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Abstract

We present a simple set of inference rules for reasoning about
the effects of actions in a conditional plan. The rules allow us
to make additional conclusions about a plan at every stage of
its execution, and to augment an agent’s knowledge state in
the presence of incomplete knowledge. We can use the rules
to refine an agent’s knowledge after a particular execution of a
plan has completed, and to improve an agent’s ability to gen-
erate plans. Furthermore, this enhancement gives us the abil-
ity to plan for certain types of temporally oriented goals, e.g.,
goals that require some initial state condition be restored by
the end of the plan. We have implemented this mechanism in-
side of a planner, and we demonstrate the planner’s increased
ability to solve a variety of interesting planning problems.

Introduction
In this paper we address the problem of controlling agents
under conditions of accurate but incomplete knowledge. A
common example of this scenario would be that of a soft-
ware agent that can reasonably assume the accuracy but not
the completeness of its knowledge.

To achieve control over such environments the agent must
be able to use its current incomplete knowledge to generate
plans that it can infer will achieve its goals. This inference
is complicated by the fact that it must be performed entirely
at plan time, prior to receiving any information that might
be generated by its execution. Furthermore, after the agent
has executed the plan it must be able to update its knowledge
so as to make that knowledge as complete as possible given
information gathered during the plan’s execution. Both of
these tasks require an ability to reason about the effects of
a plan that is about to be, or has just been, executed. We
present a mechanism for accomplishing this kind of reason-
ing within the framework developed in (Petrick and Bacchus
2002), and demonstrate how it can be used to reach further
conclusions after a plan has been executed and to augment
our ability to generate correct plans.

The utility of reasoning with plans is best illustrated by
a series of examples.1 Say that we have a bottle of liquid,
a healthy lawn, and two actions: pour-on-lawn and sense-
lawn. Pour-on-lawn pours some of the liquid on the lawn,

1The first of these was communicated to us by David Smith.

and also has the conditional effect that if the liquid is poi-
sonous the lawn becomes dead in the successor state. Sense-
lawn simply senses whether or not the lawn is dead. Say that
we execute the sequence of actions 〈pour-on-lawn, sense-
lawn〉 after which we come to know that the lawn is dead.
An intuitively obvious additional conclusion is that the liq-
uid is poisonous. The question is: how do we automate this
kind of inference?

It should be noted that the conclusion “poisonous” re-
quires non-trivial inference. It does not follow from either
of the individual actions executed. The pour-on-lawn action
in of itself provides no information about whether or not it
changed the state of the lawn, so we cannot know if poi-
sonous holds after the action is executed. Similarly, sense-
lawn simply returns the status of the lawn; by itself it says
nothing about how the lawn became dead. Further evidence
that a non-trivial inference process is at work is provided
when we consider our knowledge that in the initial state the
lawn is not dead. It is not hard to see that without this knowl-
edge the conclusion poisonous is not justified.

An elaboration of this example is where we have an addi-
tional action drink, with the conditional effect that if the liq-
uid is poisonous then we have been poisoned. If the action
sequence 〈drink, pour-on-lawn, sense-lawn〉 results in sens-
ing a dead lawn, we can also conclude that we have been
poisoned. Notice that here we need to infer not only that the
liquid is poisonous in the final state of the execution, as we
did in the previous example, but rather that the liquid was
in fact poisonous in the initial state. It is only when we can
reach this temporally indexed conclusion that we can also
conclude that the drink action caused poisoned: that action
was executed in the initial state not in the final state.

These kinds of temporally indexed conclusions are also
needed when trying to achieve restore goals (Golden and
Weld 1996). Restore goals require that the final state re-
turn a condition to the status it had in the initial state. We
might not know what the initial status of the condition was,
however. Hence, it can be difficult to infer that a plan does
in fact restore this status. With additional reasoning we can
sometimes infer the initial status of the condition, and thus
be in a position to try to ensure that the plan restores it.

Finally, consider the effects of the plan 〈pour-on-lawn,
sense-lawn〉 prior to its execution. Before the plan has been
executed, we do not know what the outcome of the sense-
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lawn action will be. All we know at plan time is that in the
initial state we have that the lawn is not dead. Nevertheless,
by reasoning about the two possible outcomes of the sense-
lawn action, we can conclude that if the outcome is “not
lawn-dead” we will come to know that the liquid is not poi-
sonous, and that if the outcome is “lawn-dead” we will come
to know that the liquid is poisonous. Thus we can conclude
at plan time that, irrespective of the actual outcome of the
plan, we will come to know whether the liquid is poisonous.

