
Assessing the Probability of Legal Execution of Plans with Temporal Uncertainty

Ioannis Tsamardinos
Department of Biomedical Informatics

Vanderbilt University
Nashville, TN 37232 USA

ioannis.tsamardinos@
vanderbilt.edu

Martha E. Pollack
Computer Science and Engineering

University of Michigan
Ann Arbor, MI 48109 USA

pollackm@eecs.umich.edu

Sailesh Ramakrishnan
QSS Group Inc.

NASA Ames Research Center
Moffett Field, CA 94305 USA

sailesh@email.arc.nasa.gov

Abstract

Temporal uncertainty is a feature of many real-world plan-
ning problems. One of the most successful formalisms for
dealing with temporal uncertainty is the Simple Temporal
Problem with uncertainty (STP-u). A very attractive fea-
ture of STP-u’s is that one can determine in polynomial
time whether a given STP-u is dynamically controllable, i.e.,
whether there is a guaranteed means of execution such that all
the constraints are respected, regardless of the exact timing
of the uncertain events. Unfortunately, if the STP-u is not dy-
namically controllable, limitations of the formalism prevent
further reasoning about the probability of legal execution. In
this paper, we present an alternative formalism, called Prob-
abilistic Simple Temporal Problems (PSTPs), which general-
izes STP-u to allow for such reasoning. We show that while
it is difficult to compute the exact probability of legal exe-
cution, there are methods for bounding the probability both
from above and below, and we sketch alternative candidate al-
gorithms for this purpose. Computing the probability of legal
execution allows a temporal planner to decide, when uncer-
tainty is present, whether to accept or reject candidate plans.
In addition, lower bound computation has an important side-
effect: it provides guidance as to how to execute an STP-u
even when it is not dynamically controllable.

Introduction
Many real-world planning problems involve temporal con-
straints, and a number of planning formalisms and algo-
rithms have been developed to deal with them. One of the
most well-known is the Simple Temporal Problem (STP)
formalism (Dechter, Meiri, & Pearl 1991), which allows the
representation of temporal constraints of the form X − Y ≤
d, where X and Y are the times of occurrence of two instan-
taneous events in the plan and d is a real number (or infinity).
For example, if X and Y denote the start and end points of
a single action, then the constraint specifies that the action
takes no more than d time units.

The STP formalism, along with generalizations of it, such
as the Disjunctive Temporal Problem (DTP) (Stergiou &
Koubarakis 2000; Tsamardinos 2001) have been very fruit-
ful, both for theoretical investigations of temporal planning
(Smith, Frank, & Jónsson 2000) and for practical deploy-
ment, notably in NASA’s Remote Agent (Muscettola et al.
1998). However, these formalisms do not allow any explicit
representation of uncertainty. Yet in most interesting, real-

world domains, there are many types of uncertainty. One
type of uncertainty is associated with conditional execution
of actions that depend on observations and the status of the
world during execution. The Conditional Temporal Problem
(Tsamardinos, Vidal, & Pollack 2003) is an extension of the
STP that is able to encode and reason with quantitative tem-
poral constraints and conditional branches.

Another type of uncertainty, that this paper addresses,
is temporal uncertainty, i.e., uncertainty about the time at
which particular events will occur. Such events are said to
uncontrollable, to distinguish them from the events that are
under the control of the agent executing the plan. Often,
plans must include temporal constraints that involve uncon-
trollable events: for instance, it may be necessary to respond
to an alarm within two minutes of its going off. The time
of the alarm is not within the control of the execution agent,
but the time of the responsive event is.

In order to model uncontrollable events, an extended
formalism, called Simple Temporal Problems with Un-
certainty (STP-u) was developed (Vidal & Ghallab 1996;
Vidal & Fargier 1997; Morris, Muscettola, & Vidal 2001).
With STP-u’s, one can model plans that contain constraints
involving uncontrollable events. Notice that with such plans,
decisions about when to perform actions must often be de-
ferred until execution time. For instance, one cannot decide
in advance when to respond to an alarm: all one can do is
wait until the alarm goes off and then respond accordingly.

A very attractive feature of STP-u’s is that one can deter-
mine in polynomial time whether a given STP-u is dynami-
cally controllable, i.e., whether there is a guaranteed means
of execution such that all the constraints are respected, re-
gardless of the exact timing of the uncertain events1. Not all
STP-u’s are dynamically controllable. As a simple exam-
ple, consider an STP-u that includes a constraint requiring
an agent to respond to an uncontrollable alarm exactly two
minutes before it goes off. If the agent doesn’t control the
alarm–does not know when it will go off and does not have
any means of making it go off–then clearly the agent cannot
act in a way to satisfy this constraint.

A plan generation system can approach the task of plan-

1Here, and in the rest of the paper we assume the only source
of uncertainty in the plan is the temporal uncertainty of the uncon-
trollable events.
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ning under temporal uncertainty by generating a plan for-
mulated as an STP-u and then checking to see whether it is
dynamically controllable. If it is, the planner can declare
success. Unfortunately, if it is not, limitations of the STP-u
formalism preclude further reasoning both about the prob-
ability of legal execution, and about strategies to maximize
that probability. Consequently, the planning system does not
know whether to adopt the plan or to search for an alternate,
and, if the former–if it does adopt the plan–it is unable to
formulate a effective means of executing it.

