
A Planner for Composing Services Described in DAML-S

Mithun Sheshagiri∗, Marie desJardins, Timothy Finin
Computer Science and Electrical Engineering
University of Maryland Baltimore County

Baltimore MD 21250 USA
email: {mits1,mariedj,finin}@csee.umbc.edu

Abstract

A web service is a web-accessible piece of soft-
ware or hardware. In recent years, industry has
been showing increasing interest in web services
as a technology for building distributed web ap-
plications. However, web services as a technol-
ogy lacks in several departments. Representa-
tions for describing web services have been widely
investigated by industry and academia. Service
composition-that is, automated methods for con-
structing a sequence of web services to achieve
a desired result- has been relatively neglected.
We present in this paper, a planner that com-
poses atomic/basic services described in DAML-S
(Ankolenkar et al. 2002) into a composite ser-
vice. We discuss issues involved with the design
of planners for composition. We also propose a set
of guidelines for describing services that facilitates
composition.

Introduction

Web services are a relatively new paradigm for build-
ing distributed web applications. In spite of keen inter-
est shown by industry in web services, several obstacles
have prevented companies from effectively harnessing
web service technology to build web applications. One
obstacle is the lack of a set of tools that would allow de-
velopers (or intelligent agents) to describe, discover and
compose web services. WSDL (Christensen et al. 2001)
is a popular XML-based language for describing web
services, but it does not capture semantics. DAML-S is
an application of DAML+OIL (dam 2001) that can be
used for semantic description of web services. DAML-S
consists of a set of ontologies that provide a vocabulary
to describe services. The use of semantics enables in-
ference about the requirements and effects of services,
which in turn facilitates automatic discovery and rea-
soning. We have built a planner that uses STRIPS-style
services to compose a plan, given the goal and a set of
basic services. We have used the Java Expert Shell
System (JESS) (Friedman-Hill 2002) to implement the
planner and a set of JESS rules that translate DAML-S
descriptions of atomic services into planning operators.

∗Mithun Sheshagiri is a graduate student at UMBC

Our experience with building this planner revealed cer-
tain desirable properties of service descriptions that will
make composition for a planner easier. We also stress
the importance of developing ontologies that can cap-
ture relationships between services, which are crucial
for composition.

Related Work

SWORD (Ponnekanti & Fox 2002) is a model for web
service composition. However, it uses its own simple
description language and does not support any existing
standards like WSDL or DAML-S. Services are modeled
using inputs and outputs, which are specified using an
Entity Relationship model. Inputs are classified into
conditional inputs and data inputs. Outputs are clas-
sified similarly. Conditional inputs/outputs are asser-
tions about entities on which the service operates and
the relationships between entities. Data inputs/outputs
constitute the actual data (attributes of entities) that
the service uses.
The focus of (Thakkar et al. 2002) is primarily on

information discovery, extraction and integration and
does not deal specifically with web services or auto-
matic composition. This system has been been designed
to work with a specific set of services; our system is
designed to be a generic service composer. This sys-
tem describes a forward-chaining composer, specialized
to information integration queries; our system uses a
backward-chaining planner and we plan to build a more
general partial-order planner. Like (Ponnekanti & Fox
2002), they have their own model for describing web
services; we specifically deal with services described in
DAML-S.
A similar framework is being developed at IBM Re-

search Laboratories as part of the Web Services Toolkit
(WSTK) (wst 2000). A composition engine (Sri-
vastava 2002) has been built for services described in
WSDL. Although (Srivastava 2002) describes the use
of a planner for composition, constructing operators
from the service description is not fully automated.
This is primarily because of the absence of a mech-
anism to capture domain knowledge in WSDL. Our
planner makes use of services described in DAML-S.
DAML+OIL helps us to describe explicit ontologies



for capturing domain language. This added knowledge
gives our planner greater versatility and helps compose
complex services.
Golog has been used for service composition (McIl-

raith & Son 2002) by constructing general templates
that are then modified based on user preferences, yield-
ing a composite plan. The templates are not automat-
ically built and constitute part of the plan. Our ap-
proach is able to build plans dynamically from scratch
and does not rely on templates for composition.

