
Conformant Planning via Heuristic Forward Search

Ronen I. Brafman
Dept. of Computer Science

Ben-Gurion University
Beer-Sheva 84105, Israel

Jörg Hoffmann
Dept. of Computer Science
Albert-Ludwigs University
79110 Freiburg, Germany

Abstract

Conformant planning is the task of generating plans given un-
certainty about the initial state and action effects, and with-
out any sensing capabilities during plan execution. The plan
should be successful regardless of which particular initial
state we are in. This paper is motivated by the observation
that (1) Conformant planning without conditional effects can
be handled easily by any forward search planner; (2) To han-
dle conditional effects, one can reason about the set of known
facts following each sequence of actions, rather than explic-
itly enumerating the sets of possible worlds. Using this com-
putation of known facts, we extend the classical planning sys-
tem FF to the conformant setting. Our experimental evalua-
tion shows Conformant-FF to be superior to the state-of-the-
art conformant planner MBP in a variety of benchmark do-
mains.

Introduction
Conformant planning is the task of generating plans given
uncertainty about the initial state and action effects, and
without any sensing capabilities during plan execution. The
plan should be successful regardless of which particular ini-
tial state we are in and which action effects occur.

It is well known that conformant planning can be trans-
formed into a search problem in belief space (Bonet &
Geffner 2000), i.e., the space whose elements are sets of
possible worlds. This way, our uncertainty about the true
current state is modeled via the set of states that we consider
possible at this time. Unfortunately, the number of states in
belief space is doubly exponential in the set of propositions,
and so a naive implementation of this idea is bound to fail.
Yet, by carefully representing this set of states using BDDs,
and by carefully generating a heuristic function that takes
into account levels of uncertainty, the state-of-the-art con-
formant planner MBP (Bertoli & Cimatti 2002) provides a
more practical implementation of this idea.

Our work, too, uses the idea of search in belief space, but
is based on a somewhat different representation and builds
on the ideas of the classical planning system FF (Hoffmann
& Nebel 2001). To get an idea of our approach, consider the
problem of conformant planning with actions that have no
conditional effects. In that case, one needs only pay atten-
tion to those facts that hold in all possible worlds, i.e., the
known facts. Since each action has to be applicable in all the
possible worlds, its preconditions must be known prior to
its execution, and its effects will necessarily become known

following its execution. Thus, using any forward search
planner, we can perform conformant planning with uncon-
ditional effects: Instead of representing the current state of
the world using a set of propositions, the planner uses such a
set to represent the set of facts that hold in all currently pos-
sible worlds. Indeed, an initial exercise we conducted to test
this idea showed that FF with no modifications what-so-ever
solves the infamous Bomb-in-the-toilet problem in no time
at all (roughly, linear in the number of bombs and toilets).

Conformant planning becomes truly challenging when ac-
tions with conditional and non-deterministic effects are in-
troduced. To handle this case, our forward-chaining ap-
proach introduces an ability to reason about the set of facts
that are known to hold upon executing a sequence of actions.
This knowlede is reminiscent of the use of epistemic knowl-
edge by Petric and Bacchus in their contingent planner (Pet-
rick & Bacchus 2002), but whereas Petric and Bacchus feed
the knowledge to their planner in their domain descriptions,
we infer the knowledge automatically. The corresponding
decision problem is hard – we show it to be co-NP com-
plete. In fact, our implementation performs this reasoning
by deciding solvability of a CNF formula that captures the
semantics of the action sequence. While this may sound im-
practical, our intuition is that modern SAT solvers, which
can easily handle problems with tens of thousands of vari-
ables and clauses, will have little trouble reasoning about the
effects of an action sequence if the possible interactions are
not overly complex. Indeed, this intuition is supported quite
impressively by excellent results we obtained in a variety of
benchmark domains using a completely naive DPLL imple-
mentation as the underlying SAT solver.

The symbolic encoding of the action sequence semantics
we use is relatively efficient, but is far from sufficient on its
own. One of the major strengths of the FF system in the clas-
sical (STRIPS and ADL) setting is its efficiently computable
and highly informative heuristic function. This function is
obtained by observing the length of a relaxed plan gener-
ated from the original problem by ignoring the delete lists.
One of the main contributions of this work is the adaptation
of this approach to the conformant setting. Basically, we
enrich the relaxed planning process by an efficiently hand-
able reasoning technique that uses a stronger version of the
propositional formula that captures the true state of knowl-
edge. The stronger formula can be thought of as a 2-CNF
projection of the original formula. The implication graph
(Aspvall, Plass, & Tarjan 1979) of this 2-CNF theory sup-

8



ports linear time reasoning, and is naturally embedded into
the relaxed planning graph used by FF to compute its heuris-
tic function.

Our experimental results in a number of traditional con-
formant benchmarks show that our implementation, which
we call Conformant-FF, is competitive with the state-of-the-
art conformant planner MBP in most of these domains, scal-
ing in fact much better in some of them. Moreover, we
show that our approach has the potential to combine the
strengths of FF with conformant abilities in domains that
combine classical and conformant aspects. In a number
of classical planning benchmarks enriched with uncertainty,
Conformant-FF shows fine scalability, dramatically outper-
forming MBP.

The paper is organized as follows. The next sec-
tion briefly describes the planning framework we consider.
Section then explains FF’s algorithms for STRIPS and
ADL, as well as their extension to the conformant set-
ting. Section gives our empirical results, Section dis-
cusses related work, and Section contains a discussion
of our contributions, and of future research directions. A
longer version of this paper containing proofs and additional
technical details is available at http://www.informatik.uni-
freiburg.de/∼hoffmann/cff-report.ps.gz.

Planning Background
The conformant planning framework we consider is an ex-
tension to the classical STRIPS (Fikes & Nilsson 1971) and
ADL (Pednault 1989) languages. Propositional planning
tasks are triples (A, I,G) corresponding to the action set,
initial state, and goal state. World states w are represented
using the sets of propositions satisfied in them. In STRIPS,
actions a are simple triples (pre(a), add(a), del(a)) of
proposition sets, corresponding to the precondition, add, and
delete lists. An action a is applicable in a world state w
if w ⊇ pre(a). The result of applying a in w is the state
w−del(a)+add(a). We assume that del(a)∩add(a) = ∅.1

ADL is more complex, allowing for action preconditions
containing closed first-order logical formulae, conditional
effects (whose conditions are, again, logical formulae), and
a formula as the goal condition. We denote conditional ef-
fects e as triples (con(e), add(e), del(e)). An action a is
applicable in a state w if w |= pre(a) holds. Applying a
in w results in updating the state with all effects that occur,
i.e., whose condition holds in w. Again, we postulate that
there be no intersection of added and deleted propositions.
In both frameworks, an action sequence is a plan if the result
of its execution fulfills the goal.

The conformant setting we consider is that of ADL plan-
ning tasks, with additional uncertainty about the initial state.
We allow to express such uncertainty by specifying propo-
sitions p as unknown initially, meaning that both truth val-
ues of p yield a possible initial state. We also allow depen-
dencies between sets of propositions, in the form of initial
disjunctions l1 ∨ . . . ∨ lk of literals (where li is an initially
unknown proposition or its negation), meaning that all pos-
sible initial states satisfy this disjunction. We also allow
non-deterministic effects, meaning that one does not know

1This conservative approach is required to make the compila-
tion of actions in ADL correct, see Section .

whether the respective effect will occur or not. Our imple-
mentation does yet not support non-deterministic effects, but
integrating them is conceptually easy.