In this paper, we present a new formalism, called Prob-
abilistic Simple Temporal Problems (PSTPs), which gener-
alizes STP-u’s in a way that supports reasoning about the
probability that a plan with temporal uncertainty will be
legally executed. Although is is difficult to compute an exact
probability, we show that there are methods for bounding the
probability both from above and below. An upper bound can
be used to reject a current candidate plan which falls below
a given threshold, while a lower bound can be used to accept
a candidate plan.

The remainder of our paper is organized as follows. In
the Background section we review the background material
on STPs, STP-u’s, and dynamic controllability, and in the
next section we introduce the Probabilistic Simple Tempo-
ral Problems (PSTP) formalism. In the following two sec-
tions we describe the technique for computing the upper
bound and lower bound on the probability of correctly ex-
ecuting a PSTP, respectively. In particular, we explain how
the problem of computing the lower bound can be addressed
by first converting a PSTP to an STP-u and then tighten-
ing the bounds on that STP-u until it becomes dynamically
controllable. The following three sections then sketch some
approaches to this lower bound computation.

Finally, the Discussion section summarizes the main
ideas, open questions, and future directions. We note there
in particular that the lower bound computation has an impor-
tant side-effect: it results in the specification of an execution
strategy that maximizes the probability of satisfying all the
execution constraints. From another perspective this means
that it provides guidance as to how to execute an STP-u even
when it is not dynamically controllable.

Background
The formalism used to represent temporal information and
uncertainty is based on the Simple Temporal Problem (STP)
defined below:

Definition 1. Simple Temporal Problem, STP Solution,
Consistent STP. A Simple Temporal Problem (STP) is a
pair < V,E >, where

• V is a set of variables (also called nodes, events, or time-
points) taking real values representing the time of occur-
rence of instanteneous events.

• E a set of temporal constraints on the variables of the
form X − Y ≤ b, X,Y ∈ V , and b ∈ < ∪ {−∞,∞}.

A solution to an STP is an assignment to the variables that
satisfies the constraints. An STP is consistent if there exists
at least one solution.

STPs have been used to represent temporal plans by using
a variable for each action’s start and end point. For example,
if start(A) and end(A) are the events of starting and ending
action A, then the constraints 5 ≤ end(A)− start(A) ≤ 10
specify the duration of the action to be between 5 and 10
time units.

STP constraints are binary. In order to represent
unary constraints on absolute execution time, e.g., 100 ≤
start(A) ≤ 200, a special variable called time reference
point TR is defined and is assigned time zero; then, the con-
straint above can be written as 100 ≤ start(A)−TR ≤ 200.

By using an all-pairs shortest path algorithm one can dis-
cover the distance from Y to X denoted as dY X and defined
as follows:

Definition 2. The distance from variable Y to variable X
denoted as dY X is the smallest number for which the equa-
tion X − Y ≤ dY X holds in all STP solutions.

STPs can be executed with minimal on-line con-
straint propagation as discussed in (Muscettola, Morris,
& Tsamardinos 1998; Tsamardinos, Morris, & Muscettola
1988). An STP does not represent uncertainty information
about the occurence of events. All variables are assumed
to be under the direct control of the agent executing the
represented plan and so, if there exists a solution, then the
STP is executable in a way that satisfies its constraints. To
address this representational limitation, the Simple Tempo-
ral Problem with Uncertainty (STP-u) formalism was de-
veloped (Vidal & Ghallab 1996; Vidal & Fargier 1997;
Morris, Muscettola, & Vidal 2001).

An STP-u makes a distinction between controllable and
uncontrollable variables. Controllable variables are the ones
whose timing of execution is under the direct control of the
agent. Uncontrollable variables are the ones whose timing
of execution depends on Nature (i.e., exogenous factors).
The only information represented regarding the exact timing
of an uncontrollable X is that it will occur sometime within
the interval [l, u] after a controllable Y , called the parent of
X . Thus, the STP-u specifies that Nature will respect the
constraint l ≤ X − Y ≤ u. These constraints involving
Nature are called contingent links and are distinct from the
constraints the plan has to respect to be legally executed,
called requirement links.

Definition 3. Simple Temporal Problem with Uncer-
tainty. A Simple Temporal Problem with Uncertainty STP-
u is a tuple < VC , E, VU , C >, where

• VC and VU are the set of controllable and uncontrollable
variables, respectively, taking real values.

• E is a set of constraints (requirement links) of the form
X − Y ≤ b, X,Y ∈ VC ∪ VU , and b ∈ < ∪ {−∞,∞}.

• C is a set of contingent links of the form l ≤ X −Y ≤ u,
Y ∈ VC , X ∈ VU , and l, u ∈ <.

Figure 4 shows an STP-u with two controllable variables
A,B and an uncontrollable variable C. The edge A→ B in
the figure, annotated with the interval [p, q] graphically ex-
presses the constraints p ≤ B−A ≤ q, i.e., A−B ≤ −p and
B−A ≤ q. Similar constraints hold for the other edges. The

111



edge A→ C is a contingent link, i.e., a constraint Nature is
expected to observe.

