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We present an algorithm for sequential control of tasks
with non-linear stochastic dynamics in continuous state
spaces, characterized by inhomogeneous noise. The algo-
rithm performs approximate value iteration steps on a select
set of prototypical states whose cost-to-go is approximated
by means of a radial-basis function network. This allows the
resulting Bellman’s equations to be integrated exactly with
respect to the transition densities of a large class of stochas-
tic dynamical systems, resulting in a fast and efficient mod-
ified value-iteration procedure.

Introduction
One of the principal problems in the fields of planning
and optimal control under uncertainty is how to find op-
timal policies for controlling dynamical systems with con-
tinuous state spaces and non-linear stochastic transition dy-
namics. While the actions used to control the system
are usually continuous and are being applied in continu-
ous time as well, the resulting most-general formulation
of the control problem involves sets of non-linear differ-
ential equations and is typically very hard to analyze and
solve (Stengel 1994). However, a large class of systems in
the fields of robotics and automatic control can be solved
successfully by applying only discrete actions at regular
time intervals (discrete time). Such are robot navigation,
where actions such as turning left, turning right, and go-
ing straight are usually sufficient (Thrun 2000), as well as
various instances of bang-bang control such as pole balanc-
ing, swinging up pendulums, etc. (Jervis & Fallside 1992;
Spong 1995). At least in theory, it is also possible to dis-
cretize the state space, but in practice, the resulting sequen-
tial decision-making problem suffers from the well-known
“curse of dimensionality” and has an intractably large num-
ber of states.

Consequently, we are considering the case when a
continuous-state system is controlled at discrete time in-
tervals by actions ai from a discrete set A, according to
stochastic equations of motion

x(t + 1) = f(x(t), a(t)) + w(x(t), a(t)), (1)

where f(x, a) is a deterministic nonlinear function of the
current multi-dimensional state x and the applied action a,
and w(x, a) is a noise term with a distribution which de-

pends on x and a. Such systems models can either be de-
rived analytically, or learned from sampled transitions in a
supervised learning setting.

Each state transition incurs a transition cost C(t) =
c(x(t), a(t)) which is assumed to be bounded. The objec-
tive of the controller is to find an optimal policy a = π∗(x),
which minimizes the expected cumulative discounted cost
Vπ with discounting factor 0 < β < 1 for each starting state
x0:

Vπ(x0) = Eπ[
∞∑

t=0

βtC(t)], (2)

for any policy π. Bellman’s optimality principle states
that for discounted costs and fully-observable Markov deci-
sion processes (MDPs), it is true that for each state x,

Vπ∗(x) = min
a

{E[c(x, a)] + β

∫

y∈Ω

Pr(y|x, a)Vπ∗(y)dy},

(3)
where y ranges over the whole state space Ω, and

Pr(y|x, a) is the conditional density expressing the prob-
ability that the system would end up in state y at time t + 1
if action a is applied in state x at time t (Bertsekas 2000).

One of the principal algorithms for exact solution of sets
of Bellman’s equations is value iteration which produces
successive improvements of the estimated optimal value
function V (x) for all states x ∈ Ω (Puterman 1994). The
value iteration algorithm starts with an initial arbitrary esti-
mate V (x) for all x ∈ Ω and repeats the following recur-
rent update, known as a Bellman back-up, for each state in
the state space Ω, until the estimated optimal value function
converges within a predefined tolerance:

V (x) := min
a

{E[c(x, a)] + β

∫

y∈Ω

Pr(y|x, a)V (y)dy}

(4)
Bellman back-ups can be performed efficiently in small

state spaces, but cannot be applied directly to MDPs with
continuous state spaces for two reasons: first, the estimates
of the optimal value function V (x) cannot be stored in mem-
ory when the state space is infinite or very large, and second,
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performing Bellman back-ups over the whole state space is
not computationally feasible. The latter obstacle has two
manifestations. First, the starting states of system transitions
are infinitely many, and proper backing up of the cumulative
cost would involve a Bellman back-up for each of them. Sec-
ond, when the system dynamics are stochastic, even a sin-
gle starting state can have infinitely many successor states,
whose cumulative costs have to be taken in consideration.