We denote the description of the set of possible initial
states with I. This contains propositions that are known to
true, p ∈ I, and propositions known to be false, ¬p ∈ I,
which we refer to as known and negatively known proposi-
tions, respectively. In the input files, the negatively known
propositions are implicitly given as the set of all proposi-
tions in the task except those that are known or unknown.
In addition, our initial states description contains disjunctive
constraints l1 ∨ . . . ∨ lk ∈ I. Slightly abusing the powerset
notation, the (possibly exponentially larger) set of possible
initial states is denoted with 2I . An action sequence is a
plan if, for any possible initial world state I ∈ 2I , execut-
ing the sequence in I results in a world state that fulfills the
goal. Note that a plan can succeed in different initial world
states because actions with conditional effects can produce
different results in different situations.

Conformant-FF
FF is a classical planning system based on a simple heuristic
search approach (first proposed by Bonet and Geffner (1998;
2001)). Search takes place forward in the state space, guided
by a heuristic function that estimates the distance to the
goal by the length of a relaxed plan: an action sequence
that achieves the goal when assuming the delete lists are all
empty. With empty delete lists, the planning task is simpler
and can be solved efficiently. FF does this in every search
state (Hoffmann & Nebel 2001). We denote the heuristic
value of a state w by h(w). This is the number of actions in
a relaxed plan from w. The set of actions that can start such
a plan (details below in Section ) is denoted by H(w).

The overall architecture of Conformant-FF is virtually the
same as FF’s. An overview is this:

1. Compile away in a preprocess all ADL constructs except
conditional effects.

2. Do one trial of “enforced hill-climbing”: set the current
search sate s to s := I; while h(s) 6= 0 do:

(a) Starting from s, perform breadth-first search for a state
s′ such that h(s′) < h(s); during search, avoid re-
peated states; cut out states s′ with h(s′) = ∞; and
expand only the successors of s′ generated by the ac-
tions in H(s′).

(b) If no s′ with h(s′) < h(s) has been found then fail, else
s := s′;

3. If enforced hill-climbing failed, envoke complete best-
first search, i.e., starting from the initial state expand all
states in order of increasing h value, avoiding repeated
states.

To adopt this approach, we need to redefine the follow-
ing key techniques in the context of conformant planning:
ADL compilation, search states and state transitions (which
are non-trivial in the conformant setting); relaxed plans; and
repeated states checking. The other parts of the architecture
remain exactly the same as in the classical planner. The fol-
lowing four subsections correspond in turn to the four tech-
niques we need to extend.

9



ADL Compilation

ADL formulae can contain negations. In the context of nega-
tions, the technique of ignoring delete lists does not yield
a simplified planning problem. In the classical setting, FF
compiles negations away following Gazen and Knoblock
(1997). First, all formulae are brought into negation nor-
mal form (negations only in front of propositions). Then,
for an occurence of ¬p a new proposition not-p is intro-
duced and inserted in an inverse manner to p into the action
effects (for adds on p a new delete on not-p is inserted into
the same effect, and vice versa), and the initial state (not-p
is in I iff p is not); not-p is then true in a reachable state
iff p is false.2 One can thus replace occurences of ¬p with
not-p. The same methodology works in the conformant set-
ting, except for the way we treat the initial state: we now
insert not-p into I if ¬p ∈ I, and we insert ¬not-p into I
if p ∈ I. If neither case holds, i.e., if p is initially unkown,
we leave not-p initially unkown, too, and insert the initial
disjunctions p ∨ not-p as well as ¬p ∨ ¬not-p.

With other simple compilation techniques, one can com-
pile away quantifiers and disjunctions in formulae (Gazen &
Knoblock 1997). These techniques remain the same in the
conformant setting. We end up with an action and goal de-
scription that differs from STRIPS only in that action effects
can have proposition sets as their individual effect condition
(plus, in the conformant case, the possibly non-deterministic
effect occurences).

States, and State Transitions

Search states s in our framework are the endpoints of action
sequences (to be executed in the initial state). As opposed
to world states w which are simply the sets of propositions
that are true, a search state represents a set of possible world
states: the action sequence can have different outcomes de-
pending on the initial world state. For each search state,
we compute the sets of known and negatively known propo-
sitions, which are defined as follows. Given a conformant
planning task (A, I, G), a search state s corresponding to an
action sequence P ∈ A∗, and a proposition p, we say that
p is known in s if, for all I ∈ 2I , executing P in I results
in a world state that contains p. We say that p is negatively
known in s if for all I ∈ 2I executing P in I results in a
world state that does not contain p. A proposition that is
neither known nor negatively known is unknown.

Deciding about whether a proposition is known or not is
co-NP complete.

Theorem 1 Given a conformant planning task (A, I, G), a
state s corresponding to an action sequence P ∈ A∗, and
a proposition p. Deciding whether p is known in s is co-NP
complete.

The planning task in the proof to Theorem 1 makes use of
no syntactical constructs other than what we are actually us-
ing in the internal representation after preprocessing. Note

2Given the occuring add effects and delete effects of each action
application are non-intersecting: if an action occurence both adds
and deletes p, then the same will happen with not-p and no matter
whether one applies the adds or the deletes first both propositions
will have the same truth value afterwards.

also that the task makes no use of delete lists so the deci-
sion problem is hard even in the relaxed case.3 With little
changes to the proof one can show that deciding whether p
is negatively known is co-NP complete, too, and that decid-
ing whether p is unknown is NP-complete.

In our implementation, we compute the sets of known and
negatively known propositions in a state by using a CNF
corresponding to the semantics of the respective action se-
quence as follows (for now we assume that all action effects
are deterministic; extension to non-determinism will be ex-
plained at the end of this subsection). We use a time index
to differentiate between values of propositions at different
points along the execution of the action sequence. The tem-
poral index 0 stands for proposition values at the initial state.
Say we have an action sequence P = 〈a1, . . . , an〉. We ob-
tain our CNF φ(P ) as follows. We initialize φ(P ) as the
constraints given by I (i.e., we insert a unit clause p(0) for
all p ∈ I, a unit clause ¬p(0) for all ¬p ∈ I, and a clause
l1(0) ∨ . . . ∨ lk(0) for all l1 ∨ . . . ∨ lk ∈ I). We then use a1

to extend φ(P ):

• Effect Axioms: for every effect e of a1, con(e) =
{p1, . . . , pk}, and every proposition p ∈ add(e), we in-
sert the clause ¬p1(0) ∨ . . . ∨ ¬pk(0) ∨ p(1); for every
proposition p ∈ del(e), we insert the clause ¬p1(0) ∨
. . .∨¬pk(0)∨¬p(1).4 Note that con is empty in the case
of unconditional effects.

• Frame Axioms: for every proposition p, let e1, . . . , en be
the effects of a1 such that p ∈ del(ei); for every tuple
p1, . . . , pn such that pi ∈ con(ei) we insert the clause
¬p(0)∨p1(0)∨. . .∨pn(0)∨p(1) (read this clause as an im-
plication: if p was true before and has not been deleted by
either of ei, it is still true after a1). Symmetrically, when
e1, . . . , en are the effects of a1 such that p ∈ add(ei), we
insert for every tuple p1, . . . , pn with pi ∈ con(ei) the
clause p(0) ∨ p1(0) ∨ . . . ∨ pn(0) ∨ ¬p(1) (if p was false
before and has not been added, it is still false after a1).