Contingent constraints are always between a controllable
variable Y and an uncontrollable variable X . A contingent
link l ≤ end(A)−start(A) ≤ u may be used for example to
specify that the expected duration of an action A is between
l and u time units; however, this duration is not something
that is determined by the agent.

An STP-u, like an STP, should be executed in such a way
that all its constraints are satisfied. However, as we illus-
trated in the introduction with the alarm example, the ex-
istence of uncontrollable events means that decisions about
the timing of controllable events may need to be deferred to
execution time.

Definition 4. Legal Execution, Execution Strategy. A le-
gal execution of a STP-u < VC , E, VU , C > is a schedule
(time assignment) of occurrences of the events (variables)
in VC ∪ VU in a way that satisfies all the constraints in E.
An execution strategy is an algorithm that decides when
to execute the next controllable action given the execution
constraints and the observed history of the uncontrollable
events.

Definition 5. Dynamic Controllability. (Informal) An
STP-u < VC , E, VU , C > is dynamically controllable if
there exists an execution strategy that results in a legal exe-
cution regardless of when the uncontrollable variables in VU

occur (provided they occur within the bounds specified by
the contingent constraints in C).

For a formal definition of dynamic controllability, see
(Morris, Muscettola, & Vidal 2001), which also provides
a polynomial-time algorithm for checking whether a given
STP-u is dynamically controllable.

How does a domain expert model temporal uncertainty
when specifying the constraints for a planner? For any tem-
porally uncertain event A, the expert must specify some
bounds on the time of occurrence of A. In the STP-u for-
malism, this corresponds to setting the values of l and u in
a contingent link l ≤ end(A) − start(A) ≤ u. The looser
these bounds are set to be, the more likely they are to be ob-
served by Nature, and hence, the more accurate the model
is; in the extreme case, if they are set to positive and neg-
ative infinity, then the expert is certain that the event will
occur within the specified bounds. On the other hand, as
the bounds get looser, the likelihood decreases that the STP-
u is dynamically controllable. And when the STP-u is not
dynamically controllable, the formalism provides no guid-
ance about when to perform the controllable events so as to
increase the probability of observing the constraints. Cur-
rently, there are no principled procedures for deciding the
bounds of the uncontrollables in a way that maximizes the
probability that Nature will respect them and that the result-
ing STP-u will be dynamically controllable.

In fact, because STP-u’s do not explcitly represent prob-
ability distributions of uncontrollable events, they lack the
information needed for such decisions. Probabilistic Simple
Temporal Problems (PSTPs), first presented in (Tsamardi-
nos 2002), are an extension of STP-u that includes such in-
formation in the temporal plan.

Probabilistic Simple Temporal Problems
We begin by defining PSTPs.

Definition 6. A Probabilistic Simple Temporal Problem
PSTP is a tuple < VC , E, VU , Par,P >, where:

• VC is the set of controllable variables with real values.
• VU is a set of real random variables (uncontrollable vari-

ables).
• E a set of constraints of the form X − Y ≤ b, X,Y ∈

VC ∪ VU , and b ∈ < ∪ {−∞,∞}.
• Par is a function VU → VC that specifies for each un-

controllable its controllable parent.
• P is a set of conditional probability density functions

(pdf) pX(t) for each X ∈ VU providing the mass of prob-
ability of X occurring t time units after Par(X).

It is worth noting that in PSTPs, each uncontrollable event
has a single parent, which must be a controllable event;
thus, function Par is well-defined. The probability func-
tions in P deserve further comment. P is a set of probabil-
ity distributions pX(t) summarizing expectations about the
occurrence of each uncontrollable event X . More precisely,
given pX(t), the probability of X occurring T time units or
less after Par(X) has occurred is given by PX(t ≤ T ) =
∫ T

−∞
pX(t)dt.

Implicit in our definitions is that the probability distribu-
tion of occurence of X with time does not depend on abso-
lute time but on relative time from the moment the parent of
X is executed (pX(t) is time invariant).

As an example, suppose that we want to model the fact
that an action A has duration normally distributed with
mean duration of half an hour (30′) and 5′ standard de-
viation σ. We define the beginning of the action as the
controllable Y = start(A), and the end of the action as
the uncontrollable X = end(A), for which pX(t) follows
Normal(30, 5) (normal with half an hour mean and 5 min-
utes standard deviation). Then we can find out the prob-
ability that the action will finish within in 40 minutes af-
ter Y (i.e., after we started the action): P (t ≤ 40) =
∫ 40

−∞
pX(t)dt = Φ( 40−30

5 ) = 97.72%, where Φ(z) is the
integral of the Normal(0,1) at point z.2

Let us compare modelling action A in a PSTP with mod-
elling the same action in an STP-u. In an STP-u one has
to come up with reasonable bounds l and u and specify that
l ≤ X − Y ≤ u is a contingent link to be included in the
plan. In comparison, in an PSTP the same constraint is rep-
resented by specifying that the parent of X is Y and that
X will occur t time units after Y where t follows a normal
probability distribution with mean 30′ and standard devia-
tion 5′.