The rest of the paper is organized as follows. First, we
examine in greater detail the inferences that are required to
solve the above examples. To automate these inferences we
need a formal framework, so next we present a previously
developed framework for planning under incomplete knowl-
edge (Bacchus and Petrick 1998; Petrick and Bacchus 2002).
Using this framework, we present a method for automating
the required inferences, and show how the mechanism can
be used to extend the planner’s ability to generate plans. Fi-
nally, we illustrate the power of this approach with a number
of examples that have been solved by our extended planner.

Required inferences
To automate the kinds of inferences presented above we
must analyze in more detail the steps involved. A critical
element in these inferences is the Markov assumption de-
scribed in (Golden and Weld 1996) which we will make
throughout this paper. The Markov assumption has two
parts. First is an assumption that we have complete knowl-
edge of action effects and non-effects.2 The second com-
ponent of the Markov assumption is that the agent’s actions
are the only source of change in the world. Unlike the pre-
vious case, this assumption is restrictive and has to be ex-
amined carefully when dealing with other agents (or nature)
that could be altering the world concurrently. Nevertheless,
even in domains where there is concurrent activity, the agent
might still know that (or reasonably assume that) the facts it
is reasoning about were only changed by its own actions.

Consider the action sequence 〈pour-on-lawn, sense-lawn〉
after it has been executed and we have come to know that
the lawn is dead. This action sequence produces a sequence
of three worlds: W0 the initial world, W1 the world after
executing pour-on-lawn, and W2 the world after executing
sense-lawn. We know that lawn-dead does not hold in W0,
and that lawn-dead holds in W2. Reasoning backwards we
see that sense-lawn does not change the status of lawn-dead.
Hence lawn-dead must have held in W1. But then, not lawn-
dead held in W0 and lawn-dead held in W1, which means
that pour-on-lawn must have produced a change in lawn-
dead. Since lawn-dead is altered by a conditional effect of
pour-on-lawn, it must be that the antecedent of the condition,
poison, was true in W0 when pour-on-lawn was executed.
Furthermore, poison is not affected by pour-on-lawn, nor by
sense-lawn. Hence, poison must be true in W1 as well as in
W2.

2In general, action non-determinism can be pushed into the
non-determinism of the state in which it is being executed (e.g.,
(Bacchus et al. 1999)). Hence, we lose no generality with this
assumption.

When we extend the action sequence to 〈drink, pour-on-
lawn, sense-lawn〉, with corresponding world sequence W0,
W1, W2, W3, we first need to infer that since drink does
not alter lawn-dead, not lawn-dead must hold in W1. Using
the same reasoning as above we can conclude that poison
holds in W1, and since poison is not changed by drink it
also holds in W0. Now, since drink was executed in W0,
we conclude that it must have created the effect poisoned
in W1. Poisoned is unaffected by pour-on-lawn and sense-
lawn, hence we conclude poisoned also holds inW2 andW3.

Finally, if we want to reason at plan time about the plan
〈pour-on-lawn, sense-lawn〉, we can consider the two pos-
sible outcomes of sense-lawn: either it senses that the lawn
is dead, or it senses that the lawn is not dead. If it sensed
lawn-dead, the previous example shows that we would know
lawn-dead in the final state of the plan. If it sensed not lawn-
dead, we perform the same type of inferences, but at the
critical step we conclude that since not lawn-dead is true in
W0 as well as W1, pour-on-lawn did not alter lawn-dead,
and hence the antecedent of its conditional effect must not
have been true inW0. That is, not poisonous must have been
true in W0, and since poisonous is not changed by the two
actions, it must also be true in the final state of the plan.
Hence, irrespective of the actual outcome of executing the
plan, the agent will arrive in a state where it either knows
poison or knows not poison, and we can conclude that the
plan will allow the agent to know whether or not poison.

These examples show that the basic inferences required to
reach the conclusions we want are fairly simple. Neverthe-
less, they can add significantly to the agent’s ability to deal
with incompletely known environments.

PKS
To realize these kinds of inferences we cast our work in the
formal framework for planning under incomplete knowledge
developed in (Bacchus and Petrick 1998; Petrick and Bac-
chus 2002). In this section we present an overview of this
framework, but first we discuss some alternative formalisms.

