
Web Service Composition as Planning

Mark Carman and Luciano Serafini and Paolo Traverso
ITC-IRST, Via Sommarive 18 - Loc. Pantè, I-38050 Povo, Trento, Italy�

carman,serafini,traverso � @irst.itc.it

Abstract

We show how the service composition problem can be viewed
as a planning problem in which state descriptions are ambigu-
ous and operator definitions are incomplete. We then discuss
the problem of interpreting documents (which describe the
world state), and introduce a semantic type matching algo-
rithm. The matching algorithm together with an interleaved
search and execution algorithm allow for basic automated ser-
vice composition.

Introduction
The ability to perform automated or semi-automated service
composition would revolutionise many application areas for
web service technology including e-commerce and systems
integration. A first step toward such automated composition
is to map the problem into that of planning. By doing so we
can see what planning techniques (such as the various back-
tracking search algorithms) are already available to tackle
this problem, as well as the new techniques that will need to
be developed.

In this paper we attempt to view the service composition
problem as a planning problem. We first describe what an
abstract planning problem is, and then describe how abstract
planning constructs map to the domain of the web services.
We discuss ways of planning and executing in this domain
despite the problem of having an ambiguous and incom-
plete domain description. Our approach is based on datatype
matching and interleaved search and execution for service
composition. We then also discuss the problem of handling
services with internal state.

The Planning Problem and Web Services
A planning problem can be described as a five-tuple�
S � s0 � G � A � Γ � , where S is the set of all possible states of the

world, s0 � S denotes the initial state of the planner, G � S
denotes the set of goal states the planning system should at-
tempt to reach, A is the set of (ground) actions the planner
can perform in attempting to reach a goal state, and the tran-
sition relation Γ � S � A � S defines the semantics of each
action by describing the state (or set of possible states if the
operation is non-deterministic) that results when a particular
action is executed in a given world state.

Planning states can be described by a set of numeric vari-
ables, or more generally by a set of typed objects with at-
tributes, where attributes can be numeric variables or other
objects. Whatever the representation, a “state” is simply an
assignment of values to all of the variables describing the
domain.

Similarly, actions are not described individually, but are
grouped into logically equivalent operators, which need to
be instantiated (grounded) using parameters when executed.
For example, a robot might have available to it a generic op-
erator pick-up-object, which can be grounded to a particular
action pick-up-ball-1, by assigning the parameter object to
the particular object ball-1 in the domain.

The semantics of an action, which above we defined by
the domain relation Γ, is normally described as part of the
operator description in terms of preconditions and effects.
Preconditions describe the applicability of the operator (and
thus its ground instances) in various states of the world.
The preconditions can be seen as describing a set of states,
Sprec � S in which a grounded action can be executed. Oper-
ator preconditions can be described as a formula over state
variables and the operator parameters. Meanwhile, the ef-
fects of an action describe the way in which the state of the
world is changed after action execution and may depend on
the value of operator parameters. Action effects can be de-
scribed in terms of changes (additions, subtractions, inver-
sions, etc.) to the state variables describing the domain.

Documents and States
Since any interaction with a web service involves sending
and receiving messages, one way to describe the state of a
system which is interacting with such services is in terms
of the messages it has sent and (more importantly) received.
One can interpret the information contained in each message
as a description of the current world. Thus a document re-
turned by a weather service which states that the weather
temperature in Melbourne is 15 	 C, can be understood to de-
scribe a world (the current state of affairs) in which the tem-
perature in Melbourne really is 15 	 C.

A state is then described by an ordered set of documents,
where the most recently generated documents can be as-
sumed to carry the most accurate information regarding the
current state of the world. One can draw a distinction here
between the actual state of the world, which is only partially

described by the documents in possession of the planner, and
the state of the planner (the history of its interactions with
services) which is fully known, but which only approximates
the “real world”.

