
Interleaving Execution and Planning via Symbolic Model Checking

Piergiorgio Bertoli, Alessandro Cimatti, Paolo Traverso
[bertoli,cimatti,traverso]@irst.itc.it

Abstract

Interleaving planning and execution is the practical alter-
native to the problem of planning off-line with large state
spaces. While planning via symbolic model checking has
been extensively studied for off-line planning, no framework
for interleaving it with execution has been ever devised. In
this paper, we extend planning via symbolic model checking
with the ability of interleaving planning and execution in the
case of nondeterministic domains and partial observability,
one of the most challenging and complex planning problems.
We build a planning algorithm such that the interleaving of
planning and execution is guaranteed to terminate, either be-
cause the goal is achieved, or since there is no longer chance
to find a plan leading to the goal. We experiment with the
planner and show that it can solve planning problems that
cannot be tackled by the off-line symbolic model checking
techniques.

Introduction
Recent research in planning addresses the problem of deal-
ing with nondeterministic domains and partial observability,
see, e.g., (Kabanza et al. 1997; Weld et al. 1998; Bertoli
et al. 2001b; Rintanen 1999; Bonet and Geffner 2000;
Jensen et al. 2001). Planning via symbolic model check-
ing has been recently shown to be a promising approach that
can tackle some problems that have never been solved be-
fore (Bertoli et al. 2001b; 2001a; Rintanen 2002). How-
ever, building plans purely off-line still remains unfeasible
in most realistic applications, because of the complexity due
to nondeterminism and partial observability. Methods that
interleave planning and execution, see, e.g., (Koenig and
Simmons 1998; Koenig 2001) are the practical alternative
to the problem of planning off-line with large state spaces.

In this paper, we extend the framework of “planning via
symbolic model checking” with the ability of interleaving
planning and execution in the case of nondeterministic do-
mains and partial observability. We define an architecture
for interleaving plan generation and plan execution, where
a planner generates conditional plans that branch over ob-
servations, and a controller executes actions in the plan and
monitors observations to decide which branch has to be ex-
ecuted.

We propose a top-level algorithm for interleaving plan-
ning and execution that exploits the same data structures
used in off-line planning via symbolic model checking
(Bertoli et al. 2001b; 2001a) to generate plans, to execute
them and to monitor their execution. Within this framework,
we propose a novel “embedded” algorithm for plan genera-
tion that is based on the state-of-the-art off-line planning al-
gorithm presented in (Bertoli et al. 2001a). At each plan
generation step, the embedded algorithm generates plans
that make a progress toward the goal without necessarily

reaching it. This has the advantage that the algorithm does
not necessarily need to consider all possible contingencies
and can thus scale up to large state spaces.

An important desired property for the original algorithm
is that it generates strong solutions, i.e., solutions that are
guaranteed to achieve the goal in spite of nondeterminism
and partial observability. In an interleaving framework, it is
in general impossible to guarantee that a goal state will be
reached, since execution can get trapped in a dead-end sit-
uation, from which there is no plan exists (anymore) that is
guaranteed to reach the goal. However, the embedded algo-
rithm guarantees that the planning/execution loop terminates
either by reaching the goal, or by reaching a state where
there is no chance to find a strong plan, ensured to reach the
goal1. Moreover, thanks to this property, the embedded al-
gorithm is guaranteed to reach the goal in safely explorable
domains, i.e., domains where execution cannot get trapped
in situations where no strong plan to the goal exists anymore.

We implement the algorithms for interleaving planning
and execution, and experiment in the robot maze domain
(Koenig 2001) augmented with uncertainty in actuators. We
compare the new planner with a state-of-the-art off-line
planner based on symbolic model checking, MBP (Bertoli
et al. 2001b; 2001a). The experimental results show that the
new planner can scale up to much harder problems than the
off-line technique.

The paper is organized as follows. We provide first some
intuitions on the problem of planning with nondetermin-
ism and partial observability through an example (Section
). We then formalize the algorithm for interleaving planning
and execution and discuss the embedded planning algorithm
(Section). We finally describe the experimental results (Sec-
tion) and discuss some related work.