A number of other works have addressed the problem
of planning under incomplete information, e.g., (Pryor and
Collins 1996; Bertoli et al. 2001; Bonet and Geffner 2000;
Anderson et al. 1998; Golden and Weld 1996).

A recent approach to planning under incomplete knowl-
edge has been to find ways of efficiently representing all of
the possible configurations of the world (possible worlds)
that are compatible with the agent’s knowledge. The
main technique is to utilize symbolic representations, BDDs
(Bryant 1992), to compactly represent this set of possible
worlds. Action effects are then reasoned about by examin-
ing their effect on the entire set of possible worlds. Although
this approach can in some instances be quite efficient, its ul-
timate scalability remains a question. In particular, the num-
ber of possible worlds grows exponentially with the number
of distinct fluents in the world, so it is not clear that even
compact symbolic representations will remain compact.

The SADL representation of (Golden and Weld 1996) is
closer to the approach we take here. SADL examines the
middle ground between expressiveness and the complex-
ity of reasoning. Whereas representing the complete set
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of possible worlds provides a high degree of expressive-
ness, it also provides the worst complexity. SADL, like
our approach, tries to restrict expressiveness in order to
achieve greater efficiency. The language was also designed
to address very similar issues in planning under incomplete
knowledge. However, the approach to reasoning with plans
(regression) and planning (partial order planning) are very
different to the approach we use here, and empirical evi-
dence from previously published works suggests that their
approach is much less efficient.

Our approach utilizes the PKS (Planning with Knowl-
edge and Sensing) framework (Petrick and Bacchus 2002).
This framework is based on a generalization of STRIPS. In
STRIPS, the state of the world is represented by a database
and actions are represented as updates to that database. In
PKS, the agent’s knowledge (rather than the state of the
world) is represented by a set of databases; actions are rep-
resented as updates to these databases. Thus, actions are
represented at the knowledge level as modifications to the
agent’s knowledge (the databases) rather than as modifica-
tions to the state of the world.

Modelling actions as database updates leads naturally to
a simple forward-chaining approach to finding plans, and in
(Petrick and Bacchus 2002) empirical evidence is provided
to demonstrate the efficiency and effectiveness of this ap-
proach. The database representation of the agent’s knowl-
edge is computationally efficient, but restricts the types of
knowledge that can be expressed. In particular, it places
strong limits on disjunctive knowledge in order to achieve
its efficiency.

In somewhat more detail, PKS utilizes four different
databases to represent the agent’s knowledge. The contents
of these databases are formalized using a standard first-order
modal logic of knowledge. In particular, there is a fixed
mapping between the contents of the databases and a col-
lection of formulas of the modal logic. Thus, any configura-
tion of the databases corresponds to a set of logical formulas
that precisely characterize the agent’s knowledge state. The
details of this mapping are given in (Bacchus and Petrick
1998). Briefly, the different databases utilized are as fol-
lows:

Kf : The first database is much like a standard STRIPS
database, except that both positive and negative facts are
allowed and we do not apply the closed world assump-
tion. In particular, Kf can include any ground literal, `,
and intuitively ` ∈ Kf means that we know `. Kf can
also contain formulas specifying knowledge of the value
of various functions on fixed arguments.

Kw: The second database is designed to address plan time
reasoning about sensing actions. If the plan contains an
action to sense the fluent f , at plan time all that the agent
will know is that after it has executed the action it will ei-
ther know f or know ¬f . At plan time the actual value of
this fluent remains unknown. Intuitively, φ ∈ Kw means
that the agent either knows φ or knows ¬φ, and that at ex-
ecution time this disjunction will be resolved. For exam-
ple, the action sense-lawn adds lawn-dead to Kw: i.e., the
effect of this action on the agent’s knowledge is to place

it in a state where it knows whether or not lawn-dead is
true.
Kw plays a particularly important role at plan time when
it comes to generating conditional plans that branch based
on information that the agent will resolve at execution
time. In a conditional plan it is only legitimate to branch
on “know-whether” facts. In particular, we are guaran-
teed that at execution time the agent will have sufficient
information at that point in the plan’s execution to know
which branch to take. This guarantee satisfies one of the
important conditions for plan correctness in the context of
incomplete knowledge put forward in (Levesque 1996).

