
Automated Generation of Understandable Contingency Plans

Max Horstmann and Shlomo Zilberstein
Department of Computer Science

University of Massachusetts at Amherst
Amherst, MA 01003

{horstman,shlomo}@cs.umass.edu

Abstract

Markov decision processes (MDPs) and contingency plan-
ning (CP) are two widely used approaches to planning un-
der uncertainty. MDPs are attractive because the model is
extremely general and because many algorithms exist for de-
riving optimal plans. In contrast, CP is normally performed
using heuristic techniques that do not guarantee optimality,
but the resulting plans are more compact and more under-
standable. The inability to present MDP policies in a clear,
intuitive way has limited their applicability in some impor-
tant domains. We examine the relationship between the two
paradigms and present an anytime algorithm for deriving op-
timal contingency plans for an MDP. The resulting algorithm
combines effectively the strengths of the two approaches.

Introduction
Two closely related decision-theoretic planning paradigms
have emerged in the area of planning under uncertainty, each
offering a different set of advantages. One paradigm is based
on the Markov decision process (MDP) which has become a
general framework for planning (Boutilier et al., 1999) and
reinforcement learning (Sutton and Barto, 1998). The other
paradigm is Contingency Planning (CP) (Bresina and Wash-
ington, 2001; Dearden et al., 2002). The approaches are
closely related and in many cases they share the same un-
derlying representation of actions. In both cases, an agent
is manipulating an environment by performing actions with
uncertain outcomes. Both paradigms have been applied to
domains with continuous state variables, but we assume here
that the environment has a discrete set of states and that it
satisfies the Markov assumption (i.e., the outcome state is
independent of the entire history given the current state and
action). In each move, the agent receives some reward and
the overall goal is to maximize the cumulative reward.

MDPs are solved by deriving a policy, which maps do-
main states to actions, typically represented as a large ta-
ble. Several existing algorithms can construct optimal poli-
cies, but the resulting plans are not easy to visualize or
understand. To reduce policy size and improve the effi-
ciency of policy construction, researchers have developed
factored representations that address the exponential growth
of the state space with state features (Boutilier et al., 1999;
Feng and Hansen, 2002). Reachability analysis and heuristic
search have been used to constrain the number of examined

states (Feng and Hansen, 2002) and macro actions have been
used to further exploit the structure of the domain (Lane and
Kaelbling, 2002). These techniques can solve efficiently re-
alistic problems, but they do little to improve understand-
ability.

CP is another widely used approach in stochastic do-
mains, which allows plans to include branches that may de-
pend on arbitrary memory states. It has been used to aug-
ment classical STRIPS-style planners (Blum and Langford,
1999), to add execution-time branch conditions to stochas-
tic plans (Dearden et al., 2002), or to represent plans with
loops in a hybrid approach (Smith and Williamson, 1995).
Contingency plans are typically constructed using heuristic
search and are not optimal, but the representation is much
more intuitive and easy to understand.

It is clear why optimal or compact plans are desirable,
but the issue of understandability is less obvious. In fact,
for some applications, a plan represented as a large table
mapping states to actions may be perfectly suitable. How-
ever, the lack of clarity has limited the adoption of MDP
planning in some application domains such as space explo-
ration (Bresina et al., 2002). In the domain of our interest,
unmanned rovers equipped with cameras and scientific in-
struments are sent to collect scientific data from other plan-
ets. Because communication with the rover is restricted, it is
necessary to send to the rover plans to control its operation
over an extended period of time. In such high-cost missions,
plan verification is crucial. Currently, NASA does not em-
ploy MDP-based planning because it is considered too risky.
MDP policies are optimal as long as the model used to create
them is accurate. Otherwise, they may introduce anomalous
behavior that may be hard to detect. To maximize the safety
of the mission, the 1997 Sojourner rover only executed a
sequence of time-stamped low-level actions. This method
does provide maximum safety, but it lacks efficiency: The
average downtime due to plan failure has been estimated at
50% - 70%. More recently, less conservative approaches,
which introduce branching, have been developed (Bresina
and Washington, 2001; Dearden et al., 2002).