We see that already in describing the state of the world
we a faced with two problems, not “normally” encountered
in planning systems:

1. partial observability of state
2. ambiguity in state description

The first problem describes the fact that we can only know
as much about the current state of the world, as is described
in the small set of documents in the possession of the plan-
ner. Unless we have a document which states what the cur-
rent temperature in Melbourne is, we do not know that piece
of information. Thus information gathering is an important
part of the planning process.

The problem of ambiguity arises from the use of docu-
ments to describe a world state. Since the schemas defin-
ing these documents are written by different people from
those building the planning system, the planner may in some
cases misunderstand the meaning of a particular document.
I.e. there is a problem of matching and interpreting instance
level data. For example, the message about the temperature
in Melbourne may have been referring to the Australian city
or could (perhaps less likely) have been referring to Mel-
bourne, Florida, USA. One way to avoid this problem is to
assume that there are standards which define the particular
domain within which the planner will be working (such as
standard documents for defining e-commerce in a particular
vertical industry). In most domains, however, there will be
no global standard for describing the world, and the ambi-
guity describing the state of the world will have to be taken
into account. This problem of heterogeneous domain de-
scriptions is new to the planning community, which is accus-
tomed to handling unambiguous and well specified planning
domains.

Operations and Actions

In general, a web service operation is specified by its name,
its input and output message types, and a set of fault message
types, i.e. o : �

�
name � tin � tout � Tf ault � . We can view service

operations as the operators available to the planning system.
Since we interpret documents as describing states, we can
say that the output message type tout , in some way describes
the effects of operator execution. The input message type
tin, can be seen as describing the parameters for the opera-
tor described by o. For instance one could have an operation
getWeather that takes as input a string Location and returns a
document containing a WeatherForecast. Here the operator
parameter is the string variable Location and the effect is to
know/have the object WeatherForecast. Moreover, the input
schema can also be seen as describing some of the precon-
ditions of operator execution. Given that the input string to
this operation is labelled with “Location”, it would be non-
sensical to give it as input something which is not a location,
such as “computer” for instance. I.e. there is a precondition
that the planner should know/have a string of type location,
such as “Melbourne”.

Unfortunately, unlike in “normal planning domains”
where operator semantics are fully specified, here we are
missing four types of information:

1. preconditions on input parameter values
2. preconditions on prior operation invocation
3. knowledge of instance values in the output document
4. real world preconditions and effects

The first problem states that we do not know a-priori which
input parameter values will cause an operation to execute
successfully and which will cause it to return fault messages.
For example when submitting a purchaseOrder to a vendor
service, if the productID number refers to an item which is
out-of-stock, then the operation will return some sort of fault
message. In this case, it was impossible to know a-priori that
the operation would fail on that input, and trial-and-error
execution is the only way to proceed.

The second problem has to do with the fact that services
generally contain more than one operation, and in some
cases the successful invocation of an operation is dependent
on the previous execution of another. For example, one may
need to Login prior to accessing the getWeather operation.
We discuss the problem of services with state in section 4.1.

The third problem is due to the fact that the output of ser-
vice operations is described by a data-type, not a value. Prior
to invoking a particular operation, we cannot know what its
exact output will be. Normally in a planning domain the ef-
fects of action execution are either constant, conditional on
some execution parameters (if the action is not grounded),
or are dependent on (/ can be derived from) the state of the
planning system itself. Some planning systems can han-
dle actions with non-deterministic effects, but the number
of successor states is usually low, which is not the case here,
as each possible value of the output document represents a
different state.

In the case of a web service operation, the effect (the
document being produced) may be relatively constant (e.g
a weather notification service for Singapore), may depend
only on the values in the input document (e.g. a weather
service based on Zip-Code), may depend on the state of the
planning system (e.g. a purchaseItem operation where the
product name was specified in a previous selectItem opera-
tion), or may even be non-deterministic (e.g. a random num-
ber generating service). In all of these cases, there is nothing
in the operation description which tells us how to predict the
output of the service based on its input. The fact that there is
no direct relationship between input and output parameters
is not the end of the world, however! One can infer connec-
tion based on type matches between the input and the output.
For example, a purchaseItem operation might take as input
a purchaseOrder document within which the “product” field
is described by a productID type, and produce a confirma-
tion document with the same “product” field, in which case
a planning system would do well to assume that both types
refer to the same instance of a productID number. Such an
assumption is not always valid, however. Take for instance
the case of a book recommendation service, where the oper-
ation recommendBook takes a book-title as input and returns
as output a different title from the same genre likely also
to interest the reader. Again, trial-and-error execution with

learning and a the use of a clever heuristic may be the only
way to execute an operation in such a way as to produce the
desired output.