Kv: The third database is a specialized version of Kw de-
signed to store information about various function values
the agent will come to know at execution time. Kv can
contain any unnested function term whose value is guar-
anteed to be known to the agent at execution time. Kv is
used for plan time modelling of sensing actions that re-
turn numeric values. For example, size(paper.tex) ∈ Kv

means the agent knows that at execution time the size of
paper.tex will become known.

Kx: The fourth database contains information about a par-
ticular type of disjunctive knowledge, namely “exclusive
or” knowledge of literals. Entries in Kx are of the form
(`1|`2| . . . |`n), where each `i is a ground literal. Intu-
itively, such a formula represents knowledge of the fact
that “exactly one of the `i is true.” In particular, if one
of these literals becomes known, we immediately come
to know that the other literals are false. For example, if
(infected(I1)|infected(I2)) ∈ Kx then the agent knows
that one and only one of infected(I1) or infected(I2) is
true. This form of incomplete knowledge is common in
planning.

On top of these databases PKS implements an inference
algorithm that works by examining the database contents
to draw various conclusions about what the agent does and
does not know (or know-whether). The inference algorithm
is efficient but incomplete and is presented in (Bacchus and
Petrick 1998). It is used to determine whether or not an ac-
tion’s preconditions hold, whether or not various conditional
effects of the action should be activated, and whether or not
the plan achieves the stated goal.

As mentioned above, actions are represented as updates to
the set of databases, with these updates representing the ef-
fects of the actions on the agent’s knowledge. This approach
is best illustrated by formalizing the pour-on-lawn, drink,
and sense-lawn actions from the poisonous liquid domain;
these actions are represented in Table 1. We have simplified
the actions by omitting any preconditions (i.e., assuming that
the liquid is available, we are near the lawn, etc.).

If the agent does not know for certain that the liquid is not
poisonous, pour-on-lawn will remove ¬lawn-dead from Kf

(i.e., the agent will no longer know that the lawn is not dead).
If the agent knows that the liquid is poisonous, pour-on-lawn
will add lawn-dead to Kf (i.e., the agent will come to know
that the lawn is dead). drink has a similar kind of effect on
the agent’s knowledge of poisoned. sense-lawn on the other
hand puts the agent in a knowledge state where it knows
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Action Pre Effects
pour-on-lawn ¬K(¬poisonous) ⇒

del(Kf ,¬lawn-dead)
K(poisonous) ⇒

add(Kf , lawn-dead)
drink ¬K(¬poisonous) ⇒

del(Kf ,¬poisoned)
K(poisonous) ⇒

add(Kf , poisoned)
sense-lawn add(Kw, lawn-dead)

pour-on-lawn-2 ¬K(¬poisonous-2) ⇒
del(Kf ,¬lawn-dead)

K(poisonous-2) ⇒
add(Kf , lawn-dead)

Table 1: Actions in the poisonous liquid domain

whether lawn-dead is true or not.
If we start in an initial state where Kf contains

¬lawn-dead and all of the other databases are empty, exe-
cuting pour-on-lawn yields a state where ¬lawn-dead has
been removed from Kf —the agent no longer knows that the
lawn is not dead. If we then execute sense-lawn we will ar-
rive at a state whereKw now contains lawn-dead—the agent
knows whether the lawn is dead. This forward application
of the actions serves to capture their basic knowledge ef-
fects, and as shown in (Petrick and Bacchus 2002), a for-
ward chaining engine utilizing this mechanism to search for
conditional plans can very efficiently and effectively solve a
range of interesting problems. However, we also see that the
forward application of actions does not allow the agent to
conclude that this plan also achieves know-whether knowl-
edge of poisonous. As we illustrated above, such a conclu-
sion can be reached by fairly simple inferences. In the next
section we show how the PKS approach can be extended to
realize these kinds of inferences.

Reasoning about a PKS plan
PKS constructs conditional plans. A conditional plan is a
tree, whose nodes are labelled by a knowledge state (repre-
sented by a set of databases), and whose edges are labelled
by an action or by a sensed fluent. If a node n has a single
child c the edge to that child is labelled by an action a, whose
preconditions must be entailed by n’s knowledge state. The
label for the child c (c’s knowledge state) is computed by
applying a to n’s label. A node can also have two children,
in which case each edge is labelled by a fluent F , such that
K(F ) ∨ K(¬F ) is entailed by the node’s knowledge state
(i.e., the agent must know-whether the fluent that the plan
branches on). In this case the label for one child is com-
puted by adding F to the parent’s Kf , and the label for the
other child by adding ¬F to the parent’s Kf .

