
Optimal Limited Contingency Planning

Nicolas Meuleau∗ and David E. Smith
NASA Ames Research Center

Mail Stop 269-3
Moffet Field, CA 94035-1000

{nmeuleau, de2smith}@email.arc.nasa.gov

Abstract

For a given problem, the optimal Markov policy over a finite
horizon is a conditional plan containing a potentially large
number of branches. However, there are applications where it
is desirable to strictly limit the number of decision points and
branches in a plan. This raises the question of how one goes
about finding optimal plans containing only a limited num-
ber of branches. In this paper, we present an any-time algo-
rithm for optimal k-contingency planning. It is the first opti-
mal algorithm for limited contingency planning that is not an
explicit enumeration of possible contingent plans. By mod-
elling the problem as a partially observable Markov decision
process, it implements the Bellman optimality principle and
prunes the solution space. We present experimental results of
applying this algorithm to some simple test cases.

Introduction
Markov decision processes (MDPs) provide a powerful theo-
retical framework for planning under uncertainty with prob-
abilities, costs and rewards (Puterman 1994). In this frame-
work, the optimal solution to a problem is an optimal policy,
that is, a rule specifying the action to perform for each situ-
ation we could possibly be in. For a finite planning horizon,
this policy represents a conditional or contingent plan with
a branch for each possible situation that might be encoun-
tered during execution. Therefore, the optimal contingent
plan may be large and complex, since it may contain a large
number of branches.

There are applications where this size and complexity is
a significant drawback. Consider, for example, the problem
of constructing daily plans for a Mars rover. There is a great
deal of uncertainty in this domain, concerning such things
as time, energy usage, data storage available, and position
(see (Bresina et al. 2002) for a more detailed description).
However, there are some compelling reasons for keeping the
plans simple:

• There is a need for cognitive simplicity – plans must be
simple enough that they can be displayed easily, and un-
derstood and modified by both Earth scientists and mis-
sion operations personnel.

• Plans must undergo very detailed analysis and simula-
tion using complex models of illumination, energy con-
∗ QSS Group Inc.

sumption, thermal characteristics, kinematics, and terrain.
There is limited time to do this analysis, so plans must be
kept structurally simple in order to expedite this process.

• There is limited communication bandwidth and limited
storage on board the rover, so there is an advantage to
keeping plans small.

As a result, we are interested in limited contingency plan-
ning, that is planning where only a limited number of con-
ditional branches are permitted. In practice, rover planning
problems are often large and complex, so we must resort to
heuristic or approximate techniques for finding reasonable
contingency plans (Dearden et al. 2003). Nevertheless, for
smaller problems, it would be useful to be able to compute
optimal solutions, so that we have some means of evaluating
the performance and plan quality for heuristic techniques.
More precisely, we would like to be able to compute the op-
timal k-contingency plan for a problem – that is, the optimal
plan containing k or fewer contingency branches.

In general, the problem of contingency planning is known
to be quite hard (Littman, Goldsmith, & Mundhenk 1998),
and k-contingency planning is no exception. If k = ∞, k-
contingency planning reduces to finding the optimal policy.
If k = 0, k-contingency planning reduces to stochastic con-
formant planning, where we must find the best unconditional
sequence of actions (Hyafil & Bacchus 2003). One can ar-
gue that limited contingency planning is harder than both
conformant planning and searching for the optimal policy.
First, the search space of conformant planning (that is, the
set of all sequences of actions) is exponentially smaller than
the search space of k-contingency planning (the set of all k-
contingency plans). Second, although the set of all policies
is usually larger than the set of all k-contingency plans, dy-
namic programming (DP) techniques are able to significantly
prune the search for an optimal policy by using Bellman’s
optimality principle. However, to our knowledge, there is
no previous algorithm that is able to implement Bellman’s
optimality principle for limited contingency planning.1

1The problem is that the classical Markov state is insufficient:
knowing the best limited contingency plan from time t + 1 to the
horizon for each state we could be in at time t + 1 does not help
to find the best plan from time t to the horizon. In fact, the action
performed at time t may bring us no certainty about the state at
time t + 1, and the best plan for an uncertain initial state may be

82

Recently, Hyafil and Bacchus (Hyafil & Bacchus 2003)
cast the stochastic conformant planning problem into the
partially observable Markov decision process (POMDP)
framework (Kaelbling, Littman, & Cassandra 1998) by ob-
serving that limiting oneself to unconditional plans is equiv-
alent to discarding the observation of the current state that
is available at each time step. Therefore, the problem
of conformant planning can be formalized as a fully non-
observable Markov decision process (NOMDP), which is a
particular case of a POMDP, so the classical solutions for
POMDPs (Cassandra, Littman, & Zhang 1997; Kaelbling,
Littman, & Cassandra 1998) can be applied. As Hyafil and
Bacchus point out, the drawback of this approach is that it
requires computing optimal solutions for states that may be
unreachable, but its strength is that it prunes the search space
by using Bellman’s optimality principle. For several test bed
problems, Hyafil and Bacchus show that this approach out-
performs a CSP algorithm that is able to do some reacha-
bility analysis but cannot prune the search space. Moreover,
the superiority of the POMDP approach becomes apparent as
the size of the problems grows.