Given a PSTP, our goal is to assess the probability that
all its execution constraints E will be satisfied during execu-
tion. More specifically, we would like to calculate the prob-
ability of the plan being legally executed under an optimal
execution strategy. The reason for doing this is to provide

2This integral cannot be solved analytically but is typically
computed numerically or provided in a table form.
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guidance to the planning process: we want to know whether
the current plan is “good enough”, i.e., likely enough to suc-
ceed, or whether, instead, further effort should be put into
looking for a better plan.

(Tsamardinos 2002) shows how to find an optimal execu-
tion strategy for PSTPs under certain conditions. However,
the basic approach there is a static one, i.e., one that cor-
responds to strong controllability in STP-u’s. To compute
the equivalent of a dynamic execution strategy, it is neces-
sary to iterate the process of finding an optimal PSTP execu-
tion strategy whenever an observation of an uncontrollable
occurs. Computing the exact probability of success of this
overall dynamic strategy is difficult. However, we do know
how to compute bounds on the probability of success, and
that is what we focus on in the remainder of this paper. In
the next section, we show how to compute an upper bound
on the probability of success. This bound can be used by a
system to reject a plan, if it is too low. In the following sec-
tions, we describe how to compute a lower bound, by con-
verting a PSTP to an STP-u and then tighening the latter’s
bounds until it becomes dynamically controllable.

Bounding the Probability of Legal Execution
from Above

Suppose that an uncontrollable variable X with parent Y
occurs t time units after Y , i.e., X − Y = t. If there is
no solution to the constraints in E that admits a value t for
the difference X − Y then the probability of completing the
execution in a way that respects the constraints is zero.

As we mentioned earlier, the distance between Y and X
is the minimum number dY X for which X − Y ≤ dY X

holds in all solutions. Similarly, Y −X ≤ dXY holds in all
solutions. These inequalities together imply that −dXY ≤
X − Y ≤ dY X in any legal execution. Therefore, with
probability pX(t) for t outside the interval [−dXY , dY X ] a
legal execution cannot be achieved. Equivalently, a legal
execution can be achieved with probability density at most
pX(t) for t within the interval [−dXY , dY X ].

Assuming all uncontrollable events are independent of
each other, and using Success to denote the event of a legal
execution occuring, then:

P (Success) ≤
∏

X∈VU ,Y =Par(x)

PX(t ∈ [−dXY , dY X ])

=
∏

X∈VU ,Y =Par(X)

PX(−dXY ≤ t ≤ dY X)

The distances dXY can be determined with a polyno-
mial all-pairs shortest path algorithm. The calculation of
the probabilities in the product depends on the exact density
functions. As an example, if pX(t) is uniform in the inter-
val [a, b], then PX(−dXY ≤ t ≤ dY X) = dXY −(−dY X)

b−a
=

dY X+dXY

b−a
), assuming [−dXY , dY X ] ⊆ [a, b].

As an example consider the PSTP in Figure 1. The dot-
ted edges represent temporal constraints. Specifically, each
edge A→ B annotated with the interval [l, u] represents the

[1,1]

TR

[5, 15, uniform]
Y  X

Z

[8,10]

[5, 10]

[−1,2]

Figure 1: Example for calculating the upper bound.

�

�

� �

�

�
������� �

���	���
� �

Figure 2: The polytope defined by the constraints provides a
tighter upper bound.

two inequality constraints l ≤ B − A ≤ u. There are three
such constraints (six single inequality constraints):

1 ≤ Y − TR ≤ 1

8 ≤ Z − TR ≤ 10

−1 ≤ Z −X ≤ 2

We can rewrite these as:

−1 ≤ TR− Y ≤ −1

8 ≤ Z − TR ≤ 10

−2 ≤ X − Z ≤ 1

By adding them up we infer that 5 ≤ X − Y ≤ 10. This in-
ferred constraint is depicted in the figure with the annotation
[5, 10] below the solid line. It is equivalent to calculating the
distances between X and Y : dXY = −5 and dY X = 10.

The solid link denotes the fact that X is an uncontrollable
variable with parent Y and the interval on top of this edge
shows the form of this dependency: X will occur some time
within the interval [5, 15] after Y has been executed with
uniform distribution. For example Y may be the beginning
of an action with duration between 5 and 15 and X the end
of this action.

As calculated, there is a solution to the constraints only
if 5 ≤ X − Y ≤ 10. Thus, with at most probability of
PX(5 ≤ t ≤ 10) = 10−5

15−5 = 1
2 the PSTP can be executed

successfully.
The upper bound calculated with the above method may

not be tight in general. We now discuss ideas why this is the
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case and how to find tighter bounds. Consider a PSTP with
two uncontrollables X and Y that both occur with uniform
probability in [1, 3] after the time reference point TR. Let
us assume that the only constraints in this PSTP are −1 ≤
X − Y and X − Y ≤ 1.