The last problem has to do with the fact that some “real
world” preconditions and effects of operation invocation
cannot be deduced automatically from the input and output
document schemas, but rather require background knowl-
edge regarding the semantics of the operations themselves.
For example, the aforementioned purchaseItem operation
may require a creditCardNumber as input and when execut-
ing the operation one would expect to later receive a debit
for the cost of the item on one’s credit-card statement. This
sort of “extra semantics” is of course not described within
the input and output documents of the purchaseItem opera-
tion. In general, there are three approaches for the planner
to gain such “background” knowledge:

1. require standardisation
2. server side semantic mark-up
3. client side semantic “interpretation”

In some domains it might be possible to get all of the mem-
bers of the domain (service creators and service consumers)
to come together and agree on a common conceptualisation
and formal semantics for the domain. In that case, processes
such as “credit card payment” could be formalised.

The second approach is that advocated by the Semantic
Web community. The idea is that the service provider should
formally mark-up the service operations they provide with
explicit descriptions of their preconditions and effects. This
then leaves then the non-trivial task of mapping between the
ontology used by the service provider, and that used by the
planner. At the moment few service providers have taken
up the opportunity to mark-up their services, for the simple
reason that they don’t envisage the use of their services by
an automated planning system.

A third alternative is to place the burden of semantic un-
derstanding back on the client planning system. The idea
would be to match operation names and meta-data of a new
service with another service for which the formal seman-
tics are already known by the planner, thus attempting to
discover automatically the semantics of operations in the
new service at run time. Another somewhat less involv-
ing approach to client-side semantic interpretation would be
to simply restrict the use of sensitive information such as a
creditCardNumber, and add “extra semantics” to the planner
regarding the effects of its usage.

Initial Conditions and the Goal
If states are described by a set of documents, then the initial
state could be viewed in the same way, as a set of documents
available to the planner at the outset. This “local informa-
tion” would be available to the system to use as input when
executing service operations. For example, if the goal were
to “buy a particular book”, then the local information might
be the name, address, and credit card details of the person
requesting the goal.

Along a similar line, the planning goal (which is simply
a set of desired states for the planner to reach) can also be
described in terms of documents. That is to say, goals can be
expressed as information requirements - as a type of XML

document that the system needs to create. By placing restric-
tions on the values of fields within the requested document,
one can express a goal such as find the temperature in Mel-
bourne, as create an instance of the document:

<Weather>
<Temperature type="decimal"/>
<Location type="string"/>
</Weather>

where the value of the “Location” field is equal to “Mel-
bourne”. Thus a goal is a datatype and a set of restrictions
on the values of that datatype. In order to satisfy the goal,
the system needs to provide a document (an output from a
service), which is of similar type to the goal and adheres to
the given constraints. These constraints could be equalities
such as “bookName” equals “Harry Potter ...” or numerical
inequalities such as that the “price” field has value “ � 20
Euro”. Describing goals of this way has some similarity to
performing “query by example” in database systems.