The problem of infinitely large storage requirements for
the cumulative costs of states is usually addressed by em-
ploying various universal function approximators (UFA).
UFA are commonly used to represent the value function in
a concise form: V (x) ≈ F (x, θ), where θ is a vector of
parameters of finite (and usually small) size. In such cases,
Bellman back-ups are performed only for a small set of sam-
pled states, with the objective of finding a value for θ which
satisfies the Bellman equations at the sampled states as accu-
rately as possible. This class of algorithms are collectively
known as Approximate Value Iteration (AVI) (Bertsekas &
Tsitsiklis 1996).

The choice of function approximator is very critical for
the success of an AVI algorithm. While parametric ap-
proximators such as neural networks have had spectacular
successes in learning the value functions of complex deci-
sion problems such as backgammon (Tesauro 1992), job-
shop scheduling (Zhang & Dietterich 1996), and elevator
dispatching (Crites & Barto 1998), they have also been
shown to fail completely for many trivial problems (Boyan
& Moore 1995). As a consequence, much research has been
concentrated on finding stable value-function approximators
which converge to a reasonable approximation of the true
optimal value function.

Tsitsiklis and van Roy proposed an algorithm for value-
function approximation by means of radial-basis functions
and reported good results on decision problems with large
state spaces (Tsitsiklis & van Roy 1996). However, their al-
gorithm is guaranteed to converge only under quite restric-
tive assumptions about the basis functions used. Further-
more, the basis functions have to be provided by a human
expert. Gordon demonstrated that averaging approximators
such as k-nearest neighbors and kernel regression always
lead to stable approximation, unlike “exaggerating” approx-
imators such as neural nets and linear regression (Gordon
1996). In line with Gordon’s results, Ormoneit proposed a
universally stable algorithm for value-function approxima-
tion by means of kernel regression (Ormoneit & Sen 1999).
Thus, even though finding the best value-function approxi-
mator for MDP problems is still an open question, a large
number of suitable choices already exist and have produced
good results.

However, most AVI algorithms use value-function ap-
proximators to handle only one manifestation of the com-
putational problem created by infinite state spaces. Even
when value iteration is performed only at a small set of select
states, the question remains how to take into consideration
the expected cost-to-go over all successor states y ∈ Ω un-
der an action a for a single starting state x. Finding this esti-
mate would involve integration over the whole state space Ω,
which is computationally unfeasible. In rare cases, when a

state transitions to only few successor states, the integral can
be replaced by a sum over those states. This approach has
been explored previously (Tsitsiklis & van Roy 1996), but is
only viable when transition densities are indeed sparse.

For the general case when the number of successor states
is large or infinite, one common approach is to replace the
expectation of the cost-to-go over all states with the cost-
to-go of the most likely successor state, which is equiva-
lent to ignoring the noise term w(x, a) in the state transition
function of the controlled dynamical system. However, the
resulting policies cannot make a difference between two ac-
tions with the same deterministic transition function f(x, a),
but different noise terms, and have no reason to prefer one to
the other. As a result, sub-optimal actions can be selected.
Furthermore, when the transition dynamics of a particular
action are multi-modal, replacing the expected cost-to-go
of all successor states with the cost-to-go of the expected
successor state can be completely wrong, because that state
might not even be likely.

A third possible solution is to estimate the expected cost-
to-go of successor states by sampling them from the tran-
sition density of the current state, and averaging their cost-
to-go estimates obtained under the current set of approxi-
mation parameters. However, obtaining such Monte Carlo
estimates of the expected cost-to-go would typically require
a lot of successor states to be sampled (Bertsekas & Tsitsik-
lis 1996).