Planning with Nondeterminism and Partial
Observability

As a reference example, consider the simple robot naviga-
tion domain in Figure 1, in the upper left corner, consist-
ing of a 2x2 room with an extra wall. The robot can move
in the four directions, provided that there is not a wall in
the direction of motion. The action is not applicable, other-
wise. At each time tick, the information of walls proximity
in each direction is available to the robot. When planning
under partial observability, we have to deal with conditions
of uncertainty, i.e. belief states. A belief state is a collection
of all the states of the world that are compatible with the

1Notice that considering weak plans, that may not reach the
goal, would remove the guarantee of termination. Nondetermin-
istic behaviors of the domain might in fact cause endless plan-
ning/execution loops where weak plans always exist, and everytime
fail to reach the goal.

1

Bs 1 Bs 2 Bs 3

Bs 4

Bs 6

Bs 5

Bs 6

G

O

A

L

G

O

A

L

I

I

T

N

SW SE

NW NE

Bs 1 Bs 1

L
O
O
P

B
A
C
K

L
O
O
P

B
A
C
K

Bs 4

L
O
O
P

B
A
C
K

Bs 4

GoSouth

GoWest

GoEast WallN?

N1

GoWest

N2

N4

N5

N7

N8

N9

N10

WallW?

N3 N6

GoWest

N11

GoEast

N11

GoNorth

GoSouth

GoEast

N12

Bs 3

WallN?

Bs 3 GoWest

GoNorth

Figure 1: A simple robot navigation domain

initial knowledge and the information acquired through ob-
servation. The initial belief state in Figure 1 is {NW,SW};
our goal is to reach the condition {SW}. Actions transform
belief states into new belief states, and observations identify
subsets of the current belief state. In the example, the actions
are GoNorth, GoSouth, GoWest and GoEast, and are
deterministic, with the exception of moving GoSouth from
{NE}, which may cause the robot to slip in one of two
states. Observation variables are WallN, WallS, WallW
and WallE.

The search space can be seen as an and-or graph, recur-
sively constructed from the initial belief state, expanding
each encountered belief state by every possible combination
of applicable actions and observations. The graph is possi-
bly cyclic; in order to rule out cyclic behaviors, however, its
exploration – at planning time – can be limited to the acyclic
prefix of the graph. Figure 1 depicts a portion of the finite
prefix of the search space for the described problem. The
prefix is constructed by expanding each node in all possible
ways, each represented by an outgoing arc. Single-outcome
arcs correspond to simple actions (action execution is deter-
ministic in belief space). For instance, N4 expands into N7
by the action GoSouth. Multiple outcome arcs correspond
to observations. For instance, node N2 results in nodes N4
and N5, corresponding to the observation of WallN.

More formally, a partially observable nondeterministic
planning domain is defined in terms of its states, of the ac-
tions it accepts, and of the possible observations that the
domain can exhibit. Some of the states are marked as initial.
A transition function describes how (the execution of) an ac-
tion leads from one state to possibly many different states.
Finally, an observation function defines what observations
are associated to each state.

Definition 1 A nondeterministic planning domain with par-
tial observability is a tuple D = 〈S,A,O, I, T ,X〉, where:
• S is the set of states.
• A is the set of actions.
• O is the set of observations.

• I ⊆ S is the set of initial states; we require I 6= ∅.
• T : S × A → P(S) is the transition function; it asso-
ciates to each current state s and to each action a the set
T (s, a) ⊆ S of next states.
• X : S → P(O) is the observation function; it associates
to each state s the set of possible observations X (s) ⊆ O.
Action a is executable in state s if T (s, a) 6= ∅; it is exe-
cutable in a set of states b iff it is executable in every state
s ∈ b. We require that in each state s ∈ S there is some
executable action. We also require that some observation is
associated to each state s ∈ S, that is, X (s) 6= ∅.

We can have uncertainty in the initial states and in the out-
come of action execution. Also, since the observation asso-
ciated to a given state is not unique, it is possible to model
noisy sensing and lack of information.