In the same fashion, we use a2 to further extend the for-
mula and so on until the axioms for an have been inserted.
The resulting CNF φ(P ) captures the semantics of P in the
following sense.

Proposition 1 Given a conformant planning task (A, I, G),
and an n-step action sequence P ∈ A∗. Say we have a
possible initial state I ∈ 2I and a proposition p. Then there
is exactly one satisfying assingment σ to φ(P )I (φ(P ) where
all variables at time 0 have been set to their values in I), and
p holds upon execution of P in I iff σ(p(n)) = TRUE.

Note that, in essence, φ(P ) is a description of P ’s se-
mantics in the situation calculus (McCarthy & Hayes 1969).

3The task in the proof does make use of non-unary effect an-
tecedants (unary effect antecedants are a special case relevant for
our current heuristic function implementation, see below). It is
easy to come up with a reduction that proves the decision problem
hard with unary effect antecedants in the presence of delete lists;
whether the problem remains hard with unary effect antecedants
and no delete lists is an open question.

4Due to our preprocessing, the conditions are all (positive)
propositions; at this point (in difference to the heuristic function
which computes relaxed plans) this is not important and we could
as well deal with literals.

10



Proposition 1 immediately gives us the following corollary
which we use to compute our sets of known facts.

Corollary 1 Given a conformant planning task (A, I, G), a
state s corresponding to an n-step action sequence P ∈ A∗,
and a proposition p. Then p is known in s iff φ(P ) implies
p(n).

We use Corollary 1 to compute the set of known proposi-
tions as follows. For each proposition p, hand φ(P )∧¬p(n)
over to the underlying SAT solver. If the result is “unsat”
then add p to the known propositions. If the result is “sat”,
do nothing. Symmetrically, we compute the set of negatively
known propostions by handing the formulae φ(P )∧ p(n) to
the SAT solver.

At this point, let us consider a small illustrative example.
Say we have a robot that is initially at one out of two loca-
tions, modeled as I = {at-L1 ∨ at-L2,¬at-L1 ∨ ¬at-L2}
(both propositions are unknown initially which is specified
implicitly – no truth value for the propositions is given
in I). Our goal is to be at L2, and we have a move-
right action that has an empty precondition, and the con-
ditional effect (con = {at-L1}, add = {at-L2}, del =
{at-L1}). The known propositions in the search state s
corresponding to the sequence P = 〈move-right〉 are com-
puted as follows. The formula φ(P ) consists of the clauses
at-L1(0) ∨ at-L2(0) and ¬at-L1(0) ∨ ¬at-L2(0) (initial
disjunctions), ¬at-L1(0) ∨ at-L2(1) (add effect axiom for
move-right) and ¬at-L1(0) ∨ ¬at-L1(1) (delete effect ax-
iom for move-right), as well as ¬at-L1(0) ∨ at-L1(0) ∨
at-L1(1) (positive frame axiom for at-L1; note that this can
be skipped), ¬at-L2(0) ∨ at-L2(1) (positive frame axiom
for at-L2), at-L1(0) ∨ ¬at-L1(1) (negative frame axiom
for at-L1), and at-L2(0) ∨ at-L1(0) ∨ ¬at-L2(1) (nega-
tive frame axiom for at-L2). To check whether at-L1 is
known in s, a satisfiability test is made on φ(P )∧¬at-L1(1).
The result is “sat”: a satisfying assignment σ is, e.g.,
that corresponding to I = {at-L2}, i.e., σ(at-L2(0)) =
TRUE, σ(at-L1(0)) = FALSE, σ(at-L2(1)) = TRUE,
σ(at-L1(1)) = FALSE. Checking whether at-L2 is
known in s succeeds, however: φ(P ) ∧ ¬at-L2(1) is un-
satisfiable. Inserting ¬at-L2(1) into the positive frame ax-
iom for at-L2 we get ¬at-L2(0), inserting ¬at-L2(1) into
the effect axiom for move-right we get ¬at-L1(0), in con-
sequence the initial disjunction clause at-L1(0) ∨ at-L2(0)
becomes empty. Similarly, one can find out that at-L1 is
negatively known in s.

The observation made in Corollary 1 gets us around enu-
merating all possible initial states for computing whether
a given proposition is known upon execution of P or not.
While we do need to perform worst-case exponential rea-
soning about the formula φ(P ), our empirical results show
that this reasoning is feasible, as the interactions between
action effects in practice (at least as reflected by our bench-
mark domains) are not overly complex. Note that one can
apply several significant reductions to the number of SAT
calls made, and the size of the CNF formulae looked at. In
our current implementation, these are:

• Simplify φ(P ) by inserting the values of propositions at
times i < n which are known to be true or false – these
values are stored in the respective search states along the
path corresponding to P . In effect, φ(P ) only contains

variables whose value is unknown at the respective points
of P ’s execution.

• Make SAT calls only on propositions p that fulfill the fol-
lowing. First, p is not affected by an effect of an which
is known to occur (namely, an’s unconditional effects and
its conditional effects whose condition is known to hold
at the preceeding state). Second, p might be inverted by
an effect of an which is unknown. The latter effects are
those of an’s effects such that all condition propositions
are, at the preceeding state, either known to be true or un-
known, and there is at least one condition that is unknown.
Then, p might be inverted if it was unknown previously
and is either added or deleted by an unknown effect, or if
p was known to be true previously and is deleted by an
unknown effect, or if p was known to be false previously
and is added by an unknown effect.

Once the known propositions in s are computed, the ac-
tions applicable to s are those whose preconditions are all
known in s, and whose effects can not be self-contradictory
in s. Obviously, only actions fulfilling the first condition
can be applied in s no matter what the real initial state is.
To explain the second condition, it can be that an action a
has potentially self-contradictory effects, i.e., effects e and
e′ such that add(e) ∩ del(e′) 6= ∅ or add(e′) ∩ del(e) 6= ∅.
For all such pairs e and e′ of potentially self-contradictory
effects, we check whether they can occur together in s for a
possible initial state. This check is made by a SAT call on
the formula φ(P ) ∧

∧
c∈con(e)∪con(e′) c(n). If the result is

“sat” then e and e′ can occur together and we skip the action.
This conservative approach is necessary to ensure that our
translation of negated propositions works correctly (if adds
and deletes intersect then p and not-p will undergo the same
updates, as also explained above in Section ). Of course, one
can avoid unnecessary SAT calls when the known and neg-
atively known propositions in s already imply that a pair e
and e′ of effects will or will not occur together.

Relaxed Plans
Let us focus on the computation of the heuristic function.
As said, this function is defined as the length of a relaxed
plan, where the relaxation is to assume that all delete lists
are empty (plus, in the conformant setting, a stronger form
of reasoning about known propositions, as explained be-
low). In the classical setting, relaxed plans are computed in
the following Graphplan-style manner (Blum & Furst 1997;
Hoffmann & Nebel 2001). Starting from the world state w,
build a relaxed planning graph as a sequence of alternating
proposition layers Pi and action layers Ai, where P0 is the
same as w, Ai is the set of all actions whose preconditions
are contained in Pi, and Pi+1 is Pi plus the add effects (with
fulfilled conditions) of the actions in Ai. From a proposition
layer Pm in which the goals are contained one can find a re-
laxed plan by a simple backchaining loop: select achieving
actions at layers i < m for all goals in Pm, insert those ac-
tions’ preconditions and the respective effect conditions as
new subgoals (which by construction are at layers below the
respective actions), then step backwards and select achiev-
ers for the subgoals. The heuristic value h(w) for w then is
the number of actions selected in backchaining – the length
of the relaxed plan. Actions that achieve a sub-goal at P1 –

11



actions that could be selected to start the relaxed plan – are
called helpful actions and denoted by H(w). As described
earlier these are used by FF to prune (unpromising branches
of) the search space. If there is no relaxed plan then the plan-
ning graph will reach a fixpoint Pi = Pi+1; h(w) is then set
to ∞, excluding the state from the search space – if there is
no relaxed plan from w then there does not exist a real plan
either.