Exact Bellman Back-ups in Infinite Spaces
We propose an algorithm for performing exact Bellman
back-ups in infinite state spaces by matching the distri-
butions of the noise in the transition dynamics to a suit-
able value-function approximator — one which allows ex-
act computation of the expected value of all successor states
y ∈ Ω for a particular starting state x and action a. An even
more general case of transition dynamics than equation (1)
is when the density is a mixture of multivariate Gaussians:

Pr(y|x, a) =
n∑

i=1

piN(y; fi(x, a),Σi),
n∑

i=1

pi = 1,

where pi are mixture proportions, and henceforth
N(x;µ,Σ) will denote a multivariate Gaussian density eval-
uated at point x, with mean µ, covariance matrix Σ, and
number of dimensions equal to that of the state space. (If the
transition dynamics have a deterministic component, such as
in equation (1), it can be represented by a mixture compo-
nent with zero variance.) The vast majority of dynamical
system models use a deterministic component plus either a
single Gaussian term with a constant covariance matrix, or
one that depends on the action a. For example, in mobile
robot navigation, the location and orientation of the robot
are commonly assumed to come from independent Gaussian
distributions whose variance depends on the action taken
(Thrun, Burgard, & Fox 1998). (For example, robot rotation
is known to be much more imprecise than robot translation.)
We will derive the case for a single action-dependent Gaus-
sian noise component below, the extensions to a mixture of
Gaussians being straightforward.
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Value-Function Approximator
The cost-to-go approximator we are using is very similar to
a radial-basis function (RBF) network, with the addition of
a matrix A, which pre-multiplies the linear coefficients:

V (x) = U(x)Av′, (5)

where U(x) is a row vector containing the values of a
set of non-linear basis functions evaluated at x, and v′ is
the column vector of m coefficients which have to be de-
termined by approximate value iteration. We use as RBFs
m Gaussian kernels with means µi and covariance matrices
Σi, i = 1, 2, ...,m, which cover the state space as densely as
possible. The choice of Gaussians as basis functions is very
common in the theory and practice of RBF networks (Girosi
& Poggio 1990). The Gaussians can either be placed man-
ually so as to cover the state space well, or can be obtained
by clustering the set of states visited under a suitable ex-
ploration policy applied to the dynamical system to be con-
trolled.

The inclusion of the matrix A lets us give a meaningful
interpretation to the parameter vector v′. We choose it to be
the vector of m approximate value-function estimates eval-
uated at x = µi, i = 1, 2, ...,m. We can then compute
the matrix A that is consistent with this definition. Writing
down the approximations of the value function for x = µi,
i = 1, 2, ...,m, we obtain

v′ = ŪAv′, (6)

where row i of the square matrix Ū of size m × m is
the row vector U(µi), i.e. the element ūij of this matrix
is the value of the j-th RBF evaluated at the i-th center µi.
Hence, A = Ū−1, and the final approximation scheme is
V (x) = U(x)Ū−1v′ for any x ∈ Ω.

Exact Integration in Bellman’s Equations
Approximate value iteration is performed at the centers µi,
i = 1, 2, ...,m of the m RBF kernels, according to the equa-
tion

V (µi) := min
a

{E[c(µi, a)] + β

∫

y∈Ω

Pr(y|µi, a)V (y)dy}

(7)
for each center µi, i = 1, 2, ...,m. For each kernel, we

substitute the form of the transition density and the chosen
representation for the approximation scheme into the equa-
tion above:

V (µi) := min
a

{E[c(µi, a)]

+ β

∫

y∈Ω

N(y;yia,Σia)

m∑
j=1

N(y;µj ,Σj)(Ū
−1
j · v′)dy}

where Ū−1
j is the j-th row of the matrix Ū−1 and

we have used the expansion of the approximation scheme
V (y) =

∑m
j=1

Uj(y)(Ū−1
j · v′), taking into consideration

that Uj(y) = N(y;µj ,Σj). The vector yia = f(µi, a) is
the expected value of the successor state y under action a
starting from state µi, and Σia is its covariance. By recog-
nizing that y appears only in the two normal densities, this
can be rearranged as:

V (µi) := min
a

{E[c(µi, a)] + β

m∑
j=1

ziaj(Ū
−1
j · v′)} (8)

ziaj =

∫
y∈Ω

N(y;yia,Σia)N(y;µj ,Σj)dy (9)

The integrals ziaj involve only the product of two Gaus-
sian densities and it is known that they can be computed
analytically, if the space Ω of the successor state y coincides
with R