One could also allow for goals containing multiple docu-
ments and constraints across them. In that way it would be
possible to handle more complex situations, such as that of
booking a flight and a hotel, where the flight and hotel dates
need to coincide. In that situation, the goal would comprise
of two documents, one describing the flight reservation, the
other the hotel reservation. Furthermore, we would require
that the flight destination matched with the hotel location,
and the flight arrived on the same day as the hotel book-
ing commenced. The goal documents could look as follows,
(note the constraint variables @date and @city):

<Flight_Reservation>
<Departure
<Arrival>
<Date type="date" value="@date"/>
<City type="string" value="@city"/>
</Arrival>
</Flight_Reservation>

<Hotel_Reservation>
....
<City type="string" value="@city"/>
<In_Date type="date" value="@date"/>
<Out_Date
</Hotel_Reservation>

Interpreting and Matching Datatypes
As mentioned previously, a datatype has a set of values that
can be considered as representing different possible states of
the world. For example when receiving a message of type
Person with the field “name” equal to “Peter” and “age”
equal to “21”, we can interpret the message as saying that
there exists a person called Peter who is 21 years of age.
And if another message arrives, this time of type Universi-
tyStudent with name and age as before, we can interpret it
as saying that there exists a person Peter who’s 21 and goes
to university. The second message describes a smaller set of
possible worlds (interpretations) than the first, i.e. the cases
where Peter is not a school student nor a worker, but a uni-
versity student.

tgoal

Weather

Temperature

xsd:decimal

Location

xsd:string

“Melbourne”

tout

DailyWeather

LocalConditions

AmbientTemperature

xsd:decimal

Rainfall

xsd:decimal

Address

City

CityNames

xsd:string

“Adelaide” � “Brisbane” � “Melbourne” �������

State

StateNames

xsd:string

Figure 1: Matching schema types

Now if we needed to fulfill a goal (or provide an input to
a service) of type Person, then an instance of the message
UniversityStudent can be used to provide the required infor-
mation. If however we require an input of type UniversityS-
tudent and have a message of type Person the reverse is not
possible as we do not know whether or not the instance to
which the message refers is a university student or a school
student, and so on. Thus in order to be able to map from
one datatype to another we require that the latter describes a
superset of the possible worlds that can be described by the
former. I.e. that the target type is a more generic version of
the source (under a given mapping).

In order to compose services based on their service de-
scriptions we need to be able to do exactly this type of data
mapping, i.e. to map service outputs to other service inputs
and so on. The ability to map data between identical types
is not sufficient for our purposes as we cannot guarantee (in-
deed it almost certainly not the case) that the required ser-
vices will input and output types from a common schema.
Thus we need to tackle the problem of data heterogeneity,
which is to decide if under some mapping the data described
by one datatype can be substituted for that described by an-
other. I.e. if we can take the output produced by one service,
map it, and use it as input for another service.

We have developed a type matching algorithm based on
the idea that the target type needs to be shown to be a more
general version of the source. In our type matching algo-
rithm, when we compare the goal (target) type tgoal , to a
particular service output (source) type tout , we require that
tgoal � M tout , which is to say that all documents conform-
ing to the output type also conform (form a subset of those
conforming) to the goal type after a certain mapping M has
been applied to them. For example, the goal to find the cur-
rent temperature in “Melbourne” (as given in section 2.3)
should match against a schema such as:

<DailyWeather>
<LocalConditions>
<AmbientTemperature type="decimal"/>
<Rainfall type="decimal"/>

</LocalConditions>
<Address>

<City type="CityNames"/>
<State type="StateNames"/>
</Address>
</DailyWeather>

where:

<simpleType name="CityNames">
<restriction base="string">
<enumeration value="Adelaide"/>
<enumeration value="Brisbane"/>
<enumeration value="Melbourne"/>
....
</restriction>
</simpleType>

because the information required by the first can be found
from within the second. I.e. the values for “AmbientTemper-
ature” and “City” in the second can be mapped to “Temper-
ature” and “Location” in the first. Note also the fact that the
value “Melbourne” (which is a restriction on the field “Lo-
cation” in the goal), is one of the possible values of the type
“CityNames” in the output type. I.e. there are instances of
the output type which adhere to the value restrictions given
in the goal.