Service Description Using DAML-S

DAML-S uses DAML+OIL to describe a set of ontolo-
gies for characterizing web services. DAML-S (dam
2002) describes the following ontologies:

1. A Service ontology that forms the topmost part of a
hierarchy of services.

2. A Service “presents” a ServiceProfile. The Service-
Profile is typically used for advertising and discover-
ing the service.

3. A Service “isDescribedBy” a ServiceModel. The Ser-
viceModel contains information required for com-
position: inputs, outputs, preconditions and effects
(IOPEs). A ProcessModel is a type of ServiceModel.

4. A Service “supports” a ServiceGrounding. Service-
Grounding provides low-level details like communica-
tion protocols (e.g., RPC, SOAP), ports and descrip-
tions of data structures exchanged. This information
is used by a web service execution engine to actually
invoke services.

The manner in which DAML-S is used is slightly un-
usual. Typically when using DAML+OIL, a schema or
ontology is designed and concepts (classes and proper-
ties) defined in this schema are instantiated as a next
step. DAML-S uses an intermediate step where services
are described as new schemas and not instantiated. The
actual instantiation of services is done only during run
time. This is analogous to writing procedures which
form the service descriptions and a call to these pro-
cedures creates an instance of this procedure (Martin
2001). An atomic service is a directly invocable ser-
vice that executes in a single step. An atomic service
consists of inputs, preconditions, effects and outputs.
These are defined as properties in DAML-S specifica-
tions.

Planner

The Service model describes the service and consists of
inputs, preconditions, outputs and effects of services.
The first step in planning a service composition con-
sists of converting DAML-S ServiceModel descriptions
of services into Verb-Subject-Object(VSO) triples. All
VSO triples corresponding to the services are asserted
into the JESS KB as facts.
The next step involves building planning operators

that correspond to each of the atomic services. We
have written a set of rules and queries (defrules and

defqueries in JESS) that transform services encoded as
VSO triples into a set of facts that form the planning op-
erator. The planning operators are similar to STRIPS
planning operators and consist of a service name, in-
puts, preconditions, outputs and effects.

We characterize inputs and preconditions (IPs) into
two types: external IPs and internal IPs. External
IPs are IPs that are provided directly by the agent or
satisfied externally and are not generated as effects or
outputs of other operators. Internal IPs, on the other
hand, can be provided or satisfied only by other oper-
ators/services. For example, the user provides his/her
contact information through some interface. Therefore,
this information is an external IP. Suppose that there
is an operator that produces the effect ProfilePresent
when user fills in his/her profile information. In this
case, ProfilePresent is an internally generated effect;
therefore it is an internal IP if used as a precondition
by another operator.

Outputs and effects as defined by DAML-S specifi-
cations can be conditional: that is, depending on the
current state of the world, the effect or output of a
service can be different. It is not necessary for a com-
poser to represent the control structure for conditional
effects and outputs; merely enumerating them as multi-
ple effects or outputs is sufficient for composition. The
DAML-S website includes a sample book-buying do-
main called congo.com, which includes service descrip-
tions and ontologies associated with the domain. Figure
1 shows an example of a service from this domain that
creates an account:

Figure 1: CreateAcct Service described in
DAML-S



The equivalent planning operator of the service
described in Figure 1 is the following set of facts:
(sname http://www.csee.umbc.edu/mits1/daml/modCongoProcess.daml#CreateAcct)

(precon http://www.csee.umbc.edu/mits1/daml/modCongoProcess.daml#CreateAcct

nil)

(input http://www.csee.umbc.edu/mits1/daml/modCongoProcess.daml#CreateAcct

http://www.csee.umbc.edu/mits1/daml/modCongoProcess.daml#createAcctInfo)

(effect http://www.csee.umbc.edu/mits1/daml/modCongoProcess.daml#CreateAcct

nil)

(output http://www.csee.umbc.edu/mits1/daml/modCongoProcess.daml#CreateAcct

http://www.csee.umbc.edu/mits1/daml/modCongoProcess.daml#createAcctOutput)

Since the output is unconditional in the above case,
we just have a single output. Now consider an example
of a service which produces an effect BookPresent if
BookInStock is true or BookAbsent if BookInStock is
false. The equivalent planning operator will have the
following effects as follows.