PKS searches over the space of conditional plans by using
the forward application of actions to incrementally construct
new plans. It uses the inference algorithm described in (Bac-
chus and Petrick 1998) to compute whether or not an action
can be applied to a leaf node (to extend a conditional plan),
to compute the effects of the action so as to generate the new
child, and to test whether or not the leaf achieves the goal.

It terminates its search when it has found a conditional plan
in which all the leaf nodes achieve the goal. Furthermore, it
does not extend any leaf that already achieves the goal.

Reasoning with these conditional plans is implemented
by first building a set of linearizations of the tree structured
plan. Each path to a leaf becomes a linear sequence of states
and actions: the states and actions visited during that par-
ticular execution of the plan. The number of linearizations
is simply the number of leaves in the conditional plan, so
only a linear amount of extra space is required to convert the
condition plan (tree) into a set of linear plans (the branches
of the tree). Each path differs from other paths in the man-
ner in which the agent’s know-whether knowledge resolved
itself during execution and in the manner in which that reso-
lution affected the actions the agent subsequently executed.
For each linear sequence, we then apply a set of backward
and forward inferences to draw additional conclusions along
that sequence.

Let W be a knowledge state in the linear sequence, W+

be its successor state, and a be the label of the edge from W
to W+. The basic inference rules we apply are:

1. If a cannot make φ false (e.g., φ is unrelated to any of the
facts amakes true), then if φ becomes newly known inW
make φ known inW+. Similarly, if a cannot make φ true,
then if φ becomes newly known in W+ make φ known in
W . In both cases a cannot have changed the status of φ
between the two worlds W and W+.

2. If φ becomes newly known inW and a has the conditional
effect φ → ψ, make ψ known in W+. ψ must be true in
W+ as either it was already true or a made it true.

3. If a has the conditional effect ψ → φ and it becomes
newly known that φ holds in W+ and ¬φ holds in W ,
make ψ known inW . It has become known that a’s condi-
tional effect was activated, so the antecedent of this effect
must have been true.

4. If a has the conditional effect ψ → φ and it becomes
newly known that ¬φ holds in W+, make ¬ψ known in
W . It has become known that a’s conditional effect was
not activated, so the antecedent of this effect must have
been false.

Although these rules are easily shown to be sound under the
assumption that we have complete information about a’s ef-
fects, they are too general to implement efficiently. In par-
ticular, PKS achieves its efficiency by avoiding disjunctions,
hence we cannot use these rules to infer new disjunctions.

In our implementation we restrict these rules to apply to
literals (i.e., φ and ψ are restricted to be literals), and further
we restrict our actions so that they cannot add or delete a
fluent F with more than one conditional effect. For example,
an action cannot contain two conditional effects a→ F and
b→ F .3

Note that this restriction does not prohibit φ and ψ from
being parameterized, provided that such parameters are

3If this was allowed, rule 3 above would be invalid. The correct
inference from knowing F in W and ¬F in W + would be a ∨ b,
which is a disjunction that we cannot represent. This observation
was pointed out to us by Tal Shaked.
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among the parameters of the action (i.e., they are not “free”).
There are also cases where these rules can be applied to more
complex formulas without yielding disjunctions. However,
implementing such an extension remains as future work.

To apply these inference rules we simply need a scheme
for controlling their activation, and a scheme for initiating
the process. We use a stack to keep track of states that have
been updated. Every time we pop a changed state from the
stack we check to see if its predecessor or successor state
should also be updated. If so, we push that state onto the
stack. To initiate the process we first push onto the stack all
of the states whose edges are labelled with fluents. These
are fluents that were added by branching on know-whether
knowledge. For simplicity we then delete the parents of
these states from the sequence, since the parents are iden-
tical to the child except for the addition of the new fluent.
This yields a sequence in which every edge is labelled with
an action.

Applying the new inference procedure to a conditional
plan means that we must apply the set of inference rules
to each linearization of the plan, where the number of lin-
ear plans is equal to the number of leaf nodes in the con-
ditional plan. To test whether or not one of the inference
rules should be applied, the standard PKS inference algo-
rithm is used to test the rule conditions against a given state
in the plan. Thus, testing the inference rules has the same
complexity as evaluating whether or not an action’s precon-
ditions hold.