Figure 2 shows the space of legal executions. The x-axis
is the time of occurence of X and similarly for Y . Since
TR = 0 the set of legal execution is the area of the rectan-
gle bounded by the lines X − Y = −1 and X − Y = 1.
Calculating the bounds with the method that we provided
yields: PX(−dX,TR ≤ t ≤ dTR,X)PY (−dY,TR ≤ t ≤
dTR,Y ) = PX(−∞ ≤ t ≤ ∞)PY (−∞ ≤ t ≤ ∞) = 1.

A tighter bound on the probability in this example would
be the area of the rectangle bounded by the two constraints.
In general, a tighter bound could be obtained by calculating
the mass of probability contained in the polytope defined by
the constraints.

The mass of probability of this polytope is still only an
upper bound on the probability of correct execution: even
though for every point in this polytope (i.e., execution) the
constraints are satisfied, that does not mean that an agent
will dynamically be able to construct this solution, unless it
is clairvoyant in the general case.

Bounding the Probability of Legal Execution
from Below

Let < VC , E, VU , Par,P > be a PSTP and suppose that we
are given intervals [lX , uX ] for each uncontrollable variable
X with parent Y . The PSTP and the intervals can be seen as
corresponding to an STP-u with the same controllable and
uncontrollable variables, same constraints, and contingent
links lX ≤ X − y ≤ uX for each uncontrollable variable.

If this STP-u is dynamically controllable then there ex-
ists an execution strategy for legally executing the STP-u
no matter when the uncontrollables occur within these inter-
vals. Thus, in all such cases where the uncontrollables oc-
cur within these bounds an agent can execute the plan with
probability one, provided it follows the execution strategy
returned by the STP-u controllability algorithm. The prob-
ability of all such cases is thus a lower bound on the proba-
bility of a legal execution. Thus:

P (Success) ≥
∏

X∈VU

PX(lX ≤ t ≤ uX)

Unlike the upper bound that we provided in the previ-
ous section, in the lower bound case the bounding intervals
[lX , uX ] cannot be easily computed (because it is required
that the corresponding STP-u is controllable). The looser
these intervals the tighter the lower bound will be. To find
the tightest bound possible one needs to solve the following
optimization problem:

Definition 7. Lower Bound Problem.

Given PSTP < VC , E, VU , Par,P > :

Maximize
∏

X∈VU
PX(lX ≤ t ≤ uX)

subject to:
< VC , E, VU , C > being dynamically controllable

where C is the set of contingent links
{lX ≤ X − Y ≤ uX |X ∈ VU , Y = Par(X)}

and decision variables:
lX , uX , for each X ∈ VU

Unfortunately, it is difficult to directly apply typical con-
straint optimization techniques such as gradient descent or
Newton’s Method on this problem. This is because such
methods require expressing the feasible set as the decision
variable vectors that satisfy a set of equality or inequality
constraints. In the lower bound problem the feasible region
is the set of decision variable vectors that satisfy the single
constraint that the corresponding STP-u is dynamically con-
trollable.

In the following two sections we sketch candidate algo-
rithms that approximate the optimal solution to the lower
bound problem. We then return to the formulation of the
problem as an optimization problem and suggest ways to
convert it to a form suitable for classical optimization tech-
niques in a way that approximates the problem we are trying
to solve.

Binary Search for Loosest Bounds
In our first algorithm, we perform binary search for the
bounds on the uncontrollable intervals that are as loose as
possible while still guaranteeing dynamic controllability.
The basic algorithm is as follows:
1. Given PSTP < VC , E, VU , Par,P >, construct a corre-
sponding STP-u S < V ′

C , E′, V ′

U , C > where V ′

C = VC ,
V ′

U = VU , E′ = E, and C = lX ≤ X − Par(X) ≤ uX for
each X ∈ VU , where lX and uX are initialized to include
most of the mass of probability of pX . (For example, lX
might be the mean minus three standard deviations, while
uX might be the mean plus three standard deviations.)
2. Let ε be a small threshold value, and let F = 1.
3. While (S is not dynamically consistent) and (F > ε)
4. Begin
5. If S is not dynamically controllable
6. F = F/2
7. Reduce all contingent edges in S by a factor of F
8. Else
9. F = 3F/2
10. Increase all contingent edges in S by a factor of F
11. End If
12. End While
13. Return S.

Note that this algorithm assumes that the underlying STP-
u can eventually be made consistent by shrinking the bounds
on the uncontrollable events far enough: i.e., if the time
points of the uncontrollables could be pinned down, the net-
work would be executable. Also, we have made an arbitary
decision about the rate at which we modify the size of the in-
tervals, reducing them by a half when the network is not dy-
namically controllable, and increasing them by a half when
it is. To achieve faster convergence, we may want to vary
these values.