(sname foo)
(input foo BookName)
---
(effect foo BookPresent)
(effect foo BookAbsent)

Although the service description exposes the BookIn-
Stock condition, its “value” is decided by the input
BookName and therefore not known in advance. Such
services are therefore non-deterministic. The planning
operators for these services show both effects. The
actual effect cannot be ascertained till execution
time. We assume the that the effect produced during
execution is the one desired by us. We plan a thorough
treatment of this issue in our next version. In cases
where the value of the condition is known in advance,
the planning operators are built using a technique
similar to the “when” clause described in (Weld 1994).
The approach for conditional ouputs is similar.

(sname S1)
--
(condeffect S1 CE1)
(CE1 FLAGA E1)
(CE1 FLAGB E2) //FLAGA = (¬FLAGB)

The planner applies the following two steps repeat-
edly until none of the services satisfy any of the goals.

1. Find services that satisfy existing goal and store them
(add them to the plan).

2. Convert the inputs and preconditions of all the oper-
ators stored in step 1 into new set of goals.

Composition is successful if all outstanding goals are
external IPs. We have developed a set of atomic
services that are similar to the set of services described
for congo.com. The equivalent planning operators are
shown below. For the sake of readability complete
URI’s have not been used.

(sname Login)
(input Login UserName)
(output Login UserType)

(sname GetInfo)
(input GetInfo UserType)
(effect GetInfo ProfileExists)
(effect GetInfo ProfileDoesNotExist)

(sname QueryUser)
(precon QueryUser ProfileDoesNotExist)
(output QueryUser AskUser)

(sname BookLookUp)
(input BookLookUp BookName)
(output BookLookUp ISBN)
(output BookLookUp BookInStock)
(output BookLookUp BookOutOfStock)

(sname PutInCart)
(input PutInCart ISBN)
(precon PutInCart ProfileExists)
(precon PutInCart BookInStock)
(effect PutInCart InCart)

(sname CreditCard)
(input CreditCard CardType)
(input CreditCard CardNum)
(input CreditCard CardExpiryDate)
(effect CreditCard Approved)
(effect CreditCard NotApproved)

(sname ShipItem)
(precon ShipItem InCart)
(precon ShipItem Approved)
(effect ShipItem BookShipped)
(output ShipItem InformUser)

The goal we specify to start composition is Book-
Shipped. Figure 2 shows the plan generated by the
planner. The light gray rectangles represent external
IPs-that is, information that must be provided by the
user or some external source such as database. The
dark rectangles request internal IPs-that is, precondi-
tions that are satisfied by effects of services. The el-
lipses represent atomic services to be executed. The
structure of the plan imposes a partial ordering on the
execution of the services. For example, Login must be
executed before GetInfo, but either of these steps can
be executed in parallel with BookLookUp.

Describing Services for Composition
Current specifications permit the description of services
without effects or outputs. We claim that it is difficult
to compose services without effects or outputs. A web
service either provides information (has outputs) or al-
ters the world (has effects) or both. In either case, the
effect or output represents the change in the state of the
world that the execution brings about. A planner uses



Figure 2: Plan generated by composer

this information to form links with other services. If one
describes a service without any effects or outputs, then
the change of state is not made explicit, and therefore
a composer would have to maintain additional data to
represent the change of state. The effects or outputs de-
scribe what the service does and are therefore essential,
for composition. Our recommendation is that DAML-S
specifications should be modified to make specification
of outputs or effects mandatory.