Applying the effects of an inference rule is simply a con-
stant time update of the databases—similar to applying the
effects of an action, but each such update initiates a recursive
application of the inference rules. Further successful firings
of the inference rules may result in the same state being con-
sidered more than once, as the effects of the rules are prop-
agated both forwards and backwards in the plan. However,
no effect of any action can be applied more than once in the
same linear plan. In the worst case all the conditional effects
of the actions in a linear plan could be applied, with each
application requiring us to examine all of the states in the
linear plan to see if any of the inference rules can be fired.
Hence, if the conditional plan contains n leaves, and has
height at most d, the inference procedure in the worst case
might require O(nd2) testings of the inference rules: there
are n linear plans, each containing at most O(d) different
conditional effects (d is the maximum number of actions in
any linearization). Each of these conditional effects might
require a backward and forward testing and application of
the inference rules over the d states in the linear plan.

In practice however, the number of effects that are applied
at each state are quite small and the inference procedure can
be applied to a plan quite efficiently.

We illustrate the operation of this process on two plans
involving the poisonous liquid domain described above. In
Figure 1, we consider the conditional plan 〈pour-on-lawn,
sense-lawn〉 followed by a branch on knowing whether
lawn-dead. This plan is shown at the top of the figure,
along with the contents of the databases as described in
the previous section. Applying the above reasoning pro-
cedure we obtain two linearizations, as shown in (a) and

Linearization of conditional branches:

Kf: lawn−dead

pour−on−lawn sense−lawn
lawn−dead
branch on

Kf: lawn−dead

(a)

(b)
Kw: lawn−dead

Kf: lawn−dead

Conditional plan:

pour−on−lawn sense−lawn

Kf: lawn−dead lawn−deadKf:Kf: lawn−dead
Kf: Kf: Kf:

(a)

pour−on−lawn sense−lawn

Kf: lawn−dead Kf:Kf: lawn−deadlawn−dead
Kf: Kf: Kf:

(b)

poisonouspoisonouspoisonous

poisonouspoisonouspoisonous

Figure 1: Reasoning in the poisonous liquid domain

(b). The additional conclusions achieved by applying the
inference rules are shown in bold. The net result is that we
have proved that in every outcome of the plan the agent ei-
ther knows poisonous or knows ¬poisonous; i.e., the plan
achieves know-whether knowledge of poisonous.

In Figure 2, we consider a variation of the previous plan
that includes an additional action pour-on-lawn-2 (see Ta-
ble 1), occurring immediately after the pour-on-lawn ac-
tion, but prior to sense-lawn. The action pour-on-lawn-2
has the effect of pouring a second unknown liquid onto the
lawn. The effects of pour-on-lawn-2 are similar to those
of pour-on-lawn; the second liquid may be poisonous and,
thus, kill the lawn. In this case we also have two lineariza-
tions. In (a), we can only apply rule 1 to assert lawn-dead,
as shown in bold in the figure. Since pour-on-lawn-2 and
pour-on-lawn both have conditional effects involving lawn-
dead, we cannot make any additional conclusions about
lawn-dead across these actions. As a result, no further rea-
soning rules are applied. Intuitively, this reasoning is cor-
rect: the agent is unable to determine which liquid killed the
lawn and, therefore, cannot conclude which of the liquids
is poisonous. In (b), after applying the inference rules we
are able to establish the same conclusions as in Figure 1(b):
¬lawn-dead and ¬poisonous hold at each state. Further-
more, the inference rules also assert that ¬poisonous-2 must
hold in each state in the plan. Again, intuitively, these con-
clusions make sense: after sensing the lawn and determin-
ing it is not dead, the agent can conclude that neither liq-
uid must be poisonous. Note that this plan would be re-
jected by the planner since linearization (a) fails to establish
that the agent has know-whether knowledge of poisonous
(or poisonous-2).

Extending PKS’s ability to plan
The above inference procedure allows us to extend PKS in
a simple manner: a conditional plan generated by PKS dur-
ing search is augmented by applying the effects of the infer-
ence procedure to the knowledge states of the plan. These
changes enhance PKS’s ability to generate plans in two ways.
First, plans that PKS may previously have rejected as not
achieving the goal may now be proven to satisfy the goal.
For example, if PKS is searching for a plan that achieves
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Action Pre Effects
paint(x) K(colour(x)) add(Kf , (door-colour) = x)
sense-colour add(Kv, (door-colour))

Table 2: Painted door action specification

know-whether knowledge of poisonous it will now be able
to conclude that 〈pour-on-lawn, sense-lawn〉 is a solution, as
shown above. Previously this plan would have been rejected,
and in fact PKS would not have been able to solve this prob-
lem at all. Second, since the inference procedure augments
all of the knowledge states in the plan, we now have the
potential of being able to solve more complicated temporal
goals that reference states other than the final state. Since
PKS uses search to find a plan, our ability to detect when a
plan achieves a more complex goal allows us to determine
when the search has succeeded.