In this paper, we present OKP, an anytime algorithm for
optimal k-contingency planning. As in (Hyafil & Bacchus
2003), we use a POMDP framework to model the problem,
which allows using Bellman’s optimality principle to speed
up the search. The difference is that we must encode the
number of branches allowed in the state description of the
POMDP. In effect, this amounts to keeping multiple copies of
the POMDP corresponding to different numbers of branches
allowed. When we choose to make an observation in one
POMDP, we drop into a POMDP with fewer branches al-
lowed. When all the branches are used up, we end up in
the POMDP for the conformant planning problem as defined
by Hyafil and Bacchus.

In the first section, we review the Hyafil and Bacchus
technique for encoding conformant planning as a POMDP.
We then move on to 1-contingency planning, followed by
balanced k-contingency planning. In the next section,
we further generalize this to arbitrary k-contingency plan-
ning. Finally, we present experimental results comparing
OKP against a brute force search technique for finding k-
contingency plans.

Optimal Balanced k-Contingency Planning
Our formalism uses several POMDPs defined over different
state, action and observation spaces, so it is important to
understand the role of each POMDP. The first POMDP we
introduce, M , represents the planning problem in the classi-
cal sense. In this paper, our goal is to find optimal contin-
gent plans for the process M . M can be a fully observable
MDP, which we see as a particular case of a POMDP. In our
framework, it means that we can observe exactly the cur-
rent state each time we decide to branch. In the general case
(when M is not an MDP), we have only noisy observations
to make branching decisions. Later, we introduce several
other POMDPs, {Mk : k ≥ 0}, obtained by transforming the
original process M in such a way that an optimal solution to

different from the best plan in each state.

Mk is an optimal k-contingency plan for M . So, each M k

represents the problem of k-contingency planning in M .
The planning problem for which we want to find op-

timal contingent plans is modelled as the POMDP M =
(S,A,Ω, T,R,O), where:
• S, A and Ω are the (finite) set of states, actions and obser-

vations (respectively);

• T is the transition probability: T (s, a, s′) is the probabil-
ity of moving to state s′ if we execute action a in state
s;

• R is the reward function: R(s, a) is the (expected) reward
for executing action a in state s;

• and O is the observation probability: O(a, s′, o) is the
probability of observing o ∈ Ω when an execution of ac-
tion a leads to state s′. In this section, we assume that
the observation probabilities of M do not depend on the
last action executed, and we denote by O(s′, o) the (well
defined) probability of observing o ∈ Ω when arriving in
s′ ∈ S. We relax this assumption in the next section.

If M is a fully-observable MDP, then Ω = S and O(s′, s′) =
1 for all s′ ∈ S.

The problem we tackle is this section, which we call bal-
anced k-contingency planning, is the following: given M ,
H , and a probability distribution over the initial state x0(s)
(the initial belief), find the best contingent plan where there
are (at most) k branch points in each possible trajectory
through the plan. That is, the (largest possible) plan struc-
ture is a balanced tree with k branch points in each path from
the root (initial time) to a leaf (planning horizon). The op-
timality criterion used is the classical expected cumulative
reward (discounted or not) up to the planning horizon H:

E
[

∑H

t=1
γtr(t) | x0

]

, r(t) is the reward received at time t

and γ ∈ [0; 1] is the discount factor.
First, we assume that we must create one branch for each

observation that can be made at each branch point (so this is
actually some form of balanced k|O|-contingency planning
in a POMDP, and k|S|-contingency planning in an MDP). We
show how to relax this constraint in the next section.

Conformant Planning
When k = 0, the problem is that of conformant plan-
ning: we must find the best unconditional sequence of H
actions. Hyafil and Bacchus (Hyafil & Bacchus 2003) cast
the stochastic conformant planning problem into the POMDP
framework, observing that limiting oneself to unconditional
plans is equivalent to discarding the observation that is avail-
able at each step. Then, conformant planning is a NOMDP.
Formally, the optimal conformant plan is the optimal solu-
tion of the POMDP M0 = (S0, A0,Ω0, T 0, R0, O0) where
S0 = S; A0 = A; Ω0 contains only one element, o∅, that
basically says “I can’t see anything informative” (hence,
M0 is a NOMDP); T 0(s, a, s′) = T (s, a, s′), R0(s, a) =
R(s, a), and O0(a, s′, o∅) = 1 for all (s, a, s′) ∈ S×A×S.

As for any POMDP (Kaelbling, Littman, & Cassandra
1998), the optimal solution of M 0 over the finite hori-
zon H can be determined in finite time using value itera-
tion (VI), which is a form of dynamic programming (DP).