We use WordNet (Fellbaum 1998) as a lexical resource
for performing matching of labels within the type structures.
We first use it to match synonyms like “car” and “automo-
bile”, as most documents which refer to an instance of car
are also referring to an instance of automobile (we ignore for
the moment the problem of sense multiplicity). We then try
to use more of the semantic information available in Word-
Net. Generally speaking, there are two ways to use this in-
formation - either qualitatively (explore “isa”, “part of” hi-
erarchies to find precise semantic relationship between con-
cepts) or quantitatively (by using similarity measure algo-
rithms as described in (Budanitsky and Hirst 2000), to dis-
cover the approximate “similarity” between concepts). In
the first case, the semantic relationships are used to find se-
mantic equivalence between substructures. In the second the
similarity values can be combined in algorithms to calcu-
late the overall similarity between two data structures. In
the following we will take the qualitative approach, using

the WordNet noun hierarchy to find generalisation relation-
ships such as “car” � “vehicle” (car is a type of vehicle) or
“city” � “location”.

Type Matching Algorithm
In order to define a type matching algorithm we first intro-
duce a simple abstraction on the XML Schema type model.
(We simplify the model for the purposes of brevity in our
description.) Types in XML Schema can be either primi-
tive, simple or complex. Primitive types such as “string”
and “decimal” are defined by a qualified name (a namespace
URI and a local label) and the set of possible values (denoted
VAL) that an instance of the datatype can take.

pt : �
�
qname � VAL � ; qname : �

�
namespace � label �

A simple type, meanwhile, is defined in terms of a primi-
tive type and a restriction function, which limits the range of
values of the type. An example of a simple type would be
the set of decimal values less than 50 or the set of Australian
city names shown in the figure.

st : �
�
qname � pt � res ��� � ; res :

�
pt � VAL ��� ��� �	� �

Complex types are defined recursively as tree structures.
Nodes in the tree structure may contain references to other
primitive, simple or complex types, and can have natural lan-
guage labels associated with them. (Below we denote a sin-
gle node by n, and a set of nodes by N.)

ct : �
�
qname � N � ;
N
�� 2; n : �� t
 �

label � N � ���
We can now outline three rules used to decide whether one
type (the goal document) is a generalisation of another type
(the output document). In the following, n is used to rep-
resent a node, which could be a simple or complex type, or
any node within a complex type.

Rule 1: let n1 �
�
l1 � pt1 � and n2 �

�
l2 � pt2 � ,

if l1 � l2 and pt1 � pt2 then n1 � M n2

Rule 1 states that if two nodes made up of a label and a prim-
itive type are such that the label associated with the first is
a generalisation of that associated with the second, and both
nodes have the same primitive type, then the first node is a
generalisation of the second. For example if l1 is “Tempera-
ture” and l2 “AmbientTemperature” then l1 � l2 as ambient
temperature is a type of temperature. And since both nodes
have the same primitive type xsd:decimal the first node is
found to be a generalisation of the second.

Rule 2: let n1 � N and n2 �
�
l2 � N2 � ,

if � ni � N2
 n1 � M ni then n1 � M n2

Rule 2 states that if one of the children associated with a
node is a specialisation of another node, then so is the par-
ent node. This rule allows us to “skip” intermediate nodes in
the hierarchy of the more specific type. For example since
the node “AmbientTemperature” was found to be a special-
isation of the node “Temperature” then so is its parent node
“LocalConditions”. This is because, under the same trans-
formation (one that maps the value of AmbientTemperature
to that of Temperature and Rainfall to nothing) the set of
documents will be the same as before.

Rule 3: let n1 �
�
l1 � N1 � and n2 �

�
l2 � N2 � ,

if l1 � l2 and � ni � N1 ��� n j � N2
 ni � M n j � then n1 � M
n2

Rule 3 states that if the label associated with a node is more
generic than that associated with another node, and for all
of the child nodes of the first there is an equivalent (or more
specific) node among the children of the second, then the
first is a more generic version of the second. For exam-
ple, since the label “Weather” is found to match the label
“DailyWeather” and the child nodes Temperature and Lo-
cation match with LocalConditions (due to its child Am-
bientTemperature) and Address (due to its child City), the
node Weather represents a generalisation of the node Daily-
Weather.