Service Description and Additional

Constraints

The ServiceModel only lets one describe core proper-
ties of services. Non-trivial composition of services
from atomic services involves factors like business logic,
changing market scenarios, temporal dependencies be-
tween services. These, though required, are not (and
typically should not be (Bussler, Maedche, & Fensel
2002)) part of the service.
Consider the example of a book look-up service that

takes a book’s name as input and gives the ISBN num-
ber as an output. Companies A and B sell books and
use the book look-up service to obtain the ISBN. Com-
pany A has a policy that lets any user pose an ISBN
request. Company B only lets users registered with
them to use the ISBN look-up. Company B therefore
needs a similar ISBN look-up service with an additional
precondition. Instead of designing a new service for B,
we could provide a generic description of the service
and let B use it as it wants to. Company B could de-
fine their policy using DAML+OIL which specifies ad-
ditional constraints on the operator. It is also in the
interest of the service provider to advertise a generic
version of the service to enable varied entities to use it.
We therefore claim that for non-trivial composition, a

combination of a general description of the service and
some additional logic description is required. DAML
lets you express these two parts in a single language
and therefore is a better choice for describing services.
WSDL currently provides a vocabulary that lets you
describe just the services; therefore it is difficult for a
system using WSDL alone to compose a service from
atomic services.
The design of our planner is in accordance with the

above principle: the actual planning engine is domain-
independent. The planner can be configured to handle
specific domains by plugging in domain specific ontolo-
gies that capture the additional constraints. The service
itself provides a minimal core set of IOPEs that form
the planning operator; additional knowledge can then
be added that uses domain-centric ontologies to modify
the existing IOPEs.

Future Work

In the near term, we plan to design an ontology that
would let one specify relations among services as a pol-
icy, as described in the previous section. We also plan
to demonstrate our framework in a pervasive comput-
ing environment. In this domain, the composer might
come up with different plans for the same goal. The
agent’s location, speed and physical limitations deter-
mine the best plan; these parameters will be captured
as additional knowledge.
The planner we have currently implemented is a proof

of concept, demonstrating that service composition can
be performed automatically from DAML-S descriptions
of atomic services. In future work, we plan to develop
a more sophisticated planner that can apply planning
methods to do service composition in real-world en-
vironments. We have identified three key challenges



in developing such a planner: (1) Selecting among al-
ternative atomic and composed services; (2) reasoning
about interactions between atomic services within the
plan; and (3) interleaving planning and execution dur-
ing service composition. In the following subsections,
we briefly discuss the key issues in each of these areas
and our proposed approach to addressing them.

Choosing Among Alternatives

Our first version of the planner is a simple backward-
chaining algorithm that assumes that there is always a
single service that satisfies a given goal. There can eas-
ily be scenarios where a goal can be satisfied by more
than one service. In these cases, choosing an appropri-
ate operator is an obvious requirement. Composition
might succeed or fail based on the choice of service,
since different operators might have different sets of in-
puts and preconditions, which form the new set of goals
that need to be satisfied in the next planning cycle.
One possible approach would be to generate all possi-
ble plans, then choose the best alternative based on user
specified criteria such as cost. This technique, however,
is not scalable. An alternative would be to use a best-
first backtracking approach by applying heuristics such
as selecting the operator (service) with the least num-
ber of preconditions or inputs, or selecting operators
that have pre-conditions that are known to be easily
satisfiable.

Reasoning About Interactions

Our current planner does not reason about interactions
between actions within the plan. However, it may be
the case that one action interferes with another (e.g.,
clearing out the user’s cookies in between two service
invocations on the same website may delete the nec-
essary authorizations, requiring more inputs from the
user), or that the effects of a service can be used to sat-
isfy preconditions of more than one action in the plan
(e.g., looking up the title of a book gives not only the
ISBN number to use for ordering the book, but also the
full publication information to enter in a bibliography
being produced elsewhere in the plan). The partial-
order planning and hierarchical task network planning
paradigms both provide models for reasoning about in-
teractions within the plan, and resolving conflicts (or
taking advantage of opportunities).