In the domain of figure 1, the actions are GoNorth,
GoSouth, GoWest and GoEast. We have four states, cor-
responding to the four positions of the robot in the room. It
is in general possible to present the state space by means
of state variables. Each (atomic) state is associated with a
truth assignment to the state variables. In the example, the
state variables might be E and S. In state NW they would
be both associated with a false value (⊥), while in SE they
would be associated with >. We have 16 observations, each
corresponding to one of the possible configurations of walls
around the robot. Again, the space of observation can be
conveniently presented by means of observations variables,
(e.g. WallN, WallS, WallW and WallE). Each observa-
tion associates a truth value to each observation variable. In
the following, we will assume a variable-based presentation
for S and O, writing o to represents an observation variable.
We define Xo[>] to denote the set of states that are compati-
ble with a > assignment to the observation variable o; Xo[⊥]
is interpreted similarly. In partially observable domains, we
consider plans that branch on the value of observable vari-
ables.

Definition 2 ((Conditional) Plan) A plan for a domain D

2

ProgressivePlan

ExecuteMonitoring

PLAN

OBSERVATION ACTION

I

PlanExecMonitor D,I,G

Domain

is either the empty plan ε, an action a ∈ A, the concate-
nation a;π of an action and a plan, or the conditional plan
if o then π1 else π2, with o ∈ O.

For instance, if WallN then GoSouth else GoWest corre-
sponds to the plan “if you see a wall north, then move south,
otherwise move west”.

A plan is executable starting from a set of states b if b is
empty, or:

• π = ε, or b is empty, or

• π = a;π1, a is executable on b, and π1 is executable on
exec(a,b) =

⋃
t∈b T (t, a)

• π = if o then π1 else π2, and the plans π1 , π2 are
executable over b ∩ Xo[>] and b ∩ Xo[⊥] respectively.

Intuitively, given a domain D, a set of initial states I and
a set of goal states G in S, a plan π is a strong solution
for the planning problem 〈D, I, G〉 iff it is executable on I ,
and every execution on the states of I results in G; see e.g.
(Bertoli et al. 2001b).

Interleaving Planning and Execution
Rather than searching the huge and-or graph of belief states
off-line, we propose a framework where a planner searches
the graph partially, and a controller executes the partial plan
and monitors the current state of the domain, then the pro-
cess is iterated until the goal is hopefully reached.

The Top Level
The top level algorithm for embedded planning PLANEX-
ECMONITOR is the following:

PLANEXECMONITOR(bs, G)
1 if (bs ⊆ G)
2 return Success;
3 π := PROGRESSIVEPLAN(bs, G);
4 if (π = Failure)
5 return Failure;
6 else
7 newbs := EXECUTEMONITORING(bs,π);
8 PLANEXECMONITOR(newbs, G);

The top level is first invoked by passing to it the set I of pos-
sible initial states, and the set of goal states G. We assume
the domain representation to be globally available to its sub-
routines. The PLANEXECMONITOR routine provides a sim-
ple recursive implementation of a reactive planning loop;

EXECUTEMONITORING(bs, π)
1 MARKNODEASEXECUTED(bs);
2 if (π = ε)
3 return bs;
4 if (π = α; π′)
5 ACTUATE(α);
6 newbs := exec (α, bs);
7 EXECUTEMONITORING(newbs, π′);
8 if (π = if o then π1 else π2)
9 if CURRENTVALUE(o)
10 returnEXECUTEMONITORING (bs ∩ Xo[>],π1);
11 else
12 returnEXECUTEMONITORING (bs ∩ Xo[⊥],π2);

Figure 2: The algorithm for Execution and Monitoring

it relies on alternatively invoking a planner PROGRESSIVE-
PLAN to build a plan, and a monitored executor EXECUTE-
MONITORING that both executes it over the domain, and
reports the new belief resulting from execution. It is easy to
show that the top level stops either when the planner returns
failure, or when a belief b is reached such that the goal is
known to be reached (that is , b ⊆ G). The properties of
the top level depends on those of the planner and monitored
executor, which we discuss in turn.

Execution and Monitoring
Execution and monitoring can be described in terms of runs,
i.e., in terms of sequences of belief states generated along the
execution. Given an initial belief state b0, a plan can gener-
ate a set of possible runs, i.e., sequences of belief states, due
to nondeterminism and noisy sensing.