We have enhanced PKS by implementing the inference
procedure described above, and by extending the goal lan-
guage to support the expression of more complex goals. In
particular, the new implementation supports three types of
goal conditions: (1) conditions that must hold in the final
state of the plan, (2) conditions that make reference to the
initial state, and (3) conditions that must hold of every state
that could be visited by the plan. Goals may be specified as
conjunctions of these conditions. Conditions of type (1) can
be used to express classical goals of achievement. The addi-
tion of type (2) conditions allows, for instance, restore goals
to be expressed. Conditions of type (3) can be used to ex-
press “hands-off” or safety goals (Golden and Weld 1996).4

We now illustrate PKS’s enhanced planning abilities with
a series of examples. First, however, we note that our cur-
rent implementation is very much at the proof of concept
stage. For example, it employs blind search to find plans.
Nevertheless, it is able to solve all of the examples given be-
low in time that is less than the resolution of our timers (less
than 1 or 2 milliseconds). It should be noted that planners
that represent all of the possible worlds (and thus deal with
disjunction), are also able to obtain the conclusions of the
examples above. In particular, the above examples are all
propositional, and do not utilize PKS’s ability to deal with
non-propositional problems, e.g., those involving functions.
Poisonous liquid: When given the actions of the poi-
sonous liquid domain (Table 1), PKS can immediately
find the plan 〈pour-on-lawn, sense-lawn〉 to achieve the
goal of knowing whether poisonous. It can also con-
clude poisoned, when presented with the execution sequence
〈drink, pour-on-lawn, sense-lawn〉 resulting from sensing a
dead lawn. In both cases, it can conclude that poisonous
held in the initial state. As mentioned above, prior to the
extension, PKS was previously unable to solve this problem.
Painted door: Say that we have the two actions given in
Table 2. paint changes the colour of a door (represented as a

4Our current implementation does not handle the quantified
goals expressible in SADL (Golden and Weld 1996). However, it
should be noted that SADL is a representation language, not a plan-
ning system. To our knowledge no implemented planner supported
all of SADL.

Kf: lawn−dead

Kf: lawn−dead
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lawn−dead
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Figure 2: Poisonous liquid domain with two liquids

0-ary function (door-colour)) to an available colour x, while
sense-colour senses the value of (door-colour). Our goal is
a “hands-off” goal of coming to know the colour of the door
while ensuring that the colour is never changed by the plan.

First, suppose that the door is known to be one of two
colours c1 or c2.5 This knowledge can be represented by in-
cluding ((door-colour) = c1|(door-colour) = c2) in the ex-
clusive or Kx database of the initial state. During its search
PKS will consider the single step plan 〈sense-colour〉. After
this action the planner has (door-colour) in its Kv database,
indicating that it knows the value of this function. The plan-
ner can then use its exclusive or knowledge and the fact that
it can branch on Kv knowledge (just as it can branch on
know-whether knowledge) to construct a two-way branch
on the possible values of (door-colour). Along one branch
the planner asserts that (door-colour) = c1; along the other
branch it asserts that (door-colour) = c2. Applying the
inference procedure to the two branches of the conditional
plan allows the planner to conclude that (a) in the last state
of each branch it knows the value of (door-colour), and
(b) (door-colour) has the same value in every state of each
branch.6 Thus, it can conclude that 〈sense-colour〉 achieves
the goal.

On the other hand, when PKS examines a plan like
〈paint(c1)〉7 it will not know the value of (door-colour)
in the initial state. Since paint changes the value of
(door-colour), the inference rules will not allow facts about
(door-colour) to be passed back through paint. Thus,
PKS cannot conclude that (door-colour) remains the same
throughout the plan, and plans involving paint are rejected
as not achieving the goal.