Type Matching Implementation
We have implemented a prototype service discovery system
based on type-matching, which when given an information
goal, attempts to find all services capable of providing the
desired information. To do so, it accesses an online database
similar to UDDI, which contains links to WSDL documents.
It downloads each service descriptions in turn, analysing it
for relevant output. In order to test for a match between
two types, the labels in each are tokenised using a regular
expression, common abbreviations are expanded, compound
words (multi-words with their own prescribed meaning in
WordNet such as “fire-fighter”) are discovered, a “stop-list”
is used to remove words with counter-intuitive meanings in
WordNet, and the rest of the words are checked against the
noun hierarchy. If any one of the nouns in the label of the
target document is found to be a descendent (more specific
version) of a noun in a label of the goal document, then the
two labels are said to match.

The matching system was tested using 212 valid web ser-
vice descriptions (WSDL documents). Three different goals
were used to test the system, the first being the weather ex-
ample discussed previously, the second and third relate to
gaining stock price and exchange rate information. In the
weather example, the system was able to discover seven of
the eight services capable of providing weather information.
In the other two test cases, the matching system did not per-
form as well (1/5 and 2/5 respectively). The reason for this
was that the set of terms used to describe the service output
types varied too much for the WordNet algorithm to discover
links between them. In other words, WordNet didn’t have
enough concepts and relations available to properly describe
these domains. For example, there is no relation in WordNet
linking the concepts “stock ticker” and “stock symbol”! In
order to achieve a reasonable success rate, the type match-
ing system was extended slightly for these cases so that it
took into consideration also the name of the service opera-
tion along with its input requirements.

Service Composition
Having discussed an algorithm capable of matching and
mapping data between heterogeneous type structures, we
outline a second algorithm that exploits this capability to
compose and execute service operations to achieve an in-
formation goal. In the section describing operations, we dis-
cussed the fact that the output of an operation invocation is
not fully specified in its definition. Whenever we execute an

operation within a service we cannot guarantee that it will
execute properly and provide the desired output (e.g. where
“Location” equals “Melbourne”). So when planning we are
forced to interleave search and execution, in order to over-
come the problem of incomplete knowledge regarding the
actions in the domain.

The algorithm executes as follows. It takes as input the
goal to be achieved and searches a UDDI directory for all
services which are capable of outputting documents of suf-
ficient similarity to the goal, using the type matching algo-
rithm described previously. (Service meta-data and taxon-
omy matching could also be used to cut down this search
space.) The service interface with the most similar output
is selected first. If there is more than one implementation
of that interface (e.g. the same weather information ser-
vice is provided by two different companies), the algorithm
will need to select one of them based on meta-data values,
(by matching and comparing the available local information
with this service meta-data). It then attempts to execute the
particular service operation that produces the desired out-
put. Before doing so, it must create the required input doc-
ument. It starts by using the immediately available informa-
tion, such as that given in the goal, the local information, and
past input and output documents if they exist. If the avail-
able information is not sufficient, the algorithm must again
search the outputs of other services, i.e. the procedure calls
itself recursively. (The search heuristic being used here is
based on the assumption that currently available information
is more reliable than new service outputs, and that newer in-
formation is more relevant than older information.) Gener-
ally, not all of the data required to fill the input document
will be contained in a single source, thus the process repeats
on sub-elements of the input document until a complete doc-
ument is produced or a search limit is exceeded.

Having generated an input document, the algorithm at-
tempts to invoke the operation. If it does not execute prop-
erly (or produces an undesired output), the algorithm rolls
back certain decisions made when creating the input and
tries again. The heuristic guiding this search could be based
on the confidence the algorithm had in its decision at each
point, i.e. the quality of the match. If after a “reasonable
number” of attempts, the operation still can’t be executed,
then the problem may be the data given as input to the pre-
vious (successfully completed) operation. Thus the system
either tries to re-execute the previous operation with differ-
ent inputs, or gives up on the service altogether and searches
for a new way of achieving the information goal.