Definition 3 (Runs of a plan) Let π be a plan for a domain
D. The set of runs of π from an initial belief state b0 ⊆ S is
inductively defined as follows.
• If π is ε, then b0 is a run of π from b0.
• If π is a;π1, then the sequence b0, r is a run of π from b0,
where r is a run of π1 from {s : s ∈ T (s0, a) and s0 ∈ b0}.
• If π is if o then π1 else π2, then the sequences b0, r1 and
b0, r2 are runs of π from b0, where r1 is a run of π1 from
b0 ∩ Xo[>], and r2 is a run of π2 from b0 ∩ Xo[⊥].

For the top level to be sound, the monitoring executor
must guarantee that, for each run r = b0, . . . , bn of the plan,
it returns a belief state b ⊆ bn. An executor that guaran-
tees this property is presented in Fig.2. The executor EX-
ECUTEMONITORING recursively applies the plan actions to
the domain, via ACTUATE. The plan execution is driven by
the observations in the plan: it branches over the actual ob-
servation values, retrieved from the domain via CURRENT-
VALUE. Parallel to this, EXECUTEMONITORING exploits
the domain model, namely X and exec (where exec(a,b) =⋃

t∈b T (t, a)), to have the initial belief progress consistently
with the execution. Each belief state traversed during the
monitored execution is marked as traversed via MARKN-
ODEASEXECUTED.

Strong Progressive Planning
In order to guarantee the termination of the top level, the
planner must be progressive, i.e. the plans it produces must

3

PROGRESSIVEPLAN(I , G)
1 graph := MKINITIALGRAPH(I , G);
2 while (¬ISSUCCESS(GETROOT(graph)) ∧
3 ¬ISEMPTYFRONTIER(graph) ∧
4 ¬(ISPROGRESS(GETROOT(graph)) ∧
5 TERMINATIONCRITERIA(graph)))
6 node := EXTRACTNODEFROMFRONTIER(graph);
7 if (SUCCESSPOOLYIELDSSUCCESS(node, graph))
8 MARKNODEASSUCCESS(node);
9 NODESETPLAN(node,RETRIEVEPLAN(node, graph));
10 PROPAGATESUCCESSONTREE(node,graph);
11 PROPAGATESUCCESSONEQCLASS(node,graph);
12 else
13 orexp := EXPANDNODEWITHACTIONS(node);
14 andexp := EXPANDNODEWITHOBSERVATIONS(node);
15 EXTENDGRAPHOR(orexp, node, graph);
16 EXTENDGRAPHAND(andexp, node, graph);
17 if (SONSYIELDSUCCESS(node))
18 MARKNODEASSUCCESS(node);
19 NODESETPLAN(node,BUILDPLAN(node));
20 PROPAGATESUCCESSONTREE(node, graph);
21 PROPAGATESUCCESSONEQCLASS(node, graph);
22 if (¬ISEXECUTED(node) ∨ ISSUCCESS(node)
23 MARKNODEASPROGRESS(node, graph);
24 PROPAGATEPROGRESSONTREE(node, graph);
25 PROPAGATEPROGRESSONEQCLASS(node, graph);
26 end while
27 if (ISSUCCESS(GETROOT(graph)))
28 return EXTRACTSUCCESSPLAN(graph);
29 if (ISPROGRESS(GETROOT(graph))
30 return EXTRACTPROGRESSINGPLAN(graph);
31 return Failure;

Figure 3: The planning algorithm

be guaranteed to traverse at least one belief state that has not
been previously encountered during execution.

Definition 4 (Progressive Plan) Let r be a run b1, . . . , bn.
Let π be a plan for D. The plan π is progressive for the run
r iff, for any run rπ of π from bn, there is at least one belief
state in rπ that is not a belief state of r.

Figure 3 presents a progressive planning algorithm. It
takes as input the initial belief state and the goal belief
state, and proceeds by incrementally constructing a finite
acyclic prefix of the search space, implemented as a graph.
In the graph, each node n is associated with a belief state
b(n); a directed connection n1 → n2 between a node n1

and a node n2 results either from an action α such that
Exec(α, b(n1)) = b(n2), or from an observation o such that
b(n1) ∩ Xo[v] = b(n2), with v = > or v = ⊥. In that case,
we call n1 the father of n2 and n2 the son of n1; we call
“brothers” all the nodes that result from the same observa-
tion expansion of the same node. The graph is annotated
with a frontier of the nodes that have not yet been expanded,
and with a success pool, containing the nodes for which a
strong plan has been found. In addition, the graph defines
equivalence classes for the nodes that share the same belief
state.