83

Starting from the planning horizon H , we proceed back-
ward through time to construct a value function V 0

t for each
t ∈ {0; 1; . . . H}. The value V 0

t (x) represents the expected
reward we get by executing an optimal conformant plan for
the starting belief x over the planning horizon t. In the par-
ticular case of the NOMDP M0, the equations of VI are the
following (the superscript 0 of V and Q functions is a refer-
ence to k, the number of branch points in the plan):

V 0
H(x) = 0 , (1)

and, for all t ∈ {0, 1, . . . H − 1}:

V 0
t (x) = max

a∈A

[

Q0
t (x, a)

]

, (2)

Q0
t (x, a) =

(

∑

s∈S

x(s)R(s, a)

)

+ γV 0
t+1(B

a

o∅(x)) . (3)

Ba

o∅(x) represents the belief posterior to action a and obser-
vation o∅, given the prior belief x. It is given by Bayes’ rule:

Ba

o∅(x)(s′) =

∑

s∈S
x(s)T (s, a, s′)

Z
. (4)

Since we do not make any observation at all, whether the
original process M is a POMDP or a MDP does not influ-
ence in any way the optimal solution of conformant plan-
ning. Note that the observation set Ω and the observation
function O are not used anywhere in the equations above.

Practical implementations of VI exploit the fact that the
value function is always a piecewise linear convex func-
tion of the belief x. The functions V 0

t (·) and Q0
t (·, a) are

represented as finite sets of α-vectors, each of them corre-
sponding to a linear function of x. V 0

t and Q0
t are then de-

fined as the supremum (max) of the set of linear functions
that represent them. All operations in equations (2) and (3)
reduce to manipulation and production of α-vectors. The
sets of α-vectors are regularly purged of vectors represent-
ing linear functions that are optimal nowhere in the belief
space. Many algorithms differ only in the way they purge
sets of α-vectors. Although the belief space is continuous,
all the computation is finite (Kaelbling, Littman, & Cassan-
dra 1998; Cassandra, Littman, & Zhang 1997).

The value function constructed when solving M 0 up to
the planning horizon H contains the expected reward of the
best conformant plan in each possible initial belief state, and
for each planning horizon less than or equal to H . To get the
optimal plan for a particular starting belief x0 (for instance,
the certainty to be in a given state) and horizon H , we must
simulate a trajectory by always executing the optimal action
for the current belief state, which requires monitoring the
belief state along the trajectory using equation (4). Since
there is only one possible observation at each step, there is
always only one possible belief at the next step. So, the
trajectory may never branch.2 We could as easily extract the

2It is also possible to simulate trajectories by following point-
ers from α-vectors at time t to α-vectors at time t + 1 established
when solving M

0, instead of maintaining the current belief. How-
ever, this technique appeared to be much slower in the context of
OKP with k > 0, because it does not allow not building a branch
for observations that are impossible given the current belief during
plan extraction.

optimal conformant plan for another starting belief and/or
another planning horizon h < H . All the information that
is important and hard to calculate is in the value function,
which is computed only once. In OKP, we do not need to
extract any plan before having reached the level k where we
decide to stop.

1-Contingency Planning

Similarly, the optimal 1-contingency plan is the optimal so-
lution of a POMDP M1 = (S1, A1,Ω1, T 1, R1, O1). M1 is
constructed by duplicating M 0 and adding an observe-and-
branch action between the two copies of M 0. Thus, each
state s ∈ S of the original POMDP M is represented twice
in M1. One copy represents being in s before the plan has
branched, and the other represents being in s after the plan
has branched. The observe-and-branch action induces an ir-
reversible transition from states of the first type to states of
the second type. As for k = 0, the problem is completely
non-observable, except that the observe-and-branch action
allows making an ordinary observation as specified in the
original POMDP M , and conditioning the next actions on this
observation. If M is a MDP, then the observe-and-branch ac-
tion sees the current state exactly. Formally:

States: S1 = S × {0; 1}. The pair (s, k), s ∈ S and
k ∈ {0; 1} , represents being in s and having the possibility
of using the observe-and-branch action k times in the future.
Each (s, 0) may be seen as an element of S0, the state space
of the conformant planning NOMDP M 0.

Belief states: The number of branch points that are still
available for the future, k, is always known with certainty.
All the uncertainty on the state (s, k) of M 1 comes from
the uncertainty on s. Therefore, a belief state for M 1 is a
pair (x, k) where x is a probability distribution over S and
k ∈ {0; 1}.

Actions: A1 = A ∪ {aob}, where aob is the observe-and-
branch action. aob is executables only in states (s, 1), s ∈ S.
aob is a special instantaneous action: executing it does not
increment time. As shown below, it can be used only once in
each trajectory. The other actions a ∈ A are called ordinary
actions.

Observations: Formally, Ω1 = Ω. However, useful obser-
vations can be made only through the observe-and-branch
action aob. All other actions provide a non informative ob-
servation. To model this, we select arbitrarily one observa-
tion of the original process, we rename it o∅, and we use
it to represent the non-informative observation produced by
all actions different from aob. Observed after an ordinary
action a ∈ A, o∅ means “I can’t see anything interesting”,
and when it is observed after aob, it has the same semantics
as in the original process M .