The rest of the paper examines the relationship between
policies and contingency plans. In Section 2, we define the
two representations and a precise measure of the complexity
of a contingency plan. We introduce several problem do-
mains in Section 3 to illustrate the definitions and for later

57

x=1

2

3

4

y=1

↓↓↓↓

↓

2

↓

↓

←

3

→

→

↓

←

4

↑

↓

5

G

Figure 1: A simple Gridworld

evaluation. Section 4 describes an algorithm for generating
and optimizing the clarity of contingency plans. Implemen-
tation and evaluation of the algorithm are discussed in Sec-
tion 5. We conclude with a summary of the contribution of
this work and future research directions.

Formal Problem Description

A Markov Decision Process (MDP) with goal states is a
tuple (S,A, P,R, s0, G). Where S = S1×· · ·×Sn is a fac-
tored state space and Si is the finite domain of feature i. We
assume without loss of generality that Si = {1, 2, . . . , |Si|}.
A is the set of actions, P : S × A → S is a probability
distribution over successor states for each state-action pair.
R : S×A×S → R gives the expected immediate reward for
each triple of state, action and successor state. s0 ∈ S is the
initial state and G ⊆ S is a set of terminal states. Note that
G can be empty, so the definition includes MDPs without
terminal states.

A policy, π : S → A is a mapping from states to actions.
An agent acts according to policy π by executing the action
π(s) whenever it is in state s ∈ S (initially s0), observing
the successor state s′ ∈ S and making it the current state.

Following the notation in (Littman et al., 1998), a Con-
tingency Plan (CP) for a given MDP (S,A, P,R, s0, G) is
a tuple (V,E, v0, ρ, δ), where (V,E) is a directed graph with
start state v0 ∈ V . ρ : V → A associates an action with each
node of the graph. δ : E → 2S labels each edge with a set
of states. Every pair of state sets on outgoing edges of the
same node has to be disjoint; formally:

∀(v, v′), (v, v′′) ∈ E : δ(v′) ∩ δ(v′′) = ∅
An agent acts according to the CP by executing the action
ρ(v) of the current graph node v (initially v0), observing the
successor state s′ ∈ S from the environment and succeeding
to the graph node v′ that satisfies s′ ∈ δ(v, v′).

A label descriptor D is a mapping D(δ) : E → L(S),
where L(S) represents a set of states in some compact and
understandable language. This language could be very ex-
pressive, using various relations among state features (e.g.,
“the remaining distance divided by speed is less than 5.”).
The language used in this paper is interval label descrip-
tors, which represents state sets as intervals over the feature
domains defined as follows: Dint(δ) : E → {I1, I2, ..., Ik}
where Ij = {[L1;U1], . . . , [Ln;Un] | 1 ≤ Li ≤ Ui ≤
|Si| ∀ 1 ≤ i ≤ n}. Note that the results we report could
be generalized to more sophisticated label descriptors.

The Complexity of a Contingency Plan
We define the complexity of a plan to measure how hard it
is to understand; the measure does not reflect the computa-
tional complexity of constructing the plan. Obviously, com-
plexity depends on several different factors and is subjective,
reflecting the perceptions and preferences of the user. Nev-
ertheless, it is easy to identify some obvious features of a
contingency plan that affect its complexity: the total num-
ber of nodes in the graph, the average branching factor, and
the complexity of the labels, which depends on the represen-
tation language. These three indicators are combined into
one measure of complexity by multiplying them, although
our algorithm works with whatever measure of complexity
is provided.

Formally, given an MDP (S,A, P,R, s0, G), a contin-
gency plan CP (V,E, v0, ρ, δ) and an interval label descrip-
tor Dint(δ), we define a the complexity of the plan as fol-
lows:

Complex(MDP, CP,Dint(δ)) = |V | · ABF · ALDS

The value is nonnegative, with higher values representing
more complex plans. Therefore, our goal is to increase clar-
ity by minimizing this measure.

ABF is the average branching factor:

ABF =
1

|V |

∑

v∈V

|{(v, v′)|v′ ∈ V, (v, v′) ∈ E}|.

ALDS is the average label descriptor size:

ALDS =
1

|E|

∑

(v,v′)∈E

LabelSize(v, v′)

where the size of a label descriptor is the number of con-
strained intervals.

The Value of a Contingency Plan
Given a fixed policy, an MDP becomes a Markov chain and
the value of each state can be computed by solving the fol-
lowing set of equations:

V alπ(s) =
∑

s′∈S

P (s, π(s), s′)(R(s, π(s), s′)+γ ·V alπ(s′)

The value of each state is the expected discounted future
reward when the agent follows π from state s (where γ is
the discount factor). There are many standard algorithms for
solving these equations precisely or approximately (Sutton
and Barto, 1998).