In the conformant setting, we extend this machinery by
sets pPi of propositions that possibly hold at step i. Starting
from the search state s, similar to before P0 are the proposi-
tions that are known in s; pP0 are the propositions that are
unknown in s. To step from proposition layer i to layer i+1,
we first proceed exactly as before, i.e., we set Ai to those ac-
tions whose preconditions are in Pi, then we set Pi+1 to the
union of Pi with the add effects (with fulfilled conditions) of
the actions in Ai. Thereafter, we set pPi+1 to pPi \ Pi+1 —
the previously possibly true propositions minus those that
now are true. Then new possibly true propositions are in-
serted: the added propositions of effects that possibly occur.
These effects are those of actions in Ai such that their con-
dition propositions are all either in Pi or in pPi, and at least
one condition is in pPi. The added propositions of such ef-
fects, if they are not already in Pi+1, are inserted into pPi+1.
When this process is finished, for each proposition in pPi+1

a check is made whether it can be inferred from an implica-
tion graph which we maintain in parallel to the relaxed plan
graph. If the check succeeds, the respective proposition is
removed from pPi+1 and inserted into Pi+1 instead (with a
flag identifying it as an inferred proposition).

The implication graph we maintain captures a stronger
form of the inference process that we do for computing state
transitions. The idea is to look at the relaxed problem, i.e., to
ignore delete lists, and to consider only 2 literals out of each
clause of the CNF that captures the true state semantics: the
implications induced by these literals are kept as edges in
the graph, and the inference process is done as known from
2-CNF reasoning (Aspvall, Plass, & Tarjan 1979). In more
detail, the implication graph is built and used as follows.
Let P be the action sequence leading to the state s, n be
the length of P . Then the implication graph contains liter-
als with a temporal index t ranging from −n to m where
m is the current top layer of the relaxed plan graph. Time
values t ≥ 0 correspond to the respective plan graph layer,
values t < 0 correspond to the states along the execution of
P (t = −n thus corresponds to the initial state). The im-
plication graph is initialized by inserting edges for the ini-
tially valid disjunctions, and for the add effect axioms of the
actions in P (the latter edges are needed in order to take
into account what might already have been achieved on the
way to s). First, for all t ≤ 0 a node p(t) is inserted for
all propositions which are unknown in the respective state;
for t = −n, nodes ¬p(t) are also created (while everywhere
else all nodes in the implications are positive, initial disjunc-
tions might yield negative nodes, see below). For proposi-
tions p that are unknown both at t and t + 1 (for t < 0) an
edge (p(t), p(t + 1)) is inserted: edges (l, l′) are to be read
as “l implies l′”, and (p(t), p(t + 1)) is the positive frame
axiom for p (as there are no delete lists in the relaxation a
positive value of p will be preserved). Then, for each ini-
tial disjunction l1 ∨ . . .∨ lk the edges (l1(−n), l2(−n)) and

(l2(−n), l1(−n)) are inserted — i.e., we arbitrarily pick two
literals in the disjunction and insert the respective implica-
tion (and its contraposition), which is stronger than the orig-
inal disjunction. For each action in P , executed at time point
t, that has an unknown effect with conditions p1, . . . , pk (all
of which are either known or unknown in the state at t, at
least one being unknown), for all added propositions p of the
effect (where p is unknown at t+1) the edge (pj(t), p(t+1))
is inserted where j is the lowest index such that pj is un-
known at t. Note that picking one single arbitrary pj for
the implication results in a stronger form of reasoning as
really all conditions are needed to imply p(t + 1). We
make this simplification for computational efficiency (some
more on this in the outlook). When all the edges captur-
ing initial disjunctions and P effects have been inserted, re-
laxed plan graph construction starts. Say the construction
steps from layer i to layer i + 1. Reconsider the process
described above, computing the possibly true propositions
pPi+1. First, pPi \ Pi+1 is inserted. For all these proposi-
tions p an implication graph node p(i+1) is created, as well
as the frame axiom edge (p(i), p(i + 1)). Then, we consider
the effects that possibly occur, see above. If such an effect
with conditions p1, . . . , pk adds a proposition p 6∈ Pi+1 then
a node p(i+1) is created (unless that node is already there),
and the effect edge (pj(i), p(i + 1)) is inserted (where, sim-
ilar to before, j is the lowest index such that pj is in pPi).
When all possibly occuring effects have been processed, as
said above the graph is used to perform inference checks
which might move propositions out of pPi+1 into Pi+1. The
check for a proposition p proceeds by seeing whether there
are (backwards) paths in the implication graph from p(i+1)
to a proposition and its negation (i.e., p′(i′) and ¬p′(i′′) for
i′, i′′ < i), or to the negation of p itself (i.e., ¬p(i′) for
i′ < i). If that is the case, the check succeeds, otherwise it
fails. This sort of reasoning is a quite standard technique for
reasoning with the implication graph of a 2-CNF formula
(Aspvall, Plass, & Tarjan 1979). During relaxed plan ex-
traction, if a sub-goal is encountered where the implication
graph check succeeded and that has thus been inferred, then
we consider the paths in the implication graph that were re-
sponsible for this inference: the actions constituting the add
effect edges on this paths are selected into the relaxed plan.
If these actions are executable in s they are also put into the
set of helpful actions H(s).

Note that the implication graph we use is a complete, but
not necessarily sound, approximation of the set of known
propositions. Therefore, if no plan exists in the modified
relaxed planning graph (if relaxed plan graph construction
fails to reach the goals), no plan exists in practice. On the
other hand, as the implication graph might infer propositions
that can’t be inferred, it can happen that the relaxed plan is
empty but no goal state is reached yet. As FF terminates
when h(s) = 0, we thus set h(s) to 0 (only) if all goal
propositions are known in s; otherwise we set h(s) to the
number of actions in the relaxed plan plus 1.