84

Effects of ordinary actions: The states (s, 0), s ∈ S, rep-
resent an absorbing subset, that is, we cannot get out of this
subset once we enter it (remember that only ordinary ac-
tions are possible in such states). All the transition probabil-
ities, rewards and observation probabilities involving only
such states are defined as in M 0. The only way to get out
from states of type (s, 1), s ∈ S, is through the observe-
and-branch action. The transition probabilities, reward and
observations involving only states of the type (s, 1), s ∈
S, and not the observe-and-branch action aob, are also
defined exactly as the transitions, rewards, and observa-
tions in M0. That is: T 1((s, k), a, (s′, k)) = T (s, a, s′),
R1((s, k), a, (s′, k)) = R(s, a, s′), and O1(a, (s′, k), o∅) =
1, for all (s, k, a, s′) ∈ S × {0; 1} × A × S.

Effect of the observe-and-branch action: executing ac-
tion aob in state (s, 1) leads with certainty to state (s, 0),
with the same number of time-steps to go. This ac-
tion provides no reward and allows us to make an obser-
vation following the observation probability of the orig-
inal POMDP. Formally: T 1((s, 1), aob, (s, 0)) = 1,
R1((s, 1), aob, (s, 0)) = 0, and O1(aob, (s, 0), o) =
O(s, o), for all (s, o) ∈ S × Ω.

The fact that the observe-and-branch action is instanta-
neous might make the solution of M 1 with VI look a little
bit complicated a priori. However, it turns out that optimiza-
tion over a finite horizon is straightforward. First, for all x
and all t ≤ H , the value of belief state (x, 0) at time t in
M1 is equal to V 0

t (x) in M0. In other words, the result of
the computation at level 0 (equations (1) through (3)) can be
reused as is, it gives the value of each belief state (x, 0) of
M1 at all t ∈ {0; 1; . . . H}. Then, if we denote by V 1

t (x) the
value at time t of belief (x, 1) in M 1, then VI is summarized
by the following equations:

V 1
H(x) = 0 , (5)

and, for all t ∈ {0, 1, . . . H − 1}:

V 1
t (x) = max

{

Q1
t (x, aob);max

a∈A

[

Q1
t (x, a)

]

}

, (6)

with

Q1
t (x, a) =

(

∑

s∈S

x(s)R(s, a)

)

+ γV 1
t+1(B

a

o∅(x)) (7)

for all a ∈ A (using equation (4) to calculate Ba

o∅(x)), and

Q1
t (x, aob) =

∑

o∈Ω

Q1
t (x, aob, o) , (8)

Q1
t (x, aob, o) =

∑

s∈S

x(s)O(s, o)V 0
t (Ba

ob

o (x)) , (9)

where Ba
ob

o (x) is the posterior belief after observing o, given
by Bayes’rule:

Ba
ob

o (x)(s′) =
x(s′)O(s′, o)

Z
. (10)

Note that if the original problem is an MDP, then equations
(8) through (9) simplify as:

Q1
t (x, aob) =

∑

s∈S

x(s)V 0
t (xs) , (11)

where belief xs gives state s with probability 1.
So, a practical solution of M 1 requires (i) having solved

M0 in advance; and (ii) one (backward) pass of VI through
states (s, 1), s ∈ S, following equations (5) to (11). During
the calculation of V 1, we read α-vectors in the solution of
M0 to evaluate the observe-and-branch actions. Once the
value function V 1 is calculated, we can extract the optimal
1-contingency plan for a given initial belief x0 by simulating
a trajectory in M1. As long as the observe-and-branch ac-
tion is not used, the trajectory may never branch. If at some
point the Q-values Q1

t indicate that aob is the optimal ac-
tion for the current belief state, then a branch point is added
to the plan. We must then calculate the posterior belief for
each observation o ∈ Ω using equation (10) (that is, for each
state s ∈ S if M is a MDP). Finally, the optimal branch for
each o is constructed by simulating a (non-branching) tra-
jectory in M0. Because aob is not present in M0, no more
branch points can be added. Note that it may happen that
the observe-and-branch action is never used during the travel
through M1. This shows that there exists a conformant plan
that is at least as good as the best 1-contingency plan, so
there is no need to use an observe-and branch action. Note
also that the optimal solution of M 1 contains the value of
the best k-contingency plan for all k ∈ {0; 1}, all possible
initial belief x0, and all planning horizons less than or equal
to H .

Balanced k-Contingency Planning
In general, the k-contingency planning problem (k ≥ 2)
may be modelled as a POMDP Mk build on Mk−1 by adding
a copy of S0 connected to the (k − 1)th level of Mk−1 by
the observe-and-branch action. All the equations of the pre-
vious section can be re-used by replacing the superscript 1
by k and the superscript 0 by k − 1. That is:

V k

H(x) = 0 , (12)

V k

t (x) = max

{

Qk

t (x, aob);max
a∈A

[

Qk

t (x, a)
]

}

, (13)

Qk

t (x, a) =

(

∑

s∈S

x(s)R(s, a)

)

+ γV k

t+1(B
a

o∅(x)) , (14)

Qk

t (x, aob) =
∑

o∈Ω

Qk

t (x, aob, o) , (15)