In order to guarantee that the produced plans are progres-
sive, all the conjunctive branches in the search graph need to
be taken into account. The graph is therefore extended in or-
der to maintain up-to-date information on progress of nodes.

The core of the algorithm consists of a search loop (lines 2-
26), iteratively selecting and expanding a node in the graph,
previously initialized by constructing its root, corresponding
to I , and the success pool {G} (line 1). The loop terminates
either when (a) the root of the graph is signaled as a success
node, (b) the graph frontier is empty, or (c) a progressing
plan has been found and an arbitrary termination criterion
holds true (lines 2-5). Case (a) takes place when a strong
plan is found; case (b) corresponds to the failure of the plan-
ner, and case (c) realizes progressing replanning.

Inside the loop, first a node is extracted from the fron-
tier (line 6). The EXTRACTNODEFROMFRONTIER primi-
tive embodies the selection criterion and is responsible, to-
gether with the termination criterion, for the style (and the
effectiveness) of the search being carried out. Then, at line
7, we check, via the primitive SUCCESSPOOLYIELDSSUC-
CESS, whether there is a node nsucc in the success pool such
that b(node) ⊆ b(nsucc). If so, the algorithm takes care of
the newly solved node. In particular, b(node) is marked as
success, and inserted in the success pool (MARKNODEAS-
SUCCESS, line 8). Then, at line 9, node is associated with
the plan that has been previously computed for nsucc. (As
a consequence, the plan constructed is in fact a DAG rather
than a tree.) At line 10, the PROPAGATESUCCESSONTREE
primitive propagates success bottom-up as follows. If node
is the result of an action expansion, the father node nf is
marked as success, and the open descendants of nf are re-
moved from the frontier, since their expansion is no longer
necessary. If node is the result of an observation, the above
process is carried out only if all the brothers of node are al-
ready marked as success. In this case, nf is associated with
a conditional plan. If nf is marked as success, bottom-up
success propagation process is iterated on nf . Bottom-up
propagation may reach the root, in which case the problem
is solved. At line 11, the primitive PROPAGATESUCCES-
SONEQCLASS triggers bottom-up success propagation for
each node in the equivalence class of node.

If the success of node is not entailed by the success pool,
then the expansion of node is attempted, computing the
nodes resulting from possible actions (line 13) and observa-
tions (line 14). The result of EXPANDNODEWITHACTIONS
is the list of belief state-action pairs 〈exec(α, b(node)) . α〉.
Similarly, EXPANDNODEWITHOBSERVATIONS returns a
list of observation results, each composed of an observation
mask, describing what variables are being observed, and a
list of pairs 〈bi . vi〉, each associating a belief state bi to an
observation results vi ∈ {>,⊥}. The graph extension steps,
at lines 15-16, construct the nodes associated to the expan-
sion, and add them to the graph, also doing the bookkeeping
operations needed to update the frontier and the links be-
tween nodes. Loops in the search are avoided, by checking
that an expanded node does not belong to the list of its an-
cestors.

Once expanding the graph is done, if it is possible to state
the success of node based on the status of the newly in-
troduced sons (primitive SONSYIELDSUCCESS at line 17),
then the same operations at line 8-11 for success propaga-
tion are executed. The plan for node, in this case, is built by
BUILDPLAN, starting from the plans associated to the sons