The search tree created by the above algorithm can be
seen as a sort of AND-OR tree, where the “OR” branches
represent different ways of creating an input, and the “AND”
branches represent combinations of service outputs that to-
gether produce the input. Leaves in the tree represent data
found to be available locally. The execution algorithm de-
scribed above performs a bounded best-first search through
the tree, where the bound sets a limit on the number of failed
execution attempts allowed for completing a given sub-tree.
The execution bound is decremented for each level of decent
in the tree. Viewing the interleaved search and execution as
an AND-OR tree allows us to investigate the use of differ-

ent search techniques such as “limited discrepancy search”
to improve execution performance.

Handling Services with State
In the section on operations, we touched on the fact that the
output of a particular operation execution may depend on
the current state of the planner, i.e. the other operations that
have been invoked with that particular service already, and
the values given during such invocations. This is because
in some cases services are not stateless, but their behaviour
depends on the ordering of operation invocation. For ex-
ample in order to execute a purchaseItem operation the sys-
tem invoking the service might first need to perform a lo-
gin operation. The behaviour of a particular service can be
modeled as a non-deterministic finite state transition system
or four-tuple

�
Sint � sint0 � P� ∆ � , where Sint represents the set

of states that the service can find itself in, sint0 the initial
state, P the set of grounded operations (actions) available,
and ∆ � Sint � P � Sint describes the transitions between dif-
ferent states caused by execution of the grounded operations.
We adopt a different notation for state here than used previ-
ously, in order to differentiate between the internal state of
a particular service and the overall state of the world. The
internal state of a service does not take into account all of
the other interactions executed by the planner with other ser-
vices. Moreover, it may be possible to initiate multiple con-
current (yet independent) conversations with the same ser-
vice, in which case the internal state takes into account only
one particular conversation with the service.

Unfortunately, as was the case for the description of states
and operations given in section 2, the information describing
the domain is incomplete. A full description of the transi-
tion system describing a particular service is not available.
Instead, there may be some sort of high-level protocol de-
scription available to us such as process descriptions written
in WSCL, WSCI or BPEL. If available the service will be
described as follows:

A web service interface is a four-tuple
�
Ψ � ψ0 � O � Λ � ,

where Ψ represents a set of states, (note that each ψ rep-
resents an abstraction on actual states of the service, i.e. it
maps to a subset of Sint), ψ0 is the initial state, O is the set of
operations, and Λ is the set of transitions possible between
states. Each transition λ : �

�
ψi � ψ f � o � guard ��� � DLINK � , is

described by an initial state, a final state, an operation (which
triggers the transition), a guard condition (which determines
whether or not the transition will fire for given input val-
ues), and a set of data-links, (which describe any correla-
tion between this input and the outputs of previous transi-
tions). A guard can be any formula over values in the fields
of the input document, and can be seen as describing the
preconditions of transition execution. For example, a par-
ticular guard condition might require that the price element
has value “ � $200”, in which case the service can enter a
state in which free home delivery is possible. A datalink
dlink : �

�
λi � node1 � node2 � , requires equality of a field in

this input with a field in the output of a previous transition.
Datalinks can be used to maintain references between docu-
ments (e.g. this document refers to trackingNumber XYZ).
Such links can be seen as additional preconditions on tran-

sition execution.
The service composition algorithm described in the pre-

vious section assumed that all of the operations within each
service could be executed independently of one another, i.e.
that the service to which they belonged was stateless. In
some cases this assumption will be false, and the exact or-
dering of operations may be critical for the correct execution
of services. Moreover the control flow information (tran-
sitions and their guard conditions) and data flow informa-
tion (the datalinks) available in service descriptions could
be used to make the task of service composition easier. In
(Carman and Serafini 2003), we described a bounded algo-
rithm that takes advantage of the information available in
service process descriptions when composing and executing
services.

Conclusions and Related Work
We have shown in this paper how the service composition
problem can be viewed as a planning problem in which state
descriptions are ambiguous and operator definitions are in-
complete. We have introduced a semantic type matching al-
gorithm and an interleaved search and execution algorithm
that together allow for basic automated service composition.
This work is preliminary, but shows promise as a means
of performing planning in domains which until now were
beyond the reach of state of the art planning systems. In
the following we compare the approach and techniques dis-
cussed in the paper with the work of others in this area.