Qk

t (x, aob, o) =
∑

s∈S

x(s)O(s, o)V k−1
t (Ba

ob

o (x)) . (16)

If the solution of Mk−1 is known, then the solution of Mk

requires only one pass of VI through states at level k (that
is, states (s, k), s ∈ S), reading α-vectors in V k−1

t to evalu-
ate the observe-and-branch action. Once the value functions
V k

t are determined, we can easily extract the best (balanced)
k-contingency plan for a given initial belief by simulating

85

a trajectory in Mk. When the observe-and-branch action is
used, the trajectory branches and one branch for each possi-
ble observation o ∈ Ω must be built by simulating a trajec-
tory in Mk−1. This is why the algorithm produces balanced
contingency plans: at each branch point at level l ≤ k, each
exiting branch (which is in fact a tree) may contain up to
l − 1 branch points (equation (16)). Therefore, each tra-
jectory through the plan tree may traverse up to k branch
points. As previously, the algorithm does not have to use all
the branch points allowed if there is no utility to be gained
by doing so. Therefore, the version of OKP presented in
this section produces an optimal plan with at most k branch
points in each trajectory.3

Extensions
OKP may easily be adapted to other variants of the limited
contingency planning problem.

Types of Plan
First, the algorithm can search for other type of plans.
For instance, we may search for the optimal linear k-
contingency plan, that is, the best plan with (at most) k
branch points, all of them on one trajectory through the plan.
In this case, each level l ∈ {1; 2; . . . k} of Mk contains |Ω|
observe-and-branch actions, {aob

o , o ∈ Ω}. The semantics of
aob

o is “observe, branch, and use the l − 1 remaining branch
points in the branch associated with observation o”. Equa-
tion (13) becomes

V k

t (x) = max

{

max
o∈Ω

[

Qk

t (x, aob

o)
]

;max
a∈A

[

Qk

t (x, a)
]

}

,

where

Qk

t (x, aob

o) = Qk−1
t (x, aob

o , o) +
∑

o′∈Ω\{o}

Q0
t (x, aob

o , o′) .

Similarly, we can tackle the strict k-contingency plan-
ning problem (at most k branches over the whole plan with-
out any other constraint), by adding multiple observe-and-
branch actions at each level of Mk. Here we must model
one observe-and-branch action for each possible way to dis-
tribute the k − 1 remaining branch points in the |Ω| exiting
branches. Therefore, the number of different observe-and-
branch actions required at level k is

(|Ω| + k − 2)!

(|Ω| − 1)!(k − 1)!
.

So this variant of OKP is particularly impractical. As shown
below, a way to limit the complexity of the algorithm is to
change the branch conditions.

3Note that the plan extraction phase of this version of OKP is
exponential in k. This is an artifact due to the particular variant of
the problem addressed. What we call a “balanced k-contingency”
plan actually contains a number of branch points exponential in k.
Therefore, extracting such a plan from the solution of the POMDP
is exponential in k. This is not the case of the other variants of the
algorithm presented in the next section.

Branch Conditions
The algorithm of the previous section create one particular
branch for each observation o ∈ Ω that can possibly be made
after the observe-and-branch action. In other words, there
may be up to |Ω| branches stemming from each branch point
of the plan. In some variants of the limited contingency plan-
ning problem, we may want to limit the number of branches
exiting from each branch point by grouping several observa-
tions together.

OKP can be adapted to any kind of branch condition. For
instance, if we want the plan to use binary branch points,
then we must create one observe-and-branch action aob

Ω′ for
each possible way to partition the observation set Ω in two
non-empty subsets Ω′ and Ω \ Ω′. Equation (13) becomes

V k

t (x) = max

{

max
Ω′

[

Qk

t (x, aob

Ω′)
]

;max
a∈A

[

Qk

t (x, a)
]

}

,

Qk

t (x, aob

Ω′) = Qk

t (x, aob

Ω′ ,Ω′) + Qk

t (x, aob

Ω′ ,Ω \ Ω′) ,

where

Qk

t (x, aob

Ω′ ,Ω′) = Pr(Ω′ | x)V k−1
t (B

a
ob

Ω′

Ω′ (x)) ,

Pr(Ω′ | x) =
∑

s∈S

x(s)
∑

o∈Ω′

O(s, o) ,

B
a

ob

Ω′

Ω′ (x)(s′) =
x(s′)

∑

o∈Ω′ O(s′, o)

Z
,

and similarly for Qk
t (x, aob

Ω′ ,Ω \ Ω′). Note that there are
2|Ω| − 2 such actions (subsets Ω′), which is a considerable
number in most cases.

The equations above correspond to balanced k-
contingency planning. If we are looking for other types of
plan, then we must create a different observe-and-branch
action for each possible branch condition and each possible
way of distributing the remaining branch points in the
stemming branches. However, the number of ways of
distributing branch points is greatly reduced when we use
compact branch conditions. For instance, if we look for the
optimal plan with at most k binary branch points overall,
then there are 2|Ω| − 2 different branch conditions, but only
k ways to distribute the k − 1 remaining branch points in
the two exiting branches. Therefore, the total number of
observe-and-branch actions at level k is (2|Ω| − 2)k.