Our current implementation solves this problem without
difficulty, but there is a natural generalization that we have
not yet implemented. In the above example, we had to as-
sume a finite set of known colours for the door. In general,

5Any finite set of known colours will also work.
6sense-colour does not change (door-colour), so the value of

this function is passed back to the initial state through the action.
That is, in each linearization (door-colour) has a different value in
the initial state, but its value agrees with its value in the final state.

7Say that colour(c1) and colour(c2) are both initially known.
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Action Pre Effects
ls(d) K(dir(d)) add(Kw, exec(d))
chmod+x(d) K(dir(d)) add(Kf , exec(d))
chmod-x(d) K(dir(d)) add(Kf ,¬exec(d))
cp(f, d) K(file(f)) add(Kf , indir(f, d))

K(dir(d))
K(exec(d))

cp+(f, d) K(file(f)) K(exec(d)) ⇒
K(dir(d)) add(Kf , indir(f, d))

add(Kw, indir(f, d))

Table 3: UNIX domain action specification

we might not know the range of possible colours. We can
solve this problem by inserting into the plan an assumption
that a Kv function has an arbitrary new value, rather than
inserting a multi-way branch on a set of known possible val-
ues for the function. That is, at the end of the plan 〈sense-
colour〉, where we have (door-colour) in Kv , we can add
the new assertion (door-colour) = c to Kf , where c is a
new constant (essentially a Skolem constant). Our inference
mechanism will then conclude that (door-colour) = c in the
initial state as well. Furthermore, since c is an arbitrary con-
stant about which nothing is known, we can conclude that
the value of the function (door-colour) would be preserved
no matter what colour it was, and thus that 〈sense-colour〉
achieves the goal even if the range of door colours is un-
known or infinite.
UNIX domain: Say that we have the simplified UNIX ac-
tions given in Table 3. Initially, we know about the exis-
tence of certain files and directories, specified by the file(f)
and dir(d) predicates, some of their locations, specified by
the indir(f, d) predicate, and that some directories are exe-
cutable, specified by the exec(d) predicate. The action ls(d)
senses the executability of a directory d; chmod+x(d) and
chmod-x(d) respectively set and delete the executability of a
directory; and cp(f, d) copies a file f into directory d, pro-
vided the directory is executable. The goal in this domain
is to copy files into certain directories, while restoring the
executability conditions of these directories.

Let the planner have the initial knowledge dir(icaps),
file(paper.tex), and ¬indir(paper.tex, icaps). The planner
has no initial knowledge of the executability of the di-
rectory icaps. Let the goal be that we come to know
indir(paper.tex, icaps) and that we restore the executabil-
ity status of icaps (i.e., that exec(icaps) has the same value
at the end and the beginning of the plan). The value of
exec(icaps) may change during the plan, provided it is re-
stored to its original value by the end of the plan.

PKS finds the conditional plan: ls(icaps); branch on
exec(icaps): if K(exec(icaps)) then cp(paper.tex, icaps),
otherwise chmod+x(icaps); cp(paper.tex, icaps);
chmod-x(icaps).

Since the executability of icaps is not known initially, the
ls action is necessary to sense the value of exec(icaps). The
new inference rules establish that this sensed value must also
hold in the initial state, since ls does not change the value of

exec. The second goal can then be established by testing
the initial value of exec(icaps) against its value in the final
state(s) of the plan. By reasoning about the possible val-
ues of exec(icaps), appropriate plan branches can be built to
ensure the first goal is achieved (the file is copied) and the
executability permissions of the directory are restored along
the branch where we had to modify these permissions.

We also consider a related example with a new ver-
sion of the cp action, cp+ (also given in Table 3).
Unlike cp, cp+ does not require that the directory be
known to be executable, but returns whether or not
the copy was successful. In this case PKS finds
the conditional plan: cp+(paper.tex, icaps); branch on
indir(paper.tex, icaps): if K(indir(paper.tex, icaps)) do
nothing, otherwise chmod+x(icaps); cp(paper.tex, icaps);
chmod-x(icaps). In other words PKS is able to reason from
cp+ failing to achieve indir(paper.tex, icaps) that icaps was
not initially executable.

Conclusions
We have presented a simple mechanism for reasoning about
the knowledge effects of conditional plans. This mechanism
allows us to extend an existing planner so that it can solve a
more interesting range of problems. In future work we plan
to investigate extensions to deal with function terms whose
range is unknown, to progress and regress more complex
formulas, and to provide more sophisticated search control
to allow PKS to scale to bigger problems.
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