The value V alP of a contingency plan P =
(V,E, v0, ρ, δ) can be similarly computed. However, be-
cause nodes of the graph represent non-stationary memory
states, it is not possible to associate a fixed value with each
node of the graph. To overcome this problem, consider the
Markov chain induced by the new state set S×V and transi-
tion probabilities prescribed by the MDP. The value of each
state-node pair (s, v) satisfies the following Bellman equa-
tion: V alP (s, v) =
∑

s′∈S

P (s, ρ(v), s′)(R(s, ρ(v), s′) + γ · V alP (s′, θ(v, s′)))

58

where θ(v, s′) is the successor node v′ ∈ V that satisfies
s′ ∈ δ(v, v′). Obviously, if a policy π and a contingency
plan P lead to identical behavior in every possible situation,
their values are the same. But there are non-obvious cases.
For example, a contingency plan may have an optimal value
without matching any single policy, and a very compact con-
tingency plan may have near-optimal value.

Sample Problems
The following sample problems are used to illustrate the def-
initions and to evaluate the algorithm we developed.

A Simple Gridworld and Mazes
Consider an agent in a Gridworld shown in Figure 1. The
agent starts in s0 = (1, 1) and can move left, right, up or
down: A = {L,R,U,D}. Each action moves the agent
either one or two positions (avoiding the blocked grey po-
sitions) in the desired direction with probability 0.5 for
each outcome. The agent receives a negative reward of
r = −1 after each step until it reaches the absorbing state
G = (3, 5). The arrows show an obvious optimal policy.

Figure 2 shows three possible contingency plans. Plan (a)
is obtained by simply mapping every action of the MDP to
a graph node, connecting every pair of nodes with an edge
and labeling the edges according to the optimal policy π.
Formally: V = {v1, . . . , v|A|}, E = V × V , ρ(vi) = π(ai),
δ(vi, vj) = {s ∈ S|π(s) = aj}. The start node v0 is the
node labeled with π(s0). Obviously, this plan is not simple.
Its complexity is: 4 · 4 · 88/16 = 88.

Plan (b) is the result of simplifying plan (a) by eliminat-
ing unreachable states and taking advantage of the interval
label descriptors. As a final step intervals are represented by
equations leading to further simplification. The complexity
of the plan is reduced to: 4 · 10/4 · 14/10 = 14.

Plan (c) shows another improvement. Intuitively, this plan
“remembers” whether the agent is walking down in the first
column (x = 1) or the third one (x = 3), by splitting a
node. Even though we increase the number of nodes, we
improve clarity; it is now very easy to understand what the
plan tells the agent, because every label consists only of one
expression and the average branching factor is slightly re-
duced from 2.5 to 2.2. The self-loop edge of the second
D-node has no label at all; once this node is entered, the
agent goes down unconditionally until it reaches the goal.
The complexity of this plan is: 5 · 11/5 · 10/11 = 10.

The above simple Gridworld is small enough to illustrate
our motivation and objectives. We have also experimented
with larger, randomly generated mazes, to test the scalability
of the algorithm described in Section 4.

A Planetary Rover Problem
The second set of problems we used involve a rover on a
slope that has a limited amount of time to perform some sci-
entific experiments and collect data (See Figure 3). Each
state includes the current position of the rover, 1 ≤ Pos ≤
7, and the remaining time 0 ≤ T ≤ maxTime. The action
Left and Right control the movement of the rover and the
action Collect performs an experiment and saves the data.

1

2

3

4

5

6

7

Right

0

0.1

0.2

0.3

0.4

0.5

10 11 12 13 14

Collect on 7

0

0.01
0.02
0.03

0.04

0.05

0.06

20 25 30 35 40 45 50 55 60

Collect on 1-6

0
0.02

0.04
0.06

0.08
0.1

10 13 16 19 22 25 28

Left

0

0.1

0.2

0.3

0.4

0.5

3 4 5 6 7

10

100
Rewards for
successful collects

Figure 3: The planetary rover problem.