The computational price of compact branch conditions
can be greatly reduced in the particular case where the ob-
servation o represents a numerical value.4 In this case, we
can focus the search on a particular kind of branch condi-
tions based on threshold. Each branch point is defined by a
threshold oT ∈ O. There are two exiting branches: one cor-
responds to observing a value o ∈ O less than or equal to oT ,
and the other corresponds to values greater than oT . Thus,
the total number of different branch conditions is |Ω|−1. As
there are only two exiting branches, there are only k ways
to distribute remaining branch points. Therefore, the total
number of observe-and-branch actions at level k of the strict
k-contingency planning POMDP is only (|Ω| − 1)k.

4Actually, it is not necessary that the observation is a numerical
variable, but it is sufficient that there is a complete order defined
over it.

86

General POMDPs
Finally we can relax the hypothesis on the observation prob-
abilities of the original POMDP M . In the previous sec-
tion, we assumed that the observation probabilities depend
only on the arrival state s′ (that is, O(s′, o)), while the gen-
eral formalism of POMDPs assumes that they also depend
on the last action (O(a, s′, o)), which allows a richer model
of sensory actions. The problem is that, when we move to
this more genral framework, the observation probabilities of
aob in Mk, previously defined as Ok(aob, (s, k − 1), o) =
O(s, o), is not well defined anymore. The observation fol-
lowing the use of the observe-and-branch action depends on
the action performed at the previous time step, which vio-
lates the (first order) Markov property.

One way to deal with this situation is to introduce the
last action executed into the Markov state of Mk. Another
equivalent way to model this is to proceed as follows: in-
stead of adding Nk observe-and-branch actions to the pre-
existing |A| actions at each level k (where Nk is the total
number of branch conditions and ways of distributing k − 1
remaining branch points in the exiting branches), we create
Nk (new) copies of each action a ∈ A. Each copy corre-
sponds to executing a, and then branching the plan follow-
ing the protocol of a particular observe-and-branch action.
For instance, in the case of balanced k-contingency plan-
ning with |Ω|-ary branch points (as in the first algorithm),
we duplicate each action a ∈ A and call ã its copy (Ã is the
set of all copies). ã represents executing a, not discarding
the resulting observation, and branching the plan based on
this observation following the protocol of action aob of the
first algorithm. The equations of VI become:

V k

t (x) = max

{

max
a∈A

[

Qk

t (x, a)
]

;max
ã∈Ã

[

Qk

t (x, ã)
]

}

,

Qk

t (x, ã) =
∑

o∈Ω

Qk

t (x, ã, o) ,

Qk

t (x, ã, o) =
∑

s∈S

x(s)O(s, o)
(

R(s, a) + γV k−1
t+1 (Bã

o (x))
)

,

Bã

o (x)(s′) =
x(s′)O(a, s′, o)

Z
.

Note that we are not concerned with this issue if the original
process M is a fully observable MDP.

Experiments
We implemented OKP using Cassandra’s POMDP solver
available online.5 We used the witness algorithm (Kael-
bling, Littman, & Cassandra 1998) to solve OKP’s multiple
level POMDPs. The results presented in this first version of
the paper concern the variant of OKP that searches for bal-
anced contingent plans, building a branch for each possible
observation, and for general POMDPs. We focus on two sim-
ple test bed problems. To evaluate the performance of OKP,
we implemented in the same environment an algorithm that

5http://www.cs.brown.edu/research/ai/pomdp/

systematically searches and evaluates all possible contingent
plans for a given k, horizon and initial belief. This is, to our
knowledge, the only (other) technique available for building
optimal limited contingency plans. Its performance gives an
idea of the size of the search space, and how OKP is able to
prune the search using Bellman’s optimality principle.

The first problem we used is a variant of the tiger problem
(Kaelbling, Littman, & Cassandra 1998). In this problem,
the agent is standing in front of two doors (left and right).
Behind one door lies a dangerous tiger, and there is a reward
behind the other door. Therefore, there are two different
world states: tiger–left and tiger–right. The initial position
of the tiger is unknown, and the initial probability on the
tiger position is uniform over the two doors. The agent has
three possible actions: opening one of the doors (open–left
and open–right), or listening to try to guess where the tiger
is (listen). The listen action does not change the state of the
world, it costs 1 unit of utility, and provides a noisy obser-
vation that can take two possible values: hear–tiger–left and
hear–tiger–right. If the state of the world is tiger–left, then
the probability of observing hear–tiger–left is 0.85 and the
probability of observing hear–tiger–right is 0.15. Similarly,
the probability of hearing the tiger to the right when the tiger
is actually to the right is 0.85. Opening the door behind
which the tiger lies provides a “reward” of -10. Opening
the other door brings a reward of +6. After opening a door,
the problem is reset to its original state (that is, the agent
is brought back in front of the doors and the new position
of the tiger is drawn at random uniformly). Given these pa-
rameters, the optimal conformant plan over a horizon of H
time-steps is to listen H times and never act. At each step,
it provides the reward −1 with certainty, while opening an
arbitrary door (we are not allowed to condition the choice
of the door on the result of previous listen actions) brings
the expected reward: 0.5 (-10) + 0.5 (6) = -2. The discount
factor is set to 1 (no discount).

