class to which it belongs. In case of having
committed some kind of mistake we can always restart
the previous problem characterization process,
eventually using the system on-line help information,
until we reach the correct one.

Next, when the problem is correctly classified the
system provides resolution methods information as well
as information related to the available methods’

implementations. This information includes the links for
executing methods’ implementations and for other
information, such as method’s class and method’s
author. The system also provides detailed information
about the method and its implementations, so that an
easy selection of adequate scheduling methods can be
achieved for solving the problem. Presently the system
only has one method implementation available for
solving F,3|n|Fmax problems that is a C++
implementation of the Ignall and Schrage method
(Ignall and Schrage 1965, Conway 1967). This is an
exact mathematical programming method, with
exponential time complexity, based on the B&B
technique.

Once knowing which method implementation to use for
solving the problem, we only need to feed the system
with problem data and run the method.

Lets consider a problem with 4 jobs, which have to be
processed in a flow shop with 3 machines. The
objective, already known, consists of minimizing the
maximum flowtime (Fmax). Table 3 shows the time
required for processing each job j on each machine i
(pji).

i \ j J1 J2 J3 J4

M1 3 11 7 10

M2 4 1 9 12

M3 10 5 13 2

Table 3 – Scheduling problem data.

Applying this B&B method the optimal solution can be
reached for the problem. Figure 3 shows the Gantt chart
obtained by the system for this problem, which has a
minimal flow time of 39 time units.

Figure 3 – Problem results.

Gantt charts are also automatically generated by the
system. This is easily achieved because the problem
output data is expressed in XML documents that enable
an easy way of outputs conversion to different desired
output forms, namely into Gantt charts. This facilitates
comparing solutions obtained from the execution of
several method implementations. Other alternatives for
displaying the same data are available.

Conclusions

In manufacturing enterprises, it is important nowadays,
as a competitive strategy, to explore and use software
applications, now becoming available through the
Internet and Intranets, for solving scheduling problems.

This communication proposes an XML-based
specification framework for production scheduling
concepts modeling, together with a web-based
production scheduling system. The XML-based data
modeling is used in order to make possible flexible
communication among different scheduling
applications. Some of the important system’s functions
include the ability to represent scheduling problems and
the identification of appropriate methods to solve them.

The XML-based scheduling data specification
contributes to the improvement of the scheduling
processes by allowing an easy selection of several
alternative methods available for problem solving, as
well as an easy maintenance of the knowledge base
itself. This primarily includes both scheduling problems
and solution methods, which are available through the
Internet. The framework enables the registration of new
problem classes, resolution methods and
implementations, as well as post classification and
matching among them.
The specification format is adequate for the exchange of
scheduling data, since it enables to handle with loosely
coupled systems and with complex hierarchical data.
The XML based specification can be generated and
visualized by computers in appropriate and different
ways. An important issue is that the data representation
model is general, accommodating a large variety of
production scheduling problems, which may occur in
different types of manufacturing environments.

Furthermore, the web scheduling system under
development facilitates the resolution of scheduling
problems, through the execution of local or remote
scheduling methods, available on different computers
through the Internet, in order to greatly contribute to
assist de scheduling decision-making process, by
allowing different solutions comparison, obtained by the
execution of different methods for a same problem and
to choose the solution, which shows more suitable to
solve each particular problem that occurs in the
identified manufacturing environment under
consideration.

Although the main goal is the service for problems
resolution, the system can be used for teaching purposes,
and from that point of view some additional
functionalities are being implemented to be available, in
an interactive (non programmatic) way, by a user
browsing the system. Some of these functionalities
include historical and referencing information about
each problem class, methods and its implementation(s).

References

Artiba, A., Elmaghraby, S. eds. 1997. The Planning and
Scheduling of Production Systems, UK: Chapman &
Hall.
Abiteboul, S., et al. eds. 2000. Data on the Web - From
Relations to Semistructured Data and XML, USA:
Morgan Kaufmann Publishers.

Blazewicz, J., et al. eds. 1996. Scheduling Computer
and Manufacturing Processes, Germany: Springer-
Verlag.
Brucker, P. Eds. 1995. Scheduling Algorithms,
Germany: Springer-Verlag.
Carlson, D. eds. 2001. Modeling XML Applications
with UML – Practical e-Business Applications, USA:
Addison-Wesley.
Ceponkus, A., Hoodbhoy, F. eds. 1999. Applied XML,
USA: Wiley Computer Publishing.
Chrétienne, P., et al. eds. 1995. Scheduling Theory and
its Applications, England: John Wiley & Sons Inc.
Conway, R. W., Maxwell, W. L., Miller, L. W. eds.
1967. Theory of Scheduling, England: Addison-Wesley
Publishing Company, Inc.
French, S. eds. 1982. Sequencing and Scheduling – An
Introduction to Mathematics of the Job-Shop. John
Wiley and Sons, Inc.
Graham, R. L., Lawler, E. L., Lenstra, J. K., Rinnooy
Kan, A. H. G. eds. 1979. Optimization and
Approximation in Deterministic Sequencing and
Scheduling: A survey, Annals of Discrete mathematics.
Harper, F. eds. 2001. XML Standards and Tools, USA:
eXcelon Corporation.
Ignall, E., Schrage L. eds 1965. Application of the
Branch-and-Bound Technique to Some Flow-Shop
Problems. Operations Research 13 (3).
Jordan, C. eds. 1996. Batching and Scheduling,
Germany: Springer-Verlag.
Laurent, S., et al. eds. 2001. Programming Web
Services with XML-RPC, O’Reilly & Associates, Inc.
Morton, T., Pentico, D. eds. 1993. Heuristic Scheduling
Systems, USA: John Wiley & Sons Inc.
Pardi, W. eds. 1999. XML - Enabling Next-generation
Web Applications, USA: Microsoft Press.
Pinedo, M. eds. 1995. Scheduling Theory, Algorithms
and Systems, USA: Prentice-Hall Inc.
Varela, L., Aparício, J., Silva, S. 2002, An XML
Knowledge Base System for Scheduling Problems. In
Proceedings of the Innovative Internet Computing
System Conference, 61-70. Kuhlungsborn, Germany:
Springer-Verlag in the Lecture Notes in Computer
Science series.
Varela, L., Aparício, J., Silva, S. 2002, Scheduling
Problems Modeling with XML, In Proceedings of the 4th
International Meeting for Research in Logistics, 897-
909. Lisbon, Portugal: International Meeting for
Research in Logistics, Inc.
Varela, M. L. 1999. Automatic Scheduling Algorithms
Selection, Msc. Diss., Dept. of Production and Systems,
University of Minho, Portugal.