One interesting target for experimentation is at the bottom of
the slope (Pos = 1), where each Collect has a reward of 10.
Another target is at the top (Pos = 7), with a higher reward
of 100. In other positions Collect does nothing (can be used
to idle). The rover starts and must finish its activity in po-
sition 4; there is a penalty of −10, 000 for not reaching this
position by the deadline (T = 0). There is uncertainty about
the duration of each action, described by a Gaussian distri-
bution. Going right (up) takes on average more time than
going left (down), and collecting data in position 7 takes
significantly more time than in other positions.

With maxTime = 240 seconds, an optimal policy repre-
sented as a lookup table has about 1500 entries and is there-
fore not easy to understand. Figure 4 shows two possible
contingency plans for the problem, derived from an optimal
policy. The top graph shows an initial plan generated by
mapping every action to one node and labeling the edges ap-
propriately. Because the state sets on the labels are large (on
average ≈ 500 elements), this plan scores poorly according
to our complexity measure; its complexity is 10122.

The bottom graph shows one of the best possible contin-
gency plans. Although the number of nodes is doubled, the
labels are very compact. The average branching factor also
goes down from to 3 to 1.83. The complexity of this plan is
6 ·11/6 ·1 = 11. The challenge is therefore to generate such
contingency plans automatically. The following sections in-
troduce an effective algorithm for doing that and examine its
performance.

Automated Contingency Plan Generation
The algorithm for automated generation of understandable
contingency plans is shown in Figure 5. Our approach relies
on solving first the underlying MDP, (S,A, P,R, s0, G) and

59

L

R U D

SL SL
SL SR

SR

SR

SR

SL

SU

SU
SU

SD

SU

SD

SD
SD

SL={(4,2),(4,3)}
SR={(1,3),(2,3)}
SU={(1,4)}
SD={(1,1),(1,2),(3,1),
 (3,2),(3,3),(3,4)}

Start

L

R

D

U

x=1, y<3
x=3

Start
x=3

x<3

x=3

x>3

x<3

x=1, y>3 x=1, y=3

y=3

y<3

L

R D

U

Start

y<3

D

y=3 y>3 y<3

y=3

x<3

x<3 x=3 x>3

x=3

(a) (b) (c)

Figure 2: Three possible contingency plans for the Gridworld

L R
 Start

SR

C

SR

SR

SL

SL

SL
SC

SC

SC

 Start
R

pos<7

pos=7

C

t≥128

t<128

L

pos>1

pos=1

C

t≥57

t <57

R

pos≤4

pos=4

C

t>0

Figure 4: Two possible contingency plans for the rover.

obtaining an optimal policy π. The algorithm generates an
initial contingency plan, constructed directly from the policy
as illustrated in Figure 2(a). The resulting plan is (V =
{v1, . . . , v|A|}, E = V × V , ρ(vi) = π(ai), δ(vi, vj) =
{s ∈ S|π(s) = aj}). Then, the following operators are used
to reduce the complexity of the plan.

Reachability Analysis
Algorithms that compute policies for MDPs can be im-
proved by taking into account the fact that some states are
not reachable from the start state. Furthermore, a policy
need not specify actions for states not reachable under that
policy. Search algorithms such the LAO∗ take advantage of
this (Hansen and Zilberstein, 2001).

The same applies to contingency plans: A state on an
edge-label that can never be reached when the plan is ex-
ecuted can be removed. Formally, s′ ∈ δ(v, v′) can be re-
moved from δ(v, v′) if for any (s, v) that is reachable from
(s0, v0), P (s, ρ(v), s′) = 0. If all the states on an edge label
can be removed, the edge itself can be removed. If a node
becomes unreachable due to removed edges, it can also be
removed. The procedure STATEREACHABILITY performs
this simplification by performing a depth-first search over
the set of all reachable edges between the state-node pairs.

Merging Intervals to n-dimensional Boxes
As illustrated in Section , a benefit of interval label descrip-
tors is the ability to capture easily large sets of states and
simplify the branch conditions. This is particularly effective
when the order of feature values corresponds to a natural or-
dering in the domain such that neighboring values are likely
to have the same optimal action. One typical example is
resource variables such as time or energy, for which the op-
timal behavior in certain situations depends on whether the
value has dropped below some critical threshold.