To illustrate the relaxed planning process, let us con-
sider the example we also used above in Section . We
have a robot that is initially at one out of two loca-
tions, I = {at-L1 ∨ at-L2,¬at-L1 ∨ ¬at-L2}. The
goal is to be at L2, and we have a move-right action
that has an empty precondition, and the conditional effect

12



({at-L1}, {at-L2}, {at-L1}). When we build the relaxed
plan graph to the initial state (i.e., to the search state cor-
responding to the empty action sequence), we first initial-
ize the implication graph by inserting the nodes at-L1(0),
¬at-L1(0), at-L2(0), and ¬at-L2(0); we also insert the
edges (¬at-L1(0), at-L2(0)) and (¬at-L2(0), at-L1(0))
(for the initial disjunction at-L1 ∨ at-L2), as well as
(at-L1(0),¬at-L2(0)) and (at-L2(0),¬at-L1(0)) (for the
initial disjunction ¬at-L1 ∨ ¬at-L2). Starting the graph
building procedure, we then get P0 = ∅, pP0 =
{at-L1, at-L2}, and A0 = {move-right}. Thereafter we
initialize P1 = ∅ and pP1 = {at-L1, at-L2}, insert-
ing the implication graph nodes at-L1(1) and at-L2(1) as
well as the frame axiom edges (at-L1(0), at-L1(1)) and
(at-L2(0), at-L2(1)). We then look at all effects of the
actions in A0, and find that the effect of move-right pos-
sibly occurs – its single condition at-L1 is in pP0. Thus,
we insert the add effect edge (at-L1(0), at-L2(1)). This
finishes the loop over the A0 effects, and we proceed to
checking whether the propositions in pP (1) can be inferred
from the implication graph. For at-L1 this check fails: the
only implication graph nodes reachable by following edges
backwards from at-L1(1) are at-L1(0) and ¬at-L2(0). For
at-L2 however the check succeeds: we can reach ¬at-L2(0)
via the add effect edge (at-L1(0), at-L2(1)) and the initial
disjunction edge (¬at-L2(0), at-L1(0)). In effect, at-L2

is moved from pP1 into P1, yielding P1 = {at-L2} and
pP1 = {at-L1}. The goals are reached. Relaxed plan ex-
traction selects the actions constituting the path that was re-
sponsible for the inference of at-L2(1); this is the single
action move-right which forms the extracted relaxed plan to
the initial state.

Repeated States
As the final one of FF’s algorithmic techniques that we need
to extend to the conformant setting, let us now consider how
we can avoid exploring the same, or more generally domi-
nated (see below), search states over again. In the classical
setting, we say that world state w dominates world state w′

if the set of true propositions in w contains the set of true
propositions in w′. This simple containment test is cheap to
perform. When classical FF performs search, it checks via a
simple hash table lookup whether the new state is dominated
by some previous state (in the same hash entry). If so, the
new state is pruned.

In the conformant setting, we use the following definition.
Let s and s′ be two search states reached via the action se-
quences P and P ′, respectively. We say that s dominates s′

if for every possible initial state I ∈ 2I (and every outcome
of the non-deterministic effects, if such effects are present),
the world state upon execution of P in I dominates, in the
classical sense, the world state upon execution of P ′ in I
(for every outcome of the non-deterministic effects). We can
prune a search state s′ if s is an earlier seen search state that
dominates s′ (no matter what the initial state is, P will lead
to a world state at least as good as the one where P ′ leads
to). The domination relation between s and s′ can be tested
by checking for each proposition p whether there exists a
possible initial state given which p does not hold in s, but
does hold in s′. One such check requires a single satisfi-
ability test using the formulae we already generated for s

and s′. Let φ(P ) and φ(P ′) be the formulae constructed for
the plans P and P ′, where φ(P ) and φ(P ′) share the same
propositional variables for time 0 propositions but have dif-
ferent propositional variables for all times > 0 (i.e., these
formulae capture the semantics of executing P and P ′ in
the same initial world state). Let p(P ) and p(P ′) denote
p’s value (the respective propositional variable) following P
and P ′, respectively. If φ(P ) ∧ φ(P ′) ∧ ¬p(P ) ∧ p(P ′) is
satisfiable, we know that there is an initial state (and non-
deterministic effects outcome) from which P leads into a
state where p does not hold but P ′ leads into a state where
p does hold. In that case, s does not dominate s′. If
φ(P )∧φ(P ′)∧¬p(P )∧p(P ′) is unsatisfiable for all propo-
sitions p, then s dominates s′ and s′ can be pruned.

In our implementation we use the following variation of
the above technique, avoiding some unnecessary computa-
tions. Like in the classical case we keep the seen search
states in a hash table, where the hash key is a function of the
union of the known and the unknown propositions in a state.
Any new state s′ is then compared to the states s in the same
hash entry. The union of known and unknown propositions
is, by virtue of the hash key function, the same in both s and
s′. If a proposition is not known in s that is known in s′

then the comparison fails. Otherwise, the above described
satisfiability test is invoked for all propositions that are un-
known in both s and s′; if the result is “unsat” for all these
propositions, then s′ is pruned.

Results
We performed experimental evaluation on a variety of do-
mains. These include the traditional conformant bench-
mark domains Bomb-in-the-toilet, Ring, Cube, Omlette,
and Safe; see (Cimatti & Roveri 2000) and (Petrick &
Bacchus 2002) for a detailed description of these do-
mains. We also performed tests on variants of the clas-
sical benchmarks Blocksworld, Logistics, and Grid, into
which we introduced uncertainty about the initial state.
In the Blocksworld, the stacking order of a number of
the top blocks on the stacks was unknown; in the Logis-
tics domain the initial locations of packages within a city
were unknown; and in the Grid domain, the shapes of
some of the locks were unknown. All testing examples
are available for download from http://www.informatik.uni-
freiburg.de/∼hoffmann/cff-tests.tgz. Conformant-FF is
written in C and the experiments were conducted on a PC
with a Pentium 4 2.4 GHz processor with 0.5 Gigabyte
memory and 512KB cache running linux. The SAT proce-
dure used within the tested implementation is a very naive
standard DPLL solver (Davis & Putnam 1960), performing
unit propagation by an iterated naive loop over all clauses:
look at all literals in all clauses, if a clause is unit then set the
value of the respective literal, continue until an empty clause
(all literals set to FALSE) is reached or no more changes oc-
cur. We also integrated Chaff (Moskewicz et al. 2001) into
our code, but decided not to use it as, typically, communi-
cating all the CNFs (thousands, in many examples) to Chaff
was much more costly – in fact prohibitive for performance
– than it was to solve these (typically, a matter of split sec-
onds). So we decided to demonstrate the potential of our
approach by running it with an internal, naive, DPLL im-
plementation instead. An obvious option to further improve

13



Conformant-FF’s performance is to implement more sophis-
ticated SAT procedures. In particular improving on the im-
plementation of unit propagation seems worthwhile: we ob-
served that often few iterations of unit propagation were suf-
ficient to complete a SAT call; in Bomb-in-the-toilet, for ex-
ample, all clauses in our formulae are binary. Judging from
the success of sophisticated unit propagation procedures in
the field of SAT, and considering that usually around 75%
of the runtime Conformant-FF requires are spent in that pro-
cedure, dramatic runtime improvements are to be expected
from better implementations.

In our experiments we compared the performance of
Conformant-FF and MBP. Although there is a variety of
conformant planners, using diverse techniques, according to
(Bertoli & Cimatti 2002) MBP is the best current confor-
mant planner, outperforming all other conformant planners
on the traditional domains. We used the newest version of
MBP that was downloadable from the web page of MBP’s
authors. Conformant-FF is given as input a PDDL-like file
describing the domain and the task, with obvious modi-
fications for describing uncertainty about the initial state
(namely, initially unknown facts as well as initially valid
disjunctions of literals based on such facts). Conformant-
FF then generates a set of ground instances from this do-
main performing some optimizations, such as recognizing
static variables and doing an approximate reachability anal-
ysis to prune unreachable actions. MBP is given as input
an NPDDL file, which is an extension of PDDL allowing
for uncertainty, non-deterministic effects, and a rich set of
goal conditions. MBP translates this input into a set of
ground action instances, as well. Its translation process is
naive, and therefore, we made a serious effort to use various
NPDDL options that reduce this set of actions. In partic-
ular, NPDDL allows for the definition of functions (which
allow efficient encoding of multi-valued variables) – a ca-
pability that Conformant-FF does not have – and we tried
to use this option as much as we could. In each domain,
we tested a variety of example tasks, giving the planners at
most 25 minutes to solve each task. In Table 1 we provide
the results for the Bomb-in-the-toilet, Cube, Omlette, Ring,
and Safe domains.