4

0.01

0.1

1

10

100

1000

0 5 10 15 20 25 30 35 40

C
P

U
 S

ea
rc

h
tim

e
(s

ec
)

size

Slippery Maze

SyPEM: avg
SyPEM: min/max

MBP

1

10

100

1000

0 5 10 15 20 25 30 35 40

Le
ng

th
s

size

Slippery Maze

SyPEM: avg exec
SyPEM: avg loops

MBP : avg exec

Figure 4: Search times and Plans for the Slippery Maze

of node. In order to guarantee progressiveness, at line 22,
we check if b(node) has already been visited at execution
time. If not (or if node is marked as successful), mark node
as a “progress” node (line 23). In that case, the progress
information is recursively propagated bottom-up on the tree
(PROPAGATEPROGRESSONTREE, line 24): if the node is
the result of the application of an action, then its father is
marked as progress. If the node is the result of an observa-
tion, in order to propagate its progress backward it is nec-
essary to check that all of its brothers are also marked as
progress nodes. Progress is also propagated on the equiva-
lence classes, similar to what happens for the success (line
25).

Finally, when the loop is exited, either a strong plan has
been found, and is returned by EXTRACTSUCCESSPLAN;
or, a progressing plan exists in the graph, and is extracted
by EXTRACTPROGRESSINGPLAN; or, failure is returned.
While extracting the success plan is simple (it is associated
with I by the bottom-up propagation), the progressing plan
might not be unique: several such plans may exist. The
selection operated by EXTRACTPROGRESSINGPLAN may
affect the overall performance. Our implementation privi-
leges, amongst progressing plans, the ones performing more
observations.

Discussion
The algorithm presented above is guaranteed to terminate,
based on the fact that the explored search space is finite.
It either returns a strong solution plan, a progressing plan
w.r.t. the current run for the top level, or failure. The plan-
ner is guaranteed to be progressive by the fact that the main
loop cannot exit before a progressing plan is found, unless
the whole reachable belief space has been searched, or suc-
cess takes place. Notice that the termination criteria is in-
hibited if the progressiveness condition holds false. Also,
the planner is guaranteed not to terminate before the reach-
able belief space is exhausted, thus it will not return failure
for the planning problem corresponding to the current run,
unless no chance of producing a strong plan for the goal ex-
ists. Clearly, this is not enough to guarantee completeness of
the top level. This is due to the possibility of generating and
executing a series of progressing plans that lead the domain
in a situation where no strong plan to reach the goal exists

anymore (even if it existed at the start). However, notice
that for domains guaranteed to be “safely explorable” (see
(Koenig and Simmons 1998)), this can never be the case.

Experiments
We implemented a planner called SyPEM (Symbolic Plan-
ner with Execution and Monitoring – the name is ficti-
tious name for the sake of blind review) based on the al-
gorithm shown in Section . SyPEM uses symbolic data
structures based on Binary Decision Diagrams (BDDs), sim-
ilarly to planners such as MBP (Bertoli et al. 2001b) and
UMOP (Jensen et al. 2001). BDDs are extremely well
suited to represent and handle large sets of states, and pro-
vide highly efficient primitives for the key low-level state-set
operations in the algorithm. For our experiments, we consid-
ered a set of robot navigation problems in a maze, similar to
our reference example. The robot may start at any position
in the maze, and has to reach the top left corner. The robot
may move in the four directions, and is equipped with (reli-
able) wall-presence sensors in the four directions. The main
variation is that the robot may slip on the floor while try-
ing to move, so that it stays in the same position. Slipping
can occur nondeterministiccally, at most once every N ≥ 5
moves. The problems always have a strong solution. How-
ever, finding a strong solutions offline is extremely complex,
even for small mazes (see (Tovey and Koenig 2000)). An al-
gorithm looking for an offline solution has to face the com-
bined effect of the initial uncertainty, and of the increased
uncertainty resulting from slipping, i.e. a very high branch-
ing rate in the search space. The belief states include not
only the possible robot positions, but also the hypothesis on
whether there is currently a chance of slipping on the floor.