Formally, given a state set δ(v, v′) ⊆ S,
label descriptor minimization involves finding
argmin

I⊆INTERVALS(S)LabelSize(I). Finding an
optimal label descriptor is certainly intractable for larger
state sets, but we developed a simple approximation
that performs surprisingly well. The idea is to initially

60

Anytime Contingency Plan Generation

inputs: S, A, P, R, s0, G, π, ε
π is a policy for an MDP (S, A, P, R, s0, G)
ε is the fraction of optimality that may be lost

CP ← CREATEINITIALPLAN(π)
STATEREACHABILITY(CP)
MERGEINTERVALS(CP)
while not interrupted do

CP ′
← COPY(CP)

CHOOSEPARTITION(CP ′, S1, S2)
SPLITNODES(CP ′, S1, S2)
STATEREACHABILITY(CP ′, ε)
MERGEINTERVALS(CP ′, ε)
if Complex(CP ′) < Complex(CP)

then CP ← CP ′

end
return CP

Figure 5: The contingency plan generation algorithm.

select an ordering of the state features and then combine
“neighboring” intervals subsequently along the dimensions
of the state space. In other words, given an ordering
{S1 < S2 < . . . < Sn}, the method first tries to com-
bine sets of states that are identical in all state variables
except S1. The resulting set of intervals are being merged
where possible along S2 and so on. The procedure
MERGEINTERVALS performs this optimization.

Splitting Nodes

Even with reduced label sizes and after removing unreach-
able states, the initial contingency plan with one node per
action basically just reproduces the policy on the outgo-
ing labels of each node. The real strength of a plan rep-
resentation lies in the encoding of partial state information
in the nodes, leading to multiple nodes with the same ac-
tion. Therefore, further reduction in complexity is possible
by splitting nodes. Intuitively, we want to identify groups
of states that have the same optimal action according to the
policy π. When subsets of the group can be described with
a small set of descriptors, whereas the union is not easy to
describe, a split could be beneficial.

The procedure SPLITNODES performs this operator on a
contingency plan, splitting a node into two nodes with the
same action, adapting the incoming and outgoing edges of
the original node to the new nodes. For example, with a state
set S = {u, v, w, x, y, z} and the partition S1 = {u, v, w},
S2 = {x, y, z}, the result of a split operator is illustrated
below:

u, w, z

A

B

C D

E

u, v, z

 v, x, y

w, x, y

u, w, z

A
B

C D

E

w, x, y

A

v

x, y

u, v
z

u, x, y, z

v, w

u, x, y, z

u, x, y, z

v, w

v, w

...

... ...

...

Note that the gray node labeled with the action “A” is be-
ing split.

The Overall Plan Generation Algorithm

The operators described above are used by the contingency
plan generation algorithm. After constructing the initial plan
and performing state reachability analysis and merging in-
tervals, the algorithm performs additional improvements in
a stochastic manner and can be stopped at any time. The in-
terruptible loop involves choosing candidates for node split-
ting and keeping the new plan if it is more understandable
(i.e., less complex) than the current best plan. Exhaustive
search for candidates for splitting is not feasible. Instead,
candidates are chosen at random or using a domain spe-
cific heuristic, which can also be randomized. After split-
ting nodes, the algorithm performs reachability analysis and
merges intervals on the resulting plan to reduce its complex-
ity. This part of the algorithm is interruptible, offering a
tradeoff between computation time and plan complexity.

The algorithm can handle effectively the problems we
used for evaluation. Consider for example the Gridworld
problem and the contingency plans shown in Figure 2. In
this case, the STATEREACHABILITY and MERGEINTER-
VALS operators transform the initial plan (a) into the plan
(b). To get the improved plan (c), the SPLITNODES op-
erator could be applied to “D”, using the partition S1 =
{(x, y)|x = 3}, S2 = {(x, y)|x 6= 3} before performing
again reachability analysis merging intervals.

Trading off Optimality for Clarity

Besides a tradeoff between computation time and plan com-
plexity, the final algorithm has a parameter that introduces
another tradeoff: between optimality (the value of the plan)
and clarity (the complexity of the plan). This tradeoff is con-
trolled by the parameter ε which indicates that (1 − ε)V alπ

is an acceptable value if it facilitates complexity reduction.
When ε = 0, the algorithm returns only optimal plans. Oth-
erwise, the operators discussed above use ε in a variety of
ways to achieve further reduction in complexity. Consider
for example the MERGEINTERVALS operator. If the val-
ues of a feature extend to a large region except for some
a small number of cases, then the operator can ignore these
“holes” and construct a large interval covering the entire re-
gion. This could reduce a label descriptor size dramatically
and improve the clarity of the plan, so we might be willing
to accept a small loss of value (bounded by ε).