This basic algorithm can be improved in several ways.
First, when an STP-u is not dynamically uncontrollable, this

114



ε ε

Figure 3: Two uncontrollable events with different distribu-
tions.

may be due only to some, and not all, of the uncontrollable
events. It may be possible to identify which uncontrollable
events are to blame while running the STP-u controllabil-
ity algorithm and then to modify the above algorithm so
that only the edges incident upon culpable events are re-
duced. Second, the above algorithm does not take account
of the fact that the PSTP explicitly models the probability
distribution associated with each uncontrollable event. In-
stead, it reduces the time intervals associated with all events
equally. An improved appropriate extension would be to re-
duce the bounds proportionally to the probability mass as-
sociated with each interval. For example, if one contingent
interval has a distribution with very wide variance, while
another has a much steeper distribution with narrower vari-
ance, we would prefer to place tighter bounds on the first–
or, put otherwise, shrink the first interval more–than the sec-
ond, because that would result in less reduction in the overall
probability mass of the uncontrollable events modeled. (See
Figure 3.)

Iterative Tightening
The Binary Search approach employs the dynamical control-
lability algorithm as a black box. The Iterative Tightening
approach on the other hand modifies the dynamic controlla-
bility algorithm.

The Iterative Tightening first converts the PSTP to an
STP-u by calculating loose bounds for the uncontrollables
in a way that contain most (or all if possible) of the mass of
probability (exactly as the Binary Search algorithm). Then,
it runs a modified dynamic controllability algorithm: instead
of stopping as soon as it is discovered that the STP-u is not
controllable, the algorithm relaxes the problem (by tighten-
ing the bounds) and continues.

The dynamic controllability algorithm checks each triplet
of variables A,B and C, where C is uncontrollable (as
shown in Figure 4. The constraints (requirement links)
A → B and B → C may be explicit or implicit con-
straints. The algorithm then imposes a set of additional con-
straints that ensure the existance of an execution strategy.
If the propagation of these constraints does not result in a
“squeeze” of the contingent link, the STP-u is controllable.

The Iterative Tightening algorithm employs the same
strategy. It selects a triangle of variables to work on and
imposes the constraints determined by the controllability al-
gorithm. However, if the propagation of these constraints
squeeze any other contingent link, instead of stopping, the
algorithm tightens the contingent link to these new bounds.
Obviously, this algorithm will not return an execution strat-

A

[p,q]
[u,v]

[x,y]

Contingent Link

Requirement Link

C

B

Figure 4: Triangular Networks (Morris, Muscettola, & Vidal
2001) .

egy that works for all possible occurences of the uncontrol-
lables of the original bounds, but only for the final tightened
bounds.

The algorithm is as follows:

1. Given PSTP < VC , E, VU , Par,P >, construct a corre-
sponding STP-u S < V ′

C , E′, V ′

U , C > where V ′

C = VC ,
V ′

U = VU , E′ = E, and C = lX ≤ X − Par(X) ≤ uX

for each X ∈ VU , where lX and uX are initialized to
include most of the mass of probability of pX .

2. Non-deterministically CHOOSE a triangle of variables
A,B,C where C is uncontrollable.

3. Impose the constraints determined by the dynamic con-
trollability algorithm.

4. Propagate the constraints as in the controllability algo-
rithm, but allow requirement links to be squeezed.

5. Repeat until the lower bound that corresponds to the cur-
rent STP-u is high enough, or the last constraint propaga-
tion did not change the STP-u.

In Iterative Tightening the order of consideration of each
triangle matters. When a triangle A,B,C and a contingent
link A → C is selected and appropriate constraints are im-
posed to ensure controllability, essentially the algorithm cre-
ates an execution strategy that works for all cases where C
occurs within the current bounds given for A → C. Propa-
gation of these constraints may require that other uncontrol-
lables occur within a tighter interval to allow for this strategy
to work.

For example, suppose that there are two contingent links
Y → X and A → B. Selecting a triangle that involves the
first one may cause the bounds on the second one to shrink
considerably in order to allow the execution strategy to work
with all possible occurences of X . If B’s probability distri-
bution has heavy tails, that means that a significant mass
or probability will be excluded from the calculation of the
lower bound. If instead the second triangle is selected first,
its bounds will not be tightened but may cause the bounds
on the first link to shrink. If however, the distribution of X
has smaller variance, then shrinking the bounds will not ex-
clude as much probability mass and the algorithm will return
a tigher lower bound.

Possible variants of the algorithm include a backtracking
search where different choices of triangles are made in a
search for the STP-u that provides the tighest lower bound
on the probability of successful execution.
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Non-Linear Optimization Solutions
In this section, we explore the possibility of solving the
lower bound problem with optimization methods. While the
objective function is suitable for typical optimization meth-
ods, the constraints are not. We now attempt to cast the
constraint of the resulting STP-u being dynamically control-
lable, as a set of inequalities, which would allow non-linear
optimization techniques to be used.

Consider the triangle of variables and edges of Figure 4,
where the edge A → C is a contingent link. According to
(Morris, Muscettola, & Vidal 2001) the triangle is dynam-
ically controllable if any of the following three conditions
hold:

1. v < 0, and the triangle is pseudo-controllable.

2. u ≥ 0, B−A ⊆ [y−v, x−u], and the triangle is pseudo-
controllable.

3. v ≥ 0, u < 0, y − v ≤ x, and the triangle is pseudo-
controllable.