We ran OKP and plan enumeration on the tiger problem
for different planning horizons H and levels k. Fig. 1 shows
the optimal contingent plans obtained with a sample of small
values for H and k. Fig. 2 shows the evolution of the value
of the optimal contingent plan as a function of k and H .
Finally, Fig. 3 shows the evolution of the total time taken by
the algorithm as a function of k and H . These results clearly
show the exponential blow-up of the search space and how
OKP is able to resist it by efficiently pruning the search.

The second problem is a small maze world due to
Horstmann and represented in Fig. 4. In this problem , the
agent starts from the location marked with an S and must
end-up in the goal location G. The agent can use 4 actions,
N, S, E and W, that allow it to move 1 or 2 positions in the
desired direction with equal probability (unless a wall blocks
the way). The goal state is absorbing. The observation avail-
able (when we decide to branch) is the presence or absence
of a wall on each side of the square that defines the agent’s
location. Thus, there are 8 different possible observations
(and 11 states). The agent gets a zero reward at every step
except when it enters the goal state. Therefore, there is no
time pressure on the agent: it does not get a bigger reward
for getting to the goal earlier, and it must simply maximize

87

 = 2:H = 1, k

hear−tiger−left

hear−tiger−right

open−left

listen

open−right
(value = 2.6, user time = 0.0s)

 user time = 0.0s)
(value = 1.6,

open−left

open−right

listen

listen

listen

hear−tiger−right

hear−tiger−left

 = 1, k H = 3:

 user time = 0.1s)
(value = 1.855,

listen

listen

open−left

open−right

hear−tiger−right

hear−tiger−left

hear−tiger−left

hear−tiger−right

hear−tiger−right

hear−tiger−left
listen

listen

listen

k = 2, H = 3:

(value = 5.2, user time = 0.1s)

hear−tiger−left
open−left

open−right
hear−tiger−right

open−left

open−right

hear−tiger−left

hear−tiger−right

listen

listen
open−right

listen

open−left

 = 4:H = 2, k

hear−tiger−left

hear−tiger−right

Figure 1: Optimal contingent plans for the tiger problem.

its probability of reaching the goal inside of the planning
horizon. Fig. 4 contains an example of an optimal contin-
gent plan for this problem. Fig. 5 and 6 show the evolution
of the value of the optimal plan and of the execution time
of the two algorithms on this problem. They show the same
exponential reduction of the complexity due to OKP.

These results are consistent with most of the results of
Hyafil and Bacchus (Hyafil & Bacchus 2003). They show
that Bellman’s optimality principle allows a drastic reduc-
tion in the complexity of the search that largely compensates
for the fact that we have to deal with (belief) states that are
unreachable. They suggest that DP may be the best available
alternative for all sorts of optimization planning problems
where we have to find the best plan over the set of all possi-
ble plans, not just the search for the optimal policy.

Related Work
A number of probabilistic contingency planning systems
have been developed that can deal with partial observabil-
ity, including C-Buridan (Draper, Hanks, & Weld 1994),
DTPOP (Peot 1998), Mahinur (Onder & Pollack 1999), P-
Graphplan (Blum & Langford 1999), C-MAXPLAN (Majer-
cik & Littman 1999) and ZANDER (Majercik & Littman
1999). The objective for most of these systems is to find a

-15

-10

-5

0

5

10

15

2 4 6 8 10 12

B
es

t p
la

n
va

lu
e

Planning horizon

k = 0
k = 1
k = 2
k = 3
k = 4
k = 5

Figure 2: Value of the optimal contingent plans of the tiger
problem.

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40 45 50

U
se

r
tim

e
(s

)

Planning horizon

OKP, k = 0
OKP, k = 5

OKP, k = 10
plan enum, k = 0
plan enum, k = 1
plan enum, k = 2
plan enum, k = 3
plan enum, k = 4
plan enum, k = 5

plan enum, k = 10

Figure 3: Execution time of OKP and plan enumeration in
the tiger problem.

plan with probability exceeding a given threshold. By rais-
ing the probability threshold, one could in theory force any
of these systems to continue searching for an optimal plan
or policy. However, there is no guarantee that they would
halt once the optimal policy was found. We also believe
it would be possible to extend some of these systems so
that they could be used to search for k-contingency plans.
In particular, it should be realtively easy to do this for the
partial-order planners C-Buridan (Draper, Hanks, & Weld
1994), DTPOP (Peot 1998), and Mahinur (Onder & Pollack
1999). For these systems, all that would be required is to
incorporate a counter into the planning algorithm so that no
more than k branches could be added to the plan. For C-
MAXPLAN (Majercik & Littman 1999) and ZANDER (Ma-
jercik & Littman 1999) one could write exclusion axioms
that prohibit more than k observation axioms from appear-
ing in the plan. However, if there are n possible observa-
tions,