D:

ziaj =
(2π)−D/2|Σiaj |

+1/2

|Σia|
−1/2|Σj |

−1/2 ·

exp[−
1

2
(yT

iaΣ
−1
ia yia + µ

T
j Σ−1

j µj − µ
T
iajΣ

−1
iajµiaj)],

where the new vector µiaj and matrix Σiaj are defined as
follows:

Σiaj = (Σ−1
ia − Σ−1

j )−1 (10)

µiaj = ΣiajΣ
−1
ia yia + ΣiajΣ

−1
j µj (11)

It can be recognized that the values ziaj can also be com-
puted as

ziaj =
N(yia; 0,Σia)N(µj ; 0,Σj)

N(µiaj ; 0,Σiaj)
(12)

We assume that the expected costs E[c(µi, a)] for taking
action a at state x = µi can either be computed from a
known analytical model, or a separate cost model has been
learned from sampled transition data, and this model has
been evaluated with inputs (µi, a) (Girosi & Poggio 1990).
The left-hand side of equation (13) can be expressed as an
approximation in the chosen basis functions:

V (µi) =

m∑
j=1

Uj(µi)(Ū
−1
j · v′), (13)

or, in a matrix form, the column vector of dimension m,
whose i-th component is V (µi), becomes Ū Ū−1v′, which
simplifies to v′. By denoting with Za the square matrix with
elements Za(i, j) = ziaj , we obtain approximate back-up
equations in matrix form:

v′ := min
a

{Ca + βZaŪ−1v′}, (14)

where Ca denotes the column-vector of expected costs
under action a, starting from each of the kernel centers:
Ca(i) = c(µi, a). The above equation is analogous to Bell-
man’s equations for a discrete MDP with m states, and can
be used for approximate value iteration. Its convergence de-
pends on the properties of the matrix products ZaŪ−1 for
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each action a. These matrices possess many of the prop-
erties of stochastic matrices: Their row-sums are typically
very close to one and their spectral radii are strictly < 1.
We are currently engaged in a theoretical analysis of conver-
gence but a large set of experiments leads us to believe that
this method reliably converges to a fix-point.

The extension to the case when the transition densities
are mixtures of Gaussians is straightforward; in this case,
the values ziaj can be computed for each Gaussian compo-
nent of the mixture, and the resulting matrices added up,
weighted proportionately to the mixing coefficients.

Experimental Verification
Task Description
The proposed algorithm was verified experimentally on a
test problem with a two-dimensional continuous state space,
which resembles navigation of a mobile robot. The state of
the system changes under five actions according to the fol-
lowing law of motion:

x(t + 1) = x(t) + ∆xd(a(t)) + w(a(t)), (15)

where d(a1) = (0, 1), d(a2) = (1, 0), d(a3) = (0,−1),
d(a4) = (−1, 0), d(a5) = (0, 0), and ∆x=1. The noise term
w(a) had Gaussian distribution with zero mean and a covari-
ance matrix dependent only on the action taken. For actions
a2 through a5, the covariance matrix was diagonal with di-
agonal entries Σa

i (1, 1) = Σa
i (2, 2) = 0.25, i = 2, 3, 4, 5.

For action a1, Σa
1(1, 1) = Σa

1(2, 2) = 2.25. Thus, action
a1 was much noisier than the remaining four actions. The
approximation was performed on a set of radial basis func-
tions whose centers were placed on a regular grid covering
the rectangle determined by points (0, 0) and (10, 10). The
standard deviation of all Gaussian kernels was set to half
the distance between two neighboring kernels along a state
dimension. The objective of control was to reach as fast as
possible the goal region defined as a square of size 2∆x cen-
tered at various points within the same rectangle.

Effect of Cost Structure
Initially, we defined the cost to be 0, if the system entered the
goal region as a result of a transition, and 1 elsewhere. While
the algorithm converged for all positions of the goal region
that we tried, we determined that it sometimes converged to
a wrong approximation of the value function. After some
analysis, we found the reason to lie in the characteristics
of radial basis function networks as function approximators,
and in particular, their inability to extrapolate correctly out-
side of the region populated with radial basis kernels. The
approximation is of the form V (x) = U(x) · θ, where the
values of θ have been determined from the estimated costs-
to-go at the centers of the radial basis functions. Since the
values of all radial basis functions decrease rapidly as x goes
outside of the region populated by radial basis kernels, while
the parameter vector θ remains constant, it is clear that V (x)
will also become close to zero in such cases. As a con-
sequence, the RBF approximation optimistically underesti-
mates the cost-to-go when extrapolating, which results in a

tendency to choose actions that lead the system outside of
the region where the kernels reside.