Pseudo-controllability denotes the fact that the bounds
[x, y] are not “squeezed” by the contraints of the triangle,
or in other words that [x, y] ⊆ [−dCA, dAC ]. Recall that the
dynamic controllability algorithm determines whether there
is a way to execute the plan no matter when the uncontrol-
lables occur. The interval [−dCA, dAC ] is the interval dic-
tated by the constraints in the plan: any time within that in-
terval participates in at least one solution of the constraints.
The interval [x, y] is derived from the contingent link and is
a constraint on Nature. Thus, if there are values of [x, y] that
do not participate in any solution of the constraints, Nature
may select one of these values forbidding the completion of
the plan in a way that satisfies the constraints.

Apart from the three cases above for when a triangle is
dynamically controllable there is a fourth case. Thus, the
above three cases together are sufficient but not necessary
conditions. The fourth case involves accepting a ternary and
disjunctive constraint that is called a wait, which we will
ignore for the moment.

An STP-u is dynamically controllable if all such triangles
in the network are dynamically controllable. These three
cases direct the design of the our algorithm.

1. Given a PSTP < VC , E, VU , Par,P >.

2. Define a non-linear optimization problem with decision
variables xi, yi for every uncontrollable, objective func-
tion

∏

i PC(xi ≤ t ≤ yi), and inequality constraints S as
defined below.

3. Initialize S ← E.

4. For each triple of variables Ai, Bi, Ci as in Figure 4,
where Ci is uncontrollable:

• If vi < 0, then no extra constraint needs to be added.
• If ui ≥ 0, then S ← S∪{Bi−Ai ⊆ [yi−vi, xi−ui]}

• Else, S ← S ∪ {yi − vi ≤ xi}.

5. Solve the optimization problem.

The solution to the optimization problem will return a set
of values for the decision variables for which all the con-
straints are satisfied. By construction, satisfying all these

constraints implies that the corresponding STP-u is dynam-
ically controllable. This is because each such triangle falls
into one of the three cases above.

In addition, in any solution of the optimization problem
the triangles are pseudo-controllable. This is because any
bounds x, y selected by the optimization for a contingent
link A → C are as squeezed as possible: y ≤ dAC because
if y > dAC then y is outside the feasible set imposed by the
constraints of the optimization problem.

Intuitively, the algorithm is free to select any x, y bounds
on contingent links and impose any constraints on Nature
desired. Of course Nature may not observe these constraints
but we can calculate the probability that she will and obtain
the desired lower bound.

Notice that since the three cases are sufficient but not nec-
essary it is conceivable that this is not the tightest lower
bound on the probability that can be achieved using this kind
of approach (i.e., by translating to an STP-u). Specifically,
there is a fourth case that we omitted from consideration: it
involves a disjunctive and ternary constraint called a wait on
C. For example wait < C, 5 > means that one should wait
to execute B until 5 time units have passed after A has been
executed or C has been observed. A non-linear optimization
algorithm that takes into consideration this case may be able
to further increase the bounds [x, y] to include more mass of
probability. It is currently unknown how significant is this
case in practice and how much looser than optimal is a lower
bound that is achieved by ignoring this case.

We now consider a specific class of probability density
functions and the corresponding optimization problems they
give rise to.

Optimization for Uniform Distributions
Let us denote with pi the pdf of the ith uncontrollable vari-
able and suppose that all probability distributions are uni-
form, that is pi(t) = 1

bi−ai

, when t ∈ [ai, bi] and zero out-
side this interval.

If p(t) is uniform in [a, b], then

P (x ≤ t ≤ y) =
min(b, y)−max(a, x)

b− a

for x ≤ y. In Figure 5 this is justified pictorially where the
probability density of a uniform pi within the bounds [a, b]
is shown. P (x ≤ t ≤ y) is the area above the intersection
of [a, b] and [x, y].

Instead of maximizing the actual probability of successful
execution, we can maximize its logarithm.

max log
∏

i

Pi(xi ≤ t ≤ yi)

which is equal to

max
∑

i

log Pi(xi ≤ t ≤ yi)

By utilizing the fact that Pi’s are uniform, this is equivalent
to

max
∑

i

log
ξi − σi

bi − ai

,
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Figure 5: The mass of probability of a random variable uni-
formly distributed within [x, y] occuring within [a, b] is the
area above the intersection of the intervals.

where σi = max(xi, a) and ξi = min(yi, b). In turn, this
gives:

max(
∑

i

log(ξi − σi)−
∑

i

log(bi − ai))

The last sum is a constant term and can be dropped from
the objective function during optimization (but is required to
compute the final bound on the probability). So the objective
function becomes

max
∑

i

log(ξi − σi),

or equivalently

min −
∑

i

log(ξi − σi)

The constraints of this optimization problem are given by
Steps 3 and 4 in the algorithm of the previous section. That
is, they are the difference constraints among the PSTP vari-
ables (controllable and uncontrollable ones) union the con-
straints required to guarantee the resulting STP-u is dynam-
ically controllable. In addition to these constraints however,
we need to add that σi = max(xi, ai), ξi = min(yi, bi), and
that xi ≤ yi.