In the well-known Bomb-in-the-toilet domain, the ob-
servation to be made is that MBP is competitive with
Conformant-FF when there are very few toilets, but gets out-
performed quickly as the number of toilets increases. The
data in Table 1 are to be understood as follows. In Bomb-
in-the-toilet we used four test suits, each of which contains
five example instances. In the “Bomb-x-x” suit instances the
number of toilets is the same as the number of bombs. In the
“Bomb-x-c” suits the number of bombs varies, but the num-
ber of toilets is fixed to c. Across all these test suits, exam-
ple 1 contains 5 bombs, example 2 contains 10 bombs, ex-
ample 3 contains 20 bombs, example 4 contains 50 bombs,
and example 5 contains 100 bombs. For each test suit, the
upper row in the table provides Conformant-FF’s runtimes
whereas the lower row provides MBP’s runtimes. The top
right corner of Table 1 thus says that Conformant-FF solves
the task with 100 bombs and 100 toilets in no more than 2.39
seconds. Indeed, we believe that one modest contribution of
our work might be to lay this annoying domain to rest.

In Cube, one is initially located at any point on a 3-

Test suit exp1 exp2 exp3 exp4 exp5

Bomb-x-x 0.00 0.00 0.00 0.24 2.39

Bomb-x-x 0.08 1.82 50.54 - -

Bomb-x-1 0.00 0.00 0.07 4.69 113.70

Bomb-x-1 0.01 0.02 0.09 1.18 11.35

Bomb-x-5 0.00 0.01 0.10 4.68 113.24

Bomb-x-5 0.08 0.39 2.67 35.24 327.92

Bomb-x-10 0.00 0.00 0.04 3.32 97.50

Bomb-x-10 0.39 1.82 10.20 130.90 1279.07

Cube-corner 0.00 0.06 0.48 1.80 5.66

Cube-corner 0.04 2.94 - - -

Cube-center 0.19 - - - -

Cube-center 2.82 2.74 - - -

Omlette 0.02 0.03 0.30 1.14 3.74

Omlette 1.33 13.32 556.66 - -

Ring 0.02 1.35 50.61 - -

Ring 0.00 0.01 0.02 0.03 0.07

Safe 0.00 0.05 151.29 788.93 907.38

Safe 0.00 0.06 144.45 573.98 1355.86

Table 1: Conformant-FF runtime (upper rows) vs. MBP run-
time (lower rows) in our purely conformant testing suits.
Times are in seconds, dashes indicate time-outs. See test
suit explanation in the text.

dimensional grid with extension n × n × n. In each di-
mension one can move up or down; when moving against a
border of the Grid, nothing happens. In the “Cube-corner”
test suit the task is to move into a corner of the grid (which
can be done by moving, in each dimension, n times into the
direction of that corner). In the “Cube-center” test suit the
task is to move into the center of the grid (which can be done
by moving into a corner to locate oneself, then going to the
center). In both test suits, the value of n is 3, 5, 7, 9, and 11
for example 1, 2, 3, 4, and 5, respectively. Conformant-FF is
clearly better suited than MBP to find a corner.5 None of the
planners scales very well to the move into the center; MBP
is somewhat better at that.

In the Omlette domain, n eggs must be broken into a bowl
without spoiling the bowl. Breaking an egg into the bowl
spoils the bowl by a non-deterministic effect (namely, when
the egg is bad, which one does not know without breaking
it). As said, we haven’t yet implemented support for such ef-
fects so we have modeled that effect as a conditional effect
that has a new, unknown, “dummy” proposition as its con-
dition. There is no conformant plan to the Omlette tasks. In
our test suit, the value of n is 3, 5, 10, 15, and 20 for the five
examples respectively. In difference to MBP, Conformant-
FF proves these tasks unsolvable quite efficiently (by ex-
hausting the space of reachable search states).

The Ring domain is the only domain that we found really
problematic for Conformant-FF. There are n rooms through
which one can move in a cyclic fashion. The initial loca-
tion is unkown. Each room has a window which is either

5In both planners, there were performance differences depend-
ing on which corner the planner was supposed to move into.
For both planners we chose the corner that yielded the best
performance.

14



open or closed or locked. The initial states of the windows
are unknown. One can apply an action “close” which closes
the window of the room in which one is currently located,
and one can apply an action “lock”which locks the win-
dow of the room in which one is currently located, given
the window is already closed (note that this is a binary ef-
fect condition: current location, and closed window). A
solution plan moves once through the ring and applies the
“close” and “lock” actions after each move. Our test suit
contains the tasks with n value 2, 3, 4, 5, and 6, respec-
tively. Judging from what we observed in our experiments,
Conformant-FF’s lack of performance is due to two reasons.
First, the heuristic function is not very informative as it takes
into account only one of the two conditions of the effects
of “lock”. Second, until up to the point where a plan has
been found not a single proposition becomes known, and
thus SAT calls for repeated states checking are made for ev-
ery pair of new and seen states – all states are in the same
hash table entry, and 90% of the runtime is spent in SAT calls
for checking state domination. Indeed, when turning the re-
peated states check off, Conformant-FF becomes more effi-
cient and solves the five examples in 0.00, 0.29, 4.76, 50.76,
and 445.50 seconds respectively. We conclude that, in Ring,
repeated states checking causes more overhead than pruning
benefits. On the other hand, even without the repeated states
check Conformant-FF does not scale well. We attribute this
to the first weakness mentioned above, lack of heuristic qual-
ity. Ring is the only one of our testing domains where there
are non-unary unknown effect conditions. We consider the
lack of heuristic quality in the presence of such conditions as
the most important weakness of our current Conformant-FF
implementation. In the discussion, Section , we outline al-
gorithmic methods that have the potential to overcome this
weakness. We also outline enhancements to Conformant-
FF that have the potential to avoid the overhead that can be
caused by repeated states checking.

In the Safe domain, a safe has one out of n possible com-
binations, which one must all try in order to open the safe.
Our test suit contains the examples with n values 5, 10, 30,
50, and 70, respectively. As can be seen, Conformant-FF
and MBP scale roughly similar here. We remark at this point
that, similar to what we observed in Ring, all search states
are in the same hash entry so that most of Conformant-FF’s
runtime (80%, roughly) is spent in SAT calls for checking
state domination. Turning the repeated states check off, the
runtimes we get are 0.01, 0.01, 0.61, 22.73, and 156.27 sec-
onds for our five examples, respectively.

Overall, we see that in the traditional conformant bench-
marks Conformant-FF is very competitive, being weak only
in Ring and Cube-center while outperforming MBP in
Bomb-in-the-toilet (when there are more than 5 toilets), Om-
lette, and Cube-corner.

In Table 2 we provide the results for our “mixed” bench-
mark domains, enriching classical planning benchmarks
with uncertainty.