This situation can be remedied by changing the cost struc-
ture of the decision problem. We changed the objective to
be maximization of reward rather than minimization of cost,
and assigned a reward of 1 when the system entered the goal
region, and 0 elsewhere. In this manner, the approximation
scheme was underestimating (pessimistically) the rewards in
unknown regions of state space, and did not choose actions
leading into such regions. Under the new cost structure, the
algorithm always converged to a reasonable approximation
of the expected value function, for many different grid sizes,
motion step sizes, and degree of noise for actions.

Comparison with Deterministic Back-ups

We compared the proposed algorithm with another one that
used the exact same approximation scheme for the value
function, but ignored the stochasticity of system actions and
always assumed that the system transitioned deterministi-
cally to the most likely successor state. Under such assump-
tions, the back-up equations for the centers of the m approx-
imation kernels reduce to

v′ := min
a

{Ca + βU ′

aŪ−1v′}, (16)

where U ′

a is a square matrix of size m whose element
U ′

a(i, j) = Uj(f(µi, a)) = N(yia;µj ,Σj). In order
to compare the performance of the two algorithms, we
recorded the cumulative (non-discounted) reward accumu-
lated over 20 time steps, starting from each kernel center,
for each of the two algorithms. The optimal action for a
particular state x was assumed to be the optimal action for
the closest kernel in state space. (This is only one available
option for using an approximate value function in control;
many others are possible too (Bertsekas & Tsitsiklis 1996)).

In this experiment, a total of 100 kernels were placed on a
10×10 grid. Thus, the maximal possible cumulative reward
was 2000, in the extremely unlikely event that mere chance
moved the system to the goal region after the first step and
kept it there for 20 time steps until the end of the trajectory.
In practice, most policies in this system, including the one
which chooses actions randomly, would result in a very low
cumulative reward. After each of the algorithms converged
to a stable policy, we evaluated each of the two policies ten
times and performed a statistical comparison of the results.
Note that both algorithms always produce the same result
for a given dynamical system, so it is sufficient to compute
the two approximate value functions only once.

While both policies resulted in high cumulative rewards,
the differences between them were highly significant. The
first algorithm, which took into consideration the noise in ac-
tions, achieved average cumulative reward of 1029± 41.83,
while the second algorithm, which ignored the stochasticity
in system transitions, achieved average cumulative reward of
960 ± 44.69. The associated t-statistic from a t distribution
with 18 degrees of freedom was t = 3.3770, which results in
a significance level of p = 0.0017 for the difference between
the two algorithms.
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One probable reason why the first algorithm has better
performance is that it avoids to use action a1 which is noisy
and unreliable. The second algorithm does not distinguish
between actions with different degrees of noise, and as a
result has less success in bringing the system to the goal
region.

Conclusions and Future Work
We presented an algorithm for approximate value iteration
in continuous state spaces with nonlinear stochastic dynam-
ics, which computes exact values for the expected cost-to-
go over the whole state space of the system by matching its
parametric approximation of the cost-to-go to the noise char-
acteristics of the transition dynamics. The resulting back-up
equations exhibit fast and consistent convergence.

We also identified a characteristic problem of RBF net-
work approximations of the cost-to-go — their tendency to
underestimate it, when extrapolating outside of the region
populated by radial basis kernels. By changing the cost
structure, however, we were able to achieve accurate and
useful approximations. The advantages of the proposed al-
gorithm were demonstrated on a problem, for which taking
into consideration the reliability of actions was important for
optimal decision making.

A major direction for expanding this algorithm is to apply
it to learned models of transition dynamics which are not
limited to a single Gaussian distribution. Various graphical
models exist that can represent multi-modal posterior distri-
butions, and could possibly serve as models for the transition
dynamics of complex systems.
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