This leads to the following interesting optimization prob-
lem. For any given MDP (S,A, P,R, s0, G) and a known
optimal value V almax, find a contingency plan and interval
label descriptors that have at least a value of (1− ε)V almax

while minimizing the complexity of the plan. In other
words, we want to find a member of the following set that
has the lowest complexity.

{CP = (V,E, v0, ρ,Dint(δ)) | V alCP ≥ (1 − ε)V almax}

While the computational complexity of this problem has not
been determined, it is clear that optimizing both plan value

61

00:00.0

07:12.0

14:24.0

21:36.0

28:48.0

36:00.0

0 500 1000 1500 2000 2500 3000

|S|

ti
m

e

Value Iteration

Reachability Analysis

Evaluation

Figure 6: Execution time in minutes and seconds of value
iteration, reachability analysis and plan evaluation applied
to different versions of the rover problem.

and complexity is too hard. Hence, our algorithm guaran-
tees an arbitrary level of optimality, but it does not guarantee
finding the most compact plan.

Experimental Results
We have implemented the contingency planning algorithm
and tested it with the Gridworld problem, maze problems
ranging from 10 × 10 to 90 × 90, and rover problems with
maxTime between 30 and 390. The maximum number of
states is 8100 for the maze problems and 2737 for the rover
problems. Because the algorithm is an anytime algorithm,
its overall run-time depends on the user’s preferences. So
we examined instead the run-time of the two operators that
dominate its run time: reachability analysis and contingency
plan evaluation. We also measured the computation time
needed to solve the original MDP by value iteration, because
that policy is needed for constructing the initial CP. Figure 6
shows execution times for different instances of the rover
problem; the results with mazes show a similar behavior, al-
though the cost of the operators is somewhat lower. As one
would expect, reachability analysis is the most expensive op-
erator, whereas node splitting and merging intervals take a
negligible amount of time. Contingency plan evaluation has
a significant cost, but it does not grow as fast as the cost of
reachability analysis. From this we conclude that improving
the efficiency of reachability analysis is needed in order to
apply the technique to much larger problem instances.

Performance with Maze Problems
While the generation of the optimal contingency plan for the
simple Gridworld in Figure 1 is trivial and can be found by
the algorithm in a few seconds, finding optimal contingency
plans is much harder for the larger maze problems. How-
ever, in our experimentation we found that the algorithm
produces surprisingly good plans and exhibits very interest-
ing behavior. One typical complexity reduction in this do-
main can be attributed to detecting a “bottleneck” through
which the agent must pass. In this case the algorithm splits
the nodes according to the partition derived from the states
before and after the bottleneck. Another typical situation
that the algorithm can detect involves clusters of neighbor-
ing states with the same optimal action that can be split

into single nodes with one outgoing edge and one self-loop
edge. This produces very simple label descriptors with low
branching factor. There are additional classes of simplifi-
cations that the algorithm detects; they are best illustrated
graphically, but due to space limitation we cannot include
these figures.

Performance with Rover Problems
In the rover domain we have experimented with different
problem instances by varying the amount of available time.
The optimal plans exhibit a similar behavior over all in-
stances. As long as there is enough time available for the
fruitful, but time-consuming experiments on the right target,
the rover drives there and performs these experiments. As
soon as the time drops below a certain threshold, the rover
drives to the leftmost position, exploiting as much of the re-
maining time as possible on the smaller target. When the
remaining time drops further below a second critical thresh-
old, the rover finally decides to return to the home position.

Observing these characteristics of the optimal policy, it
is possible to guide the algorithm to try the split operators
on the “collect” node: The different split nodes memorize
whether the rover is “on its way” to the right target, the left
target or the home position. This illustrates how domain
structure could be exploited in order to heuristically guide
the algorithm to avoid searching in the space of all possi-
ble plan transformations, resulting in a very understandable
plan. Applied to the initial contingency plan at the top of
Figure 4, this heuristic guides the algorithm to produce the
bottom plan in less then 4 minutes. For larger instances of
the problem, such heuristics cannot guarantee finding the
optimal plan within a reasonable amount of time. But the
algorithm can still produce understandable plans. Further
ways to exploit domain structure will be examined in future
experiments.