The Blocksworld domain we use is the variant with three
operators to put a block x from another block y onto the ta-
ble, to put a block x from a block y onto a different block z,
and to put a block x from the table onto a block y. As said,
the uncertainty in our test suits is that the top blocks on each
initial stack are arranged in an unknown order. In the test

Test suit exp1 exp2 exp3 exp4 exp5

Blocksworld-2 0.00 0.00 0.00 1.08 3.53

Blocksworld-2 6.17 13.18 102.50 - -

Blocksworld-3 0.00 0.00 0.02 1.64 210.84

Blocksworld-3 0.62 13.32 251.34 - -

Blocksworld-4 0.03 0.07 0.14 6.53 93.97

Blocksworld-4 0.62 13.46 240.63 - -

Logistics-2 0.00 0.01 0.01 0.02 3.33

Logistics-2 1.63 16.36 35.54 - -

Logistics-3 0.00 0.02 0.03 0.06 41.80

Logistics-3 23.13 508.24 428.94 - -

Logistics-4 0.01 0.12 0.01 0.07 71.20

Logistics-4 122.66 1091.85 1187.00 - -

Grid-2 0.03 0.17 1.46 3.13 80.87

Grid-2 - - - - -

Grid-3 0.05 0.95 1.39 6.81 136.79

Grid-3 - - - - -

Grid-4 0.05 2.54 5.78 12.53 512.30

Grid-4 - - - - -

Table 2: Conformant-FF runtime (upper rows) vs. MBP run-
time (lower rows) in our mixed classical and conformant
testing suits. Times are in seconds, dashes indicate time-
outs. See test suit explanation in the text.

suits “Blocksworld-k” the order of the top k blocks on each
stack (which might be the whole stack) is unknown (the un-
known arrangement is accomplished by specifying rather a
lot of initial disjunctions for the respective “on”, “on-table”,
and “clear” relations). Putting a block x from a block y onto
the table has conditional effects: (only) if x is located on y
in the state of execution, x is put onto the table, and y is
cleared. That is, (only) if x is on y then x, including the
whole stack of blocks on top of it, is moved to the table.
To make sure that a block x out of an unknown stack is on
the table, one must thus try to put x to the table from all
other blocks y in the stack – if n blocks are in the unknown
stack then n ∗ (n − 1) actions are needed to be sure where
all the blocks are. Across our three test suits, the exam-
ples are generated with the software by Slaney and Thiebaux
(Slaney & Thiebaux 2001), and contain 5, 6, 7, 13, and 20
blocks respectively. As the behavior of Conformant-FF dif-
fers quite considerably on individual Blocksworld instances,
we generated 25 random examples per size, and provide av-
erage runtime values. Conformant-FF scales well and out-
performs MBP dramatically (though we improved the per-
formance of MBP by using a more concise domain descrip-
tion based on functions). MBP did not solve any instance
with 13 or 20 blocks. We note that in some of these cases,
MBP stopped before our self-imposed time-limit because it
reached its maximal number of search states.

Our Logistics domain is the following modification of the
well-known standard encoding. The uncertainty we intro-
duced lies in that the initial position of each package within
its origin city is unknown. Loading a package onto a truck
has a conditional effect that only occurs when the package
is at the same location as the truck. One must thus try the
loading action at all locations within a package’s origin city

15



in order to be sure the package is loaded. The amount of
uncertainty increases with the size of the cities. In our test
suits “Logistics-k” the city size (which is the same for each
city) is k. Across all suits, the instances are randomly gen-
erated ones with the following parameters. Each city con-
tains one truck. Example 1 has 2 cities, 2 packages, and
1 airplane; example 2 has 2 cities, 4 packages, and 1 air-
plane; example 3 has 3 cities, 2 packages, and 1 airplane;
example 4 has 3 cities, 3 packages, and 2 airplanes; exam-
ple 5 has 10 cities, 10 packages, and 10 airplanes. While
MBP consumes a lot of time to solve even the smaller in-
stances, Conformant-FF comfortably scales up to the largest
instances (which are quite challenging: the plan found for
the largest “Logistics-4” example, e.g., has 120 actions in
it).

Our final testing domain is a variant of the Grid domain
as used in the AIPS-98 planning competition. In Grid, a
robot moves on a 2-dimensional grid on which positions can
be locked and, to be accessible, must be opened with a key
of a matching shape; the robot can hold one key at a time,
and the goal is to transport certain keys to certain positions.
We introduced uncertainty about (some of the, see below)
locked positions on the grid. The shape of these locks was
specified to be an unknown one out of a number of possible
shapes. Opening a lock with a key has a conditional effect
that occurs only if the key is of the same shape as the lock.
One must thus try all possible keys in order to make sure
that a lock is opened. In our test suits “Grid-k” the unknown
locks have k possible shapes. Across the suits, the instances
are the original five examples “prob01” . . . “prob05” as used
in the AIPS-98 competition. The locks for which we have
introduced uncertainty are those that must be opened in or-
der to solve the respective task. In examples 1, 3, and 4
this is a single lock, in examples 2 and 5 it are two locks.
While MBP fails to solve even the modified “prob01” tasks,
Conformant-FF scales up to “prob05”.6 Note that these in-
stances are hard to solve even without uncertainty. In fact,
FF is the only domain-independent planner the authors are
aware of which has been reported to solve all the original
AIPS-98 instances. With uncertainty, the tasks become con-
siderably more difficult, as several keys instead of one key
must be transported to the locked grid position(s) (remember
that the robot can transport only one key at a time). In fact,
while FF finds a 174-steps plan for “prob05” without un-
certainty, the plan Conformant-FF finds for “prob05” with
k = 2 has 194 steps, the one found with k = 3 has 214
steps, and the one found with k = 4 is 254 steps long.

We also conducted a number of experiments with GPT on
a sample of instances from the mixed domains in order to
ensure that we were indeed comparing Conformant-FF with
the best conformant planner for these domains. Indeed, in
these domains, MBP outperforms GPT.

From our results in the “mixed” domains, we conclude
that our approach does have the potential to combine the
strengths of FF with conformant abilities in domains that
combine classical and conformant aspects. In this respect,

6We have also run Conformant-FF on versions of “prob01”
. . . “prob05” where the shapes of all locks (8, 8, 10, 9, and 19 re-
spectively) were unknown. With that, Conformant-FF still scaled
up to “prob04” in our experiments – it solved that task with k = 4

in 44.52 seconds.

Conformant-FF is superior to MBP (and, presumably, to
GPT and other conformant planners). We consider this an
important advantage as, in a real-world domain, one would
certainly expect only parts of the problem to be uncertain.
This, we find, is reflected quite nicely in, e.g., our modified
Grid encoding.

Related Work
Conformant-FF shares various ideas and techniques with
other conformant planning algorithms. CGP (Smith & Weld
1998) was the first specialized conformant planner, based on
the Graphplan algorithm, which Conformant-FF uses to gen-
erate its heuristic function. However, while Conformant-FF
uses a single planning graph, CGP used one planning graph
for each possible initial state, an approach that does not scale
up well. GPT (Bonet & Geffner 2000) is a general platform
for planning with uncertainty, including, but not limited to,
conformant planning. GPT introduced the idea of planning
in belief space using heuristic search. Conformant-FF is
based on this idea, though it represents the set of possible
worlds in a different manner, and it computes its heuristic
estimate in a very different manner. Petrick and Bacchus
(Petrick & Bacchus 2002) describe a contingent planner that
uses logical formulas to represent the current state of knowl-
edge of the agent. Conformant-FF adopted this idea, but
using a much simpler representation that is adequate for the
simpler, conformant planning problem. The major differ-
ence between the two approaches is that Petrick and Bac-
chus model planning tasks at the knowledge level (which
loses expressive power (Petrick & Bacchus 2002)) while we
infer our knowledge from a standard task description.