Interleaving Planning and Execution

There are two ways to compose and execute a composite
service. In the first approach, planning and execution
are separate. The second, more advanced, approach in-
terleaves planning and execution. The initial planner
we have implemented is an instance of the former ap-
proach: the planner produces a plan assuming that all
involved services will be available and execute normally.
The design of the planner will be different for a frame-
work that supports parallel composition and execution.
In this case, services are checked for availability and
successful execution before being included in the final

plan. If a service for some reason cannot be executed,
then the execution engine requests an alternative ser-
vice from the planner. More generally, the failure to
execute a service could lead to a cascading effect, re-
quiring the planner to supply an alternative sub-plan.
It is not possible at any stage of the planning process
to predict the success of the plan. Therefore, not all
services can be checked by executing them; checking
can be performed only for idempotent services that do
not alter world state. The advantage of this framework
is its capability to produce plans that are more likely
to be executed successfully compared to the ones pro-
duced by a framework with disconnected composition
and execution. Ideally, the planner would not only be
able to dynamically replan in case a service fails, but
generate contingency plans to anticipate such failures.

Conclusion

The overwhelming interest shown by industry indicates
that web service as a technology is here to stay. How-
ever, a rich set of tools are required to demonstrate
its use in building distributed web applications. We
present a planner for composing services that handles
services described in DAML-S. We also argue that addi-
tional logic is required for composing non-trivial tasks.
This can be done by the use of explicit domain-specific
ontologies.

References
Ankolenkar, A.; Burstein, M.; Hobbs, J. R.; Lassila,
O.; Martin, D. L.; McDermott, D.; McIlraith, S. A.;
Narayanan, S.; Paolucci, M.; Payne, T. R.; and Sycara, K.
2002. DAML-S: Semantic Markup for Web Services. In The
First International Semantic Web Conference (ISWC),
Sardinia (Italy).

Bussler, C.; Maedche, A.; and Fensel, D. 2002. A Concep-
tual Architecture for Semantic Web Enabled Web Services.

Christensen, E.; Curbera, F.; Meredith, G.; and Weer-
awarana, S. 2001. Web Service Description Language,
http://www.w3.org/TR/wsdl.

2001. DARPA Agent Markup Language,
http://www.daml.org.

2002. DAML-S Ontologies,
http://www.daml.org/services/0.7.

Friedman-Hill, E. J. 2002. Jess, The Expert System Shell
for the Java Platform.

Martin, D. 2001. Web Services Mailing
List, http://lists.w3.org/Archives/Public/www-
ws/2001Nov/0009.html.

McIlraith, S., and Son, T. 2002. Adapting Golog for Com-
position of Semantic Web Services. In Proceedings of the
Eighth International Conference on Knowledge Represen-
tation and Reasoning (KR2002), Toulouse, France.

Ponnekanti, S. R., and Fox, A. 2002. SWORD: A De-
veloper Toolkit for Web Service Composition. In Proc. of
the Eleventh International World Wide Web Conference,
Honolulu, HI.

Srivastava, B. 2002. Automatic Web Services Composition
Using Planning. In Proc. of KBCS 2002, Mumbai, India.



Thakkar, S.; Knoblock, C. A.; Ambite, J. L.; and Shahabi,
C. 2002. Dynamically Composing Web Services from On-
line Sources. In Workshop on Intelligent Service Integra-
tion, The Eigth National Conference on Artificial Intelli-
gence (AAAI), Edmonton, Alberta, Cananda.

Weld, D. S. 1994. An introduction to least commitment
planning. AI Magazine 15(4):27–61.

2000. Web Services Toolkit,
http://www.alphaworks.ibm.com/tech/webservicestoolkit.