The max and min functions present problems to most op-
timization algorithms. Fortunately, in this case we can sub-
stitute ξi = min(yi, bi) with the constraints ξi ≤ bi, ξi ≤ yi,
and σi = max(xi, ai) with σi ≥ ai, and σi ≥ xi. This
is because, in order to maximize the objective function the
ξi should be as large as possible; so the optimization en-
gine will increase the ξi until at least one of the equalities

ξi = bi, ξi = yi holds, in which case ξi = min(yi, b). A
similar argument holds for σi.

The feasible region defined by these inequality constraints
is convex. Additionally, the objective function is twice
differentiable everywhere except from the boundary where
σi = ξi. So the objective function is twice differentiable in
the interior of the feasible region.

Let us calculate the second derivative of each term in the
sum. Define f(ξ, σ) = − log(ξ − σ). Then, ∇f(ξ, σ) =
[−(ξ−σ)−1, (ξ−σ)−1] = [−a, a], for a = (ξ−σ)−1. The

Hessian is H = ∇2f(ξ, σ) =

[

a2 −a2

−a2 a2

]

. H is semidef-

inite positive because the eigenvalues are non-negative. The
eigenvalues λ solve det(λI−∇2f(ξ, σ)) = λ2−2a2λ = 0,
i.e., λ = 0 or λ = 2a2 > 0 for σ < ξ. Thus, function f de-
fined on a convex set (when σ ≤ ξ) has a positive semidef-
inite ∇2f in the interior and thus is convex (provided the
interior is non-empty). The objective function, as a sum of
such convex functions is also convex.

Convex optimization problems have a unique minimum
and in general, are relatively easily solved with modern op-
timization software. We are currently considering other fam-
ilies of probability distributions such as exponential or nor-
mal distributions.

Discussion
The recent literature on planning has shown a growing inter-
est in handling more and more realistic problems, and along
with that has come a concern with various types of uncer-
tainty. In this paper, our focus has been on temporal uncer-
tainty: uncertainty about the time at which certain exoge-
nous, or “uncontrollable” events will occur. Significantly,
domain experts typically know more about such events than
just the interval of time during which they will occur–they
often know a probability distribution over the interval of oc-
currence. Yet the most successful formalism for planning
with temporal uncertainty, the STP-u’s, don’t allow one to
exploit that knowledge. Instead, the domain expert must
specify fixed bounds on the time during which each uncon-
trollable event must happen. If he sets the bounds too nar-
rowly, he may produce a plan that is dynamically control-
lable, but that nonetheless fails, because the uncontrollable
event occurs outside the modeled time. If he sets them too
widely, he may produce a plan that is not dynamically con-
trollable. And execution strategies only exist for dynami-
cally controllable plans; if an STP-u is not dynamically con-
trollable, there is no effective means of deciding when to
execute the controllable actions in it.

This poses a real problem for the designer of a planner
dealing with temporal uncertainty. It is difficult to know
how to set the bounds on the uncontrollable events; and if
the bounds are set too widely, it is impossible to assess the
probability that the plan can nonetheless be legally executed,
and thus, impossible to make a principled decision about
whether to adopt this plan or whether to search further for
an alternative.

What we would like to do is to enable the domain ex-
pert to specify bounds on the uncontrollable events that are
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“as wide as possible”: by this we mean that they maximize
the probability that the events will in fact occur during the
modeled bounds, subject to the constraint that the network
is dynamically controllable. When the bounds are set in this
fashion, there are two results: first, we have an evaluation of
the probability that the plan can be legally executed, which
can be used to decide whether to accept or reject it, and sec-
ond, if it is accepted, then the network with the bounds thus
set can serve as the basis of a legal execution strategy.

Because STP-u’s do not include information about the
probability distribution of the timing of uncontrollable
events, we presented a generalization of them, called Proba-
bilistic Simple Temporal Problems (PSTPs). Unfortunately,
given an PSTP, it is difficult to compute an exact probability
of legal execution. What we can do, however, is bound the
probability, both from above and below. The upper bound
simply provides a way of rejecting a plan if it is not below a
given threshold. The lower bound is arguably more interest-
ing, as it is not only what gives a way of accepting a plan,
when it is above a threshold, but is also what allows one to
approximate the widest possible bounds.

We presented three alternative algorithms for approximat-
ing the widest possible bounds. The first performs binary
search for a value v that represents the minimal proportion
by which all the uncontrollable intervals need to be reduced
to achieve a dynamic controllability. The second runs the
dynamic controllability algorithm with the modification that
it does not exit as soon as controllability is deemed impos-
sible. Instead, it shrinks the intervals appropriately, relax-
ing the initial problem, until controllability is achieved. The
third algorithm takes a very different approach, attempting
to reduce the problem to one of non-linear optimization. It
approximates the set of controllable STP-u’s with a set of
inequality constraints. The next major step in this work it to
implement these three algorithms and conduct both experi-
mental analyses of their performance in terms of computa-
tional efficiency and quality of lower bounds returned. Ad-
ditionally, it will be important to integrate work on temporal
uncertainty of the kind described in this paper with work on
causal uncertainty, such as that discussed in (Tsamardinos,
Vidal, & Pollack 2003).
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