The type matching algorithm discussed in this paper can
be seen as a type of schema matching algorithm as defined
in (Rahm and Bernstein 2001). There are a few differences
however between the various techniques cited in this survey
paper, and our type matching algorithm. The primary differ-
ence is that we take a logical interpretation of the problem of
type matching and see it as the problem of deciding whether
one type structure is a more generic version of another type
structure under a certain set of mappings. Secondly, we use
the semantic relations in WordNet as the basis for our algo-
rithm, rather than relying on string matching, synonyms, or
“semantic distance values” between words. From a practical
point of view we start with two types and ask the question
“can type a be seen as a more general version of type b?”
I.e. do the two types match at all. If so, we then find the
mapping which allows for transforming data from b into a.
The assumption in the case of most schema matchers is the
opposite, i.e. that the schemas should match in some way,
and the job of the schema matcher is to find the best possible
mapping. This is because in data-warehousing applications
the schemas to be merged can be assumed to contain similar
data.

Much work has been performed on designing semantic
web standards for adding semantic mark-up to web service
descriptions. In terms of planning based on these descrip-
tions there has been some work on the instantiation (based
on user preferences and service availability) of precompiled
plans in (McIlraith and Son 2002) as well as on extending
the planning domain description language PDDL to handle
information producing actions (McDermott 2002). In an-
other work which assumes full knowledge of the semantics

of operations (Aiello et al. 2002), the authors use a non-
deterministic planning language with extended-goals and
constraint satisfaction to model the web services planning
problem. A different approach was taken by the authors
of (Thakkar et al. 2002) in which automated service com-
position is achieved by modeling services as web informa-
tion sources (exposed by automated web-site wrapping soft-
ware) for which a common data model was already known.
A common data model means that database query planning
and transformation techniques can be used for plan synthesis
and optimisation. In all of these works the authors assume to
be interacting with services that are described in a standard
and possibly formal manner, i.e. all services which provide
the same functionality are called in the same way, require
the same inputs and produce the same outputs. By doing
so the authors avoid some of the difficulties associated with
the heterogeneity of the web services planning domain, and
are able to apply techniques from “simpler” (or at least more
homogeneous) domains such as database query processing.

References
M. Aiello, M. Papazoglou, J. Yang, M. Carman, M. Pis-
tore, L. Serafini, and P. Traverso. A request language for
web-services based on planning and constraint satisfaction.
In VLDB workshop on Technologies for E-Services (TES),
LNCS, page 10. Springer, 2002.
A. Budanitsky and G. Hirst. Semantic distance in word-
net: An experimental, application-oriented evaluation of
five measures. In Workshop on WordNet and Other Lexical
Resources, in the North American Chapter of the Associa-
tion for Computational Linguistics (NAACL-2000), 2000.
Mark Carman and Luciano Serafini. Planning for web
services the hard way. In Workshop on Service Oriented
Computing, International Symposium on Applications and
the Internet (SAINT-2003). IEEE Computer Society Press,
2003.
C. Fellbaum, editor. WordNet: An Electronic Lexical
Database. The MIT Press, 1998.
Drew McDermott. Estimated-regression planning for in-
teractions with web services. In AI Planning Systems Con-
ference, 2002.
S. McIlraith and T. Son. Adapting golog for composition
of semantic web services. In Proceedings of the Eighth In-
ternational Conference on Knowledge Representation and
Reasoning (KR2002). Morgan Kaufmann, 2002.
E. Rahm and P.A. Bernstein. A survey of approaches to
automatic schema matching. VLDB Journal, 10(4), Dec
2001.
Snehal Thakkar, Craig A. Knoblock, Jose Luis Ambite, and
Cyrus Shahabi. Dynamically composing web services from
on-line sources. In Workshop on Intelligent Service Inte-
gration, The Eighteenth National Conference on Artificial
Intelligence (AAAI), 2002.