Conclusions and Future Directions
The main objective of this work has been to find solutions
for decision-theoretic planning problems that are optimal (or
near-optimal), compact, and understandable. Our solution
leverages the optimality of MDP policies and the compact-
ness and clarity of contingency plans to form plans that share
the advantages of both paradigms. Others have introduced
CP to approximate the solution to an MDP by searching in
the space of finite state controllers (e.g., (Kim et al., 2000)).
But the motivation has been to reduce computation time, not
to improve the clarity of the result. To our knowledge, this
is the first attempt to optimize the clarity of MDP policies.
The resulting plans are attractive in mission-critical domains
in which the ability to understand and verify a plan is as im-
portant as its optimality.

We defined a precise measure of the complexity of con-
tingency plans, reflecting their size, branching factor and the
size of the label descriptors. We then introduce several op-
erators to reduce the complexity of plans. Because a com-
plete search through the space of all possible transforma-
tions is obviously intractable, an iterative improvement any-
time algorithm is constructed than can be guided by domain-
specific heuristic knowledge. The experimental results with

62

small and medium size problem instances are encouraging.
They show that we can automate the process of generating
understandable plans that previously had to be hand crafted.

There are several interesting ways in which the algorithm
can be generalized and improved. First, a better measure of
the complexity of plans could be developed. For instance, it
might be acceptable to have a large number of nodes, as long
as the overall plan is decomposable into different regions
that can be analyzed by experts independently. Second, ad-
ditional operators for reducing complexity could be added.
Finally, the language for representing edge labels could be
enriched with various predicates and allow state features to
be continuous. The results reported in this paper provide
a good framework for further exploration of these research
directions.

Acknowledgments
Support for this work was provided in part by NASA under
grant NAG-2-1463. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the authors and do not reflect the views of NASA.

References
J. Bresina and R. Washington. Robustness via Run-Time
Adaptation of Contingent Plans. AAAI Spring Symposium
on Robust Autonomy, 2001.

J. Bresina, R. Dearden, N. Meuleau, S. Ramakrishnan, D.
Smith, and R. Washington. Planning Under Continuous
Time and Resource Uncertainty: A Challenge for AI. Con-
ference on Uncertainty in Artificial Intelligence, Edmon-
ton, Alberta, July 2002.

A. Blum and J. Langford. Probabilistic Planning in the
Graphplan Framework. Proceedings of the Fifth European
Conference on Planning, 319–332, 1999.

C. Boutilier, T. Dean, and S. Hanks. Decision-Theoretic
Planning: Structural Assumptions and Computational
Leverage. Journal of Artificial Intelligence Research, 11:1-
94, 1999.

R. Dearden, N. Meuleau, S. Ramakrishnan, D. Smith,
and R. Washington. Contingency Planning for Planetary
Rovers. Third International NASA Workshop on Planning
& Scheduling for Space, Houston, Texas, 2002.

Z. Feng and E.A. Hansen. Symbolic Heuristic Search for
Factored Markov Decision Processes. Eighteenth National
Conference on Artificial Intelligence, Edmonton, Alberta,
July 2002.

E.A. Hansen and S. Zilberstein. LAO∗:A Heuristic Search
Algorithm that Finds Solutions with Loops. Artificial Intel-
ligence, 129(1-2):35-62, 2001.

K.-E. Kim, T.L. Dean and N. Meuleau. Approximate So-
lutions to Factored Markov Decision Processes via Greedy
Search in the Space of Finite State Controllers. Fifth In-
ternational Conference on Artificial Intelligence Planning
and Scheduling, Breckenridge, Colorado, 2000.

T. Lane and L.P. Kaelbling. Nearly Deterministic Abstrac-
tion of Markov Decision Processes. Eighteenth National

Conference on Artificial Intelligence, Edmonton, Alberta,
July 2002
M.L. Littman, J. Goldsmith, and M. Mundhenk. The Com-
putational Complexity of Probabilistic Planning. Journal of
Artificial Intelligence Research, 9:1–36, 1998.
D. Smith and M. Williamson. Representation and Evalua-
tion of Plans with Loops. AAAI Spring Symp. on Extended
Theories of Action, Stanford, CA, 1995.
R.S. Sutton and A.G. Barto. Reinforcement Learning: An
Introduction. MIT Press, Cambridge, MA, 1998.

63