We tested a set of domains and problems, comparing the
interleaved approach of SyPEM with the state of the art (of-
fline) planner MBP. We ran MBP with all the available se-
lection functions; we report the results obtained with the one
that provided the best results for the tackled problem. The
tests were run on a Pentium III, 700 MHz with 6GB RAM
running Linux. The memory limit was set to 512MB, and
CPU timeout was set at 1000 sec. For both systems, we col-
lected information on performance and quality of the associ-
ated executions. Figure 4 reports the results. On the left, we

5

have running times. For MBP we only report planning times.
For SyPEM, running times include both planning and execu-
tion on a simulator. The information is statistical, since the
performance of the architecture may depend on the actual
behavior of the domain, i.e. on the actual initial state, and
on the outcomes of nondeterministic actions. For each prob-
lem instance 100 runs were generated, with initial states and
nondeterministic outcomes selected randomly. (Whenever
possible, we avoid runs from the same initial state.) For each
problem, we report the average runtimes, the standard devi-
ation, and also the minimum and peak value. On the right
in Figure 4, we report information concerning the quality of
the plans (for MBP) and of the executions (for SyPEM). In
particular, we report the average number of actions in the
plans produced by MBP, and the average number of total
actions executed by SyPEM. For SyPEM, we also report
the average number of execution loops. Again, we report
max/min/standard deviation for the samples.

MBP is unable to solve the problem instances above 9x9.
Notice that, MBP is reported to scale up much better in the
deterministic version of the maze problem (see (Bertoli et al.
2001a)), dealing with mazes of 51x51 in less than a minute.
This confirms the intuition on the complexity of the prob-
lem. SyPEM, on the other hand, is able to deal with much
larger mazes, showing average times that increase smoothly
and are less than 40 seconds for mazes as large as 39x39.

The experimental evaluation is limited by the choice of
the test cases, and should be seen more as a proof of con-
cept than a strong point in support of a scalability argument.
Still, we believe that the results are very promising: the in-
terleaved approach by SyPEM scales up much better, and
is capable of efficiently dealing with very complex problem
instances, that cannot be dealt by the state-of-the art planner
MBP. Intuitively, this is an obvious consequence of the inter-
leaving architecture exploiting the runtime-acquired knowl-
edge to restrict and drive the search.

Conclusions and Related work
The idea of interleaving planning and execution is certainly
not new and has been around for a long time, see, e.g.,
(Genereseth and Nourbakhsh 1993). However, as far as
we know, no previous attempt has been done to extend
the planning via symbolic model checking framework to
deal with the interleaving of planning and execution. Some
other approaches address the problem of interleaving plan-
ning with nondeterministic domains and partial observabil-
ity, among which, most notably the work by (Koenig and
Simmons 1995; 1998; Koenig 2001), which proposes dif-
ferent techniques based on real-time heuristic search. The
algorithms and heuristics prevent cycling, and guarantee to
reach the goal in safely explorable domains. Algorithms
presented in (Koenig 2001) have the nice property that they
can amortize learning over several planning episodes. This
approach can also be modified to address the problem of
planning in stochastic domains with probability distributions
on action outcomes, like in POMDP (see, e.g., (Bonet and
Geffner 2000; Kaelbling et al. 1998; Cassandra et al. 1994;
Dean et al. 1995)). We propose a very different technique,
based on symbolic model checking rather than real time

heuristic search on an explicit state representation. The do-
main for testing our approach is inspired by the work by
Koenig, which has been tested extensively in the problem
of robot navigation and localization. However, it should be
noticed that the experimental domain of Section is much
harder than the one used in (Koenig 2001), which assumes
that there is no uncertainty in actuation and sensing. It would
be interesting an in depth experimental comparison in differ-
ent domains of the two different approaches.

Somehow related to our work, even if very different in
scope and objective, are all the works that propose ar-
chitectures for interleaving planning and execution, reac-
tive planning and continuous planning, see, e.g., (Myers
1998). Among them, CIRCA (Goldman et al. 1997; 1999;
2000) is an architecture for real-time planning and execution
where model checking with timed automata is used to verify
that generated plans meet timing constraints.