The use of SAT solvers plays an important part in Qbf-
Plan (Rintanen 1999) and Cplan (Castellini, Giunchiglia,
& Tacchella 2001), which are conformant planners based
on the planning as satisfiability approach. QbfPlan reduces
this problem to the problem of satisfaction of a quantified
boolean formula, whereas Cplan generates candidate solu-
tions to the conformant planning problem and tests their ad-
equacy via a reduction to SAT. However, aside for the use
of SAT (or QBNF) solvers, these approaches differ consid-
erably from Conformant-FF.

Finally, the approach to conformant planning that has
been most successful so far, employed in MBP (Bertoli &
Cimatti 2002), is based on heuristic forward search in be-
lief space, where states in belief-space are represented using
BDDs. It shares Conformant-FF’s use of forward search in
belief-space, but differs considerably in the representation
of the search space and in the computation of the heuris-
tic function. It should be noted that MBP is a more general
planning system, supporting a rich set of goal conditions and
run-time sensing capabilities.

Discussion
We described Conformant-FF, a heuristic forward-search
planner, which extends the classical planner FF (Hoffmann
& Nebel 2001) into conformant planning. Conformant-FF
uses the same architecture as FF, but instead of represent-
ing the current world state, it computes and represents the
current state of knowledge. The relaxed planning problem
FF uses is modified accordingly using the idea of an impli-

16



cation graph which supports linear time reasoning about an
approximate description of the knowledge state. The result-
ing planner is competitive with the state-of-the-art confor-
mant planner MBP in the traditional conformant benchmark
domains. Moreover, the planner shows the potential to com-
bine the strength of FF with conformant abilities, by scaling
well (in particular, much better than MBP) in a number of
classical benchmark domains enriched with uncertainty. Our
results are obtained using a completely naive SAT solver as
the underlying reasoning technique.

As we have seen in the example of the Ring domain, c.f.
Section , major inefficiencies in our current code can arise
when 1. there are non-unary effect conditions (all but one of
which are ignored by the heuristic function) and / or when 2.
there is a lack of different known propositions in the search
states, and thus repeated states checking has to test too many
pairs of new and seen search states for domination. The sec-
ond phenomenon appears to be a pathological property of
certain conformant benchmarks like the Ring or the Safe do-
main. Even so, a strategy that might be able to overcome the
difficulty is to introduce incomplete pre-tests to avoid full
domination tests of state pairs s and s′. For example, say φ is
the formula whose satisfiability must (repeatedly) be tested
for deciding whether s dominates s′, c.f. Section . If even a
2-projection of φ is solvable, then φ is solvable, and s does
not dominate s′. As another option one can test conditions
such as “does the path to s′ contain an action that the path
to s does not contain?” or “does the implication graph cor-
responding to s′ contain an edge that the implication graph
to s does not contain?”, and, if one test succeeds, assume
that s does not dominate s′. Note that the latter option might
lose pruning power as the tested conditions are not sufficient
for non-domination. Exploring these options is a topic for
future work.

As for the first inefficiency mentioned above, possibly
arising when there are non-unary effect conditions, we re-
mark the following. First, the inefficiency only arises when
more than one of the effect conditions in question is un-
known in the state of the respective action’s execution –
otherwise the single unknown condition will be adequately
dealt with by the implication graph. Our second remark is
that one might be able to better adjust the heuristic function
to non-unary effect conditions. One option is to intoduce a
special case treatment for these, similar to our treatment of
non-binary initial disjunctions: an additional possibility for
inferring a proposition p could be to find implication graph
paths to an effect condition p1 ∧ . . . ∧ pn as well as to all
of ¬p1, . . . , ¬pn. Another option is, even, to introduce SAT
reasoning into the heuristic computation: in our experiments
the single SAT calls were always very cheap, and the number
of expanded search states rather low.7 So it is worth trying to
infer propositions in relaxed plan graph layers by doing the
full inference process (on the relaxed problem) when non-
unary effect conditions are present. While this is likely to
slow down heuristic computation it is as likely to result in a
very informative heuristic function.

7In the Ring instance with 3 rooms, e.g., with repeated states
checking only 36 heuristic computations are performed to solve
the task; with 4 rooms, it are 66.

Acknowledgement: We are grateful to the MBP and GPT
teams who were always happy to answer our annoying ques-
tions and fix our faulty domain descriptions.

References
Aspvall, B.; Plass, M.; and Tarjan, R. 1979. A linear-time
algorithm for testing the truth of certain quantified boolean
formulas. Information Processing Letters 8:121–123.
Bertoli, P., and Cimatti, A. 2002. Improving heuristics
for planning as search in belief space. In Proc. AIPS’02,
143–152.
Blum, A. L., and Furst, M. L. 1997. Fast planning through
planning graph analysis. AIJ 90(1-2):279–298.
Bonet, B., and Geffner, H. 1998. HSP: Heuristic search
planner. In AIPS’98 Planning Competition.
Bonet, B., and Geffner, H. 2000. Planning with incomplete
information as heuristic search in belief space. In Proc.
AIPS’00, 52–61.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. AIJ 129(1–2):5–33.
Castellini, C.; Giunchiglia, E.; and Tacchella, A. 2001.
Improvements to sat-based conformant planning. In Proc.
ECP’01, 241–252.
Cimatti, A., and Roveri, M. 2000. Conformant planning
via symbolic model checking. JAIR 13:305–338.
Davis, M., and Putnam, H. 1960. A computing procedure
for quantification theory. J. ACM 7(3):201–215.
Fikes, R. E., and Nilsson, N. 1971. STRIPS: A new ap-
proach to the application of theorem proving to problem
solving. AIJ 2:189–208.
Gazen, B. C., and Knoblock, C. 1997. Combining the ex-
pressiveness of UCPOP with the efficiency of Graphplan.
In Proc. ECP’97, 221–233.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. JAIR
14:253–302.
McCarthy, J., and Hayes, P. J. 1969. Some philosophical
problems from the standpoint of artificial intelligence. In
Meltzer, B., and Michie, D., eds., Machine Intelligence,
volume 4. Edinburgh University Press. 463–502.
Moskewicz, M. W.; Madigan, C. F.; Zhao, Y.; Zhang, L.;
and Malik, S. 2001. Chaff: Engineering an Efficient SAT
Solver. In Proc. 38th Design Automation Conf. (DAC’01).
Pednault, E. P. 1989. ADL: Exploring the middle ground
between STRIPS and the situation calculus. In Proc.
KR’89, 324–331.
Petrick, R. P. A., and Bacchus, F. 2002. A knowledge-
based approach to planning with incomplete information
and sensing. In Proc. AIPS’02, 212–221.
Rintanen, J. 1999. Constructing conditional plans by a
theorem-prover. JAIR 10:323–352.
Slaney, J., and Thiebaux, S. 2001. Blocks world revisited.
AIJ 125:119–153.
Smith, D. E., and Weld, D. 1998. Conformant graphplan.
In Proc. AAAI’98, 889–896.

17