(

n

k+1

)

exclusion axioms would be required.
Another tempting idea is to try to use the cost of observa-

tions to control the number of branches in a plan. Suppose

88

S

G

S, E, S

N, E, S, E ,S, S

E, N, W, S, S, S

E, S, E, S, W, S

S, S, S, S ,S, S

Figure 4: Horstmann’s maze problem and the optimal con-
tingent plan for k = 1 and H = 9.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30

B
es

t p
la

n
va

lu
e

Planning horizon

k = 0
k = 1
k = 2
k = 3
k = 4
k = 5

k = 10

Figure 5: Value of the optimal contingent plans in
Horstmann’s maze.

we add a cost C to the cost of each observation action. If one
sets C to ∞, then a POMDP solver will produce a conformant
plan. If C is set to 0 the optimal policy will be produced. By
guessing the correct cost addition C we can trick a POMDP
solver into finding a plan with k or fewer branches. Unfor-
tunately, this is not necessarily the optimal k-contingency
plan. The problem is, since observations have inflated cost,
the POMDP solver will naturally prefer to use them in states
that are less likely to occur. As a result, the k-contingency
plan that is produced may not have an optimal set of branch
points.

Conclusions

We presented OKP, a new algorithm that is able to find op-
timal solutions to a variety of k-contingency planning prob-
lems by pruning large portions of the search space. We have
shown experimentally that OKP is able to dramatically re-
duce the time required to produce optimal limited contin-
gency plans. The basic principle of OKP is to recognize that
the belief state borrowed from POMDPs contains all the in-
formation necessary to allow a DP solution to limited contin-
gency planning. This work, as well as some recent work on
conformant planning, shows that Bellman’s optimality prin-
ciple is a very powerful tool for many optimization planning
problems, and that the gain allowed by pruning the search
space may largely compensate for the necessity to plan for
all possible initial conditions.

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40 45 50

U
se

r
tim

e
(s

)

Planning horizon

OKP, k = 0
OKP, k = 1
OKP, k = 5

OKP, k = 10
plan enum, k = 0
plan enum, k = 1
plan enum, k = 2
plan enum, k = 3

plan enum, k = 10

Figure 6: Execution time of OKP and plan enumeration in
Horstmann’s maze.

Acknowledgments
We thank Richard Dearden and Sailesh Ramakrishnan for
comments on the material, and Rich Washington for helpful
feedback on the paper. This work was founded by the NASA
Intelligent Systems Program.

References
Blum, A., and Langford, J. 1999. Probabilistic planning
in the graphplan framework. In Proceedings of the Fifth
European Conference on Planning, 319–332.

Bresina, J.; Dearden, R.; Meuleau, N.; Ramakrishnan, S.;
Smith, D.; and Washigton, R. 2002. Planning under contin-
uous time and resource uncertainty: A challenge for AI. In
Proceedings of the Eighteenth Conference on Uncertainty
in Artificial Intelligence.

Cassandra, A.; Littman, M.; and Zhang, N. 1997. Incre-
mental Pruning: A simple, fast, exact method for partially
observable Markov decision processes. In Proceedings of
the Thirteenth Conference on Uncertainty in Artificial In-
telligence, 54–61. San Francisco, CA: Morgan Kaufmann.

Dearden, R.; Meuleau, N.; Ramakrishnan, S.; Smith, D.;
and Washington, R. 2003. Incremental contingency plan-
ning. In ICAPS-03: Proceedings of the Workshop on Plan-
ning under Uncertainty and Incomplete Information.

Draper, D.; Hanks, S.; and Weld, D. 1994. Probabilistic
planning with information gathering and contingent exe-
cution. In Proceedings of the Second International Con-
ference on Artificial Intelligence Planning and Scheduling,
31–36.

Hyafil, N., and Bacchus, F. 2003. Conformant probabilistic
planning via CSPs. In Proceedings of the Thirteenth Inter-
national Conference on Automated Planning and Schedul-
ing.

Kaelbling, L.; Littman, M.; and Cassandra, A. 1998. Plan-
ning and acting in partially observable stochastic domains.
Artificial Intelligence 101:99–134.

89

Littman, M.; Goldsmith, J.; and Mundhenk, M. 1998. The
computational complexity of probabilistic planning. Jour-
nal of AI Research 9:1–36.
Majercik, S., and Littman, M. 1999. Contingent planning
under uncertainty via stochastic satisfiability. In Proceed-
ings of the Sixteenth National Conference on Artificial In-
telligence.
Onder, N., and Pollack, M. 1999. Conditional, proba-
bilistic planning: A unifying algorithm and effective search
control mechanisms. In Proceedings of the Sixteenth Na-
tional Conference on Artificial Intelligence, 577–584.
Peot, M. 1998. Decision-Theoretic Planning. Ph.D. Disser-
tation, Dept. of Engineering-Economic Systems, Stanford
University.
Puterman, M. 1994. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. New York, NY: Wiley.

90