References
P. Bertoli, A. Cimatti, and M. Roveri. Conditional planning under
partial observability as heuristic-symbolic search in belief space.
In Proceedings of the Sixth European Conference on Planning
(ECP’01), 2001.
P. Bertoli, A. Cimatti, M. Roveri, and P. Traverso. Planning in
nondeterministic domains under partial observability via sym-
bolic model checking. In B. Nebel, editor, Proceedings of the
Seventeenth International Joint Conference on Artificial Intelli-
gence, IJCAI 2001, pages 473–478. Morgan Kaufmann Publish-
ers, August 2001.
B. Bonet and H. Geffner. Planning with incomplete informa-
tion as heuristic search in belief space. In S. Chien, S. Kamb-
hampati, and C.A. Knoblock, editors, Proceedings of the Fifth
International Conference on Artificial Intelligence Planning and
Scheduling, pages 52–61. AAAI Press, April 2000.
A. Cassandra, L. Kaelbling, and M. Littman. Acting optimally
in partially observable stochastic domains. In Proceedings of the
12th National Conference on Artificial Intelligence, pages 1023–
1028. AAAI Press, August 1994.
T. Dean, L. Kaelbling, J. Kirman, and A. Nicholson. Planning
Under Time Constraints in Stochastic Domains. Artificial Intelli-
gence, 76(1-2):35–74, 1995.
M. Genereseth and I. Nourbakhsh. Time-saving tips for prob-
lem solving with incomplete information. In Proceedings of the
National Conference on Artificial Intelligence, pages 724–730,
1993.
R. P. Goldman, D. J. Musliner, K. D. Krebsbach, and M. S. Boddy.
Dynamic abstraction planning. In Proceedings of the Fourteenth
National Conference on Artificial Intelligence and Ninth Innova-
tive Applications of Artificial Intelligence Conference (AAAI 97),
(IAAI 97), pages 680–686. AAAI Press, 1997.
R.P. Goldman, M. Pelican, and D.J. Musliner. Hard Real-time
Mode Logic Synthesis for Hybrid Control: A CIRCA-based ap-
proach, mar 1999. Working notes of the 1999 AAAI Spring Sym-
posium on Hybrid Control.
R. P. Goldman, D. J. Musliner, and M. J. Pelican. Using model
checking to plan hard real-time controllers. In Proceeding of the
AIPS2k Workshop on Model-Theoretic Approaches to Planning,
Breckeridge, Colorado, April 2000.
R. M. Jensen, M. M. Veloso, and M. H. Bowling. OBDD-based
optimistic and strong cyclic adversarial planning. In Proceedings
of the Sixth European Conference on Planning (ECP’01), 2001.

6

F. Kabanza, M. Barbeau, and R. St-Denis. Planning control rules
for reactive agents. Artificial Intelligence, 95(1):67–113, 1997.

L. Kaelbling, M. Littman, and A. Cassandra. Planning and act-
ing in partially observale domains. Artificial Intelligence, 1-
2(101):99–134, 1998.

S. Koenig and R. Simmons. Real-time search in non-deterministic
domains. In Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence (IJCAI-95), pages 1660–
1667. Morgan Kaufmann Publisher, August 1995.

S. Koenig and R. Simmons. Solving robot navigation problems
with initial pose uncertainty using real-time heuristic search. In
R. G. Simmons, M. Veloso, and S. Smith, editors, Proceedings
of the Second International Conference on Artificial Intelligence
Planning Systems (AIPS-98), pages 145–153. AAAI Press, 1998.

S. Koenig. Minimax real-time heuristic search. Artificial Intelli-
gence, 129(1):165–197, 2001.

K. L. Myers. Towards a framework for continuous planning and
execution. In Proceedings of the AAAI Fall Symposium on Dis-
tributed Continual Planning, 1998.

J. Rintanen. Constructing conditional plans by a theorem-prover.
Journal of Artificial Intellegence Research (JAIR), 10:323–352,
1999.

J. Rintanen. Backward plan construction for planning as search
in belief space. In n Proceedings of the Sixth International
Conference on Artificial Intelligence Planning and Scheduling
(AIPS’02), 2002.

C. Tovey and S. Koenig. Gridworlds as Testbeds for Planning
with Incomplete Information. In Proceedings of the National
Conference on Artificial Intelligence, pages 819–824, 2000.

D. S. Weld, C. R. Anderson, and D. E. Smith. Extending graph-
plan to handle uncertainty and sensing actions. In Proceedings
of the Fifteenth National Conference on Artificial Intelligence
(AAAI-98) and of the 10th Conference on Innovative Applications
of Artificial Intelligence (IAAI-98), pages 897–904, Menlo Park,
July 26–30 1998. AAAI Press.